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REPRESENTATION OF A p-HARMONIC FUNCTION
NEAR AN ISOLATED SINGULARITY IN THE PLANE

Ulf Janfalk
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Abstract. A representation theorem is proved for a p-harmonic function (1 < p < co0) near
an isolated singularity in the plane. The proof uses stream functions and the hodograph method.
The singularities can be classified as removable, poles and essential as is the case for analytic
functions. Via the representation we obtain a complete classification of isolated singularities,
analogous to the classical one for harmonic functions, in terms of the growth of the function near
the singularity. In the case p = 2 this reduces to the classical one. Further, we derive some
properties of the stream function and singular expansions of both the p-harmonic function and its
stream function in the case of a pole.

1. Introduction

Let ¢ be a p-harmonic function in the domain @ = {z € C: 0 < |z| < 1},
i.e. a weak solution of the equation

div (|[Ve[P7?Ve) =0

in the domain @ C C. The purpose of this paper is to derive a representation
formula for ¢, valid in a punctured neighbourhood of z=0, where ¢ is assumed
to have a non-removable singularity of the type pole, defined below.

The proof is based on the hodograph method and the fact that ¢ has a
p'-harmonic ((1/p) + (1/p') = 1) stream function, denoted 3, in every simply
connected subdomain of §2. Some consequences of the representation theorem are
derived:

1. Necessary and sufficient conditions for ¢ to be defined and C* in Q.
2. A representation formula for 1 of the same type as that for ¢.

3. Classification of all possible types of singularities.

4. Singular expansions for ¢ and 1 near z = 0.

The representation has the form of linear superposition

(0)= > an(Eni)

m=—N+1
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where w = ( ¥/, — 19, )~'. When considered alone, each pair <§mg7fvg> locally
m
generates a quasi-radial p-harmonic function for w # 0.

In [M], J. Manfredi treats the same problem using a different variant of the
hodograph method. There the main attention is focused on analyzing the prop-
erties of the mapping z(w) from which the information about ¢ is extracted. A
representation of z(w) identical to the one given here, is obtained in Theorem 3
and a singular expansion of the same form as here is given in Theorem 2. The
results regarding the singular expansion are the same in the cases N > 3 and
N =1, p > 2. In the remaining cases the results here go farther.

2. The setup

2.1. Background. Put @ = {z € C: 0 < |z| <1}, and let 1 < p < o0.
Suppose ¢ is p-harmonic in @, ie. ¢ € VVIL’CP(Q) and

(1) [ 1vep=29¢- Indz =0
Q

for all n € C3(Q).
Then it is well known that ¢ € C® (see [L1]) and ¢ is real analytic in every
subdomain of Q where Vi # 0 (see [L1] p. 208 and [H]). Let D C C be an open

and connected set.

Definition 1. A function f: D — C is said to be K -quasi-regular if
1. fe€Wg: (D),
2. |fs| < (K =1)|f:|/(K +1) a.ein D for some K > 1.

From [B-I] we have that the complex gradient ¢, — i@, is K -quasi-regular,
K > 1. It is a well known fact that K -quasi-regular mappings are continuous.
Further, the complex gradient has a representation

¢z —tpy =hox

where y is K -quasi-conformal and k is analytic (see [R] Theorem 2.17, p. 45).

Let x: @ — Q' and h: Q' — C be such that ¢, —ip, = hoy. From a theorem
on removable sets for quasi-conformal mappings (see [V], p. 52) we conclude that
isolated singularities are removable, i.e. x is quasi-conformal in Q U {0}. By
composing X with a conformal mapping we can assume that x(0) = 0. The
representation of ¢, — i, is not unique, but all relevant properties, such as
the order of poles and zeros (see [R], p. 66) are independent of the choice of
representation. This leads to the following definition.

Definition 2. Suppose h has a pole of order N at x(zo). Then ¢ is said to
have a pole of order N — 1 at zg.
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A pole of order zero for ¢ will sometimes be called a singularity of fundamental
solution type, since the asymptotic behaviour will resemble that of the fundamental
solution r(?=2)/(p=1)

In this paper we will treat the case where h has a pole of order N > 1.
Lemma 1. There exists r : 0 < r <1 such that

Oz, py)
oY) ‘ Fhox

Proof. Since h has a pole at £ = 0 there exists a punctured neighbourhood

U of £ =0 such that

—’a hoxl <0 for 0 < |z| <.

inf ([A(O [M'(©)]) > 0.

Thus there exists a punctured neighbourhood of z = 0 in which V¢ is non-zero.
Consequently, ¢ is real analytic there and we get

Xx€C({z:|zl<r})NC=({z:0<|z| <r})

for some r > 0. By [A-L, Theorem 3, p. 161], there is a set E of isolated points
in  such that
6(9017 Q’y)

d(z,y)
By the proof of that theorem we have that E = SUT where

S={2€Q:hox(z) =0}, T={zeQ:h ox(z)=0}.

<0 inQ\E.

By continuity of x there is an r > 0 such that x({0 < |z| <r}) CUNx(Q) and
we get {0<|z|<r}N(SUT)=0,ie

O(pz,py)
o(z,y)

Corollary. We have

<0 for 0 < |z] < T

—x(2) £ 0
for 0 < |z| <.
Proof. By the definition of quasi-conformal mappings
K -
Xl < 707

a.e. in QU {0} for some K > 1. Since x turned out to be smooth for 0 < |z| <,
this can now be interpreted pointwise. We have

(e, ¢y) ‘
o(z,y) 107

Hence |xz(z)| #0.

|X2l

hoX hox

= | (x(2)|” (xzl2=Ix=I?) <0, 0< |z <.

I3
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If we for a moment regard

{ u(z,y) = Rex(2)

U(Ia y)=Im X(Z)

as an ordinary change of coordinates in R?, we get (z = z +1y)

ggz:;; = |x:(z9)|* = [xz(z,9)|* >0,  0<|zf <

From the inverse function theorem we get x™' € C'(x({0 < |z| < r})). It then
follows from the chain rule that x™' € C*°(x({0 < |z| < r})).

2.2. Construction of the desired mappings. Take r as in Lemma 1 and
put ©, = {2:0 < |z| < r}. Then V¢ and (8(¢z,¢y))/(d(z,y)) are both non-
zeroin Q,, x € C(Q,U{0})NC>(Q,) and x~! € C(x(Q-U{0})) NC>=(x(2,)).
The following construction is illustrated by Figure 1.

Put £ = x(2) , (' = @z +1py = hox(z) and let N > 1 be the order of the
pole of k. Let § >0 and put Us = {£ : 0 < |¢{| < §}. If § is sufficiently small
there is a univalent analytic function ¢ defined on Us, having a simple pole at
£ = 0 such that k(&) = (g(¢))" for all £ € Us.

Put ¢ = g(¢) and put w(q) = {C 2| > qo}. Choose § > 0 so small that
x(£2;) D Us and choose ¢o large enough such that w(go) C g(Us).

Put Qo = (x7' 0(9)7")(w(q)). Then we get Qo C Q, and (¢ + i¢y)(2)
= ((go X)(z))N for z € Q. Hence, (' = (()V and that mapping maps w(go) onto
the set w'(gqf) = {C’ ¢ > q{,} where ¢ = (¢0)" .

By the preceding discussion z(¢) = x ™! 0(g)™({) becomes a smooth homeo-
morphism from w(go) to o and lim|¢|_ 2(¢) = 0. The obvious converse holds
for the inverse, ((z). Hence, ¢(¢) € C*®(w(go)), i.e. this change of coordinates
does not create any new singularities.

Later we will also use w = ge'® = (¢)~! instead of ( (see Figure 1).

2.3. The hodograph transformation. Since z({) is smooth it follows
that 9 is smooth. Take an arbitrary point on 0. Let T' be an arbitrary
simple curve joining z = 0 and the point on 8Qp. Put Q = Q, \T. Q is then
simply connected since its complement is connected with respect to the extended
plane. ¢ is still p-harmonic in 2 and from Lemma 1 we know that V¢ and
(0(¢z,¢y))/(8(z,y)) are non-zero in Q.

By [Ar2, Theorem 1, p. 75], we obtain that ¢ has a p'-harmonic stream

function ¢ in Q such that

(2) 1/)1 = _|V(P|p—2(py d’y = |v99|p_299r-
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* Dotted line indicates

unbounded domain

Figure 1. Mapping map
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The equations (2) are the so called p-Cauchy-Riemann equations. Put
g'e’ = ('. Then (¢, %))/ ((z,y)) = [Vel? = (¢')” > 0 in Q.

From the preceding mapping constructions we infer that z = z(¢) and ¢ =
¢(¢) are well defined and smooth in w(q).
_ Let T and Q be as above. Let I" be the image of ' in the (-plane. Now,
Q and w(go) \ I are in one-to-one correspondence by construction and ¢ can be
defined in w(go) \I". Let (o € w(go) \I". There is a neighbourhood V of {, and
a neighbourhood V' of ¢} such that the mapping ¢ — (¢)¥ = (' can be defined
uniquely as a smooth bijection of V' onto V'.

z = z(¢') then becomes well-defined and smooth near (§ = ({;). We can
therefore use the hodograph method in the same way as in [Arl, p. 90]. There it
is shown that ¢ and ¥ locally satisfy the following Chaplygin-type system

_ Yo , = (L=Plve
®) = T T

If we put u = —logq we get ¢ = e™V# and 6’ = N@. This gives the following
modified version of the Chaplygin system (3):

(4) .= (p— l)eN(”_Q)"d)g, o = —eN(P_2)”¢u.
Cross-differentiation and elimination yields:

1 p—2 1 p—2
5 o -NPTZ, 0 L NPT 2y —0.
( ) ‘P90+p_199u;t P—]-(P# ’ ¢00+p_1¢;4y.+ p—ldjﬂ 0

Theorem 3 of [Arl, p. 92], yields that 1 is well defined in {(¢',8"): ¢’ > ¢4 }.
To be able to define 9 in Q2 and w(go) we must in general make a cut in each one
of these domains in order to make them simply connected (see [Ar2, Theorem 1,
p. 75]). However, from the p-Cauchy-Riemann equations (2) we see that the
partial derivatives of ¥ can be continued smoothly across the cut. Since the
coordinate change from z = z 4 iy to ( = ge'’ is smooth we then conclude that

the systems (4) and (5) hold in all of w(g).

3. A representation theorem and some consequences

3.1. Analysis of ¢ and z(w).

Theorem 2. Suppose ¢ is p-harmonicin @ = {z:0 < |z| <1} (1 < p < o)
and that ¢ has a pole of order N —1 at z=0 (N >1). For m # 0 put

m?2

Bm = %(\/(p—2)2+4ﬁ(p—1)i(p—2)),
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where the + sign is chosen if m > 1 and the — sign if m < —1. By, is positive
for all m. For —N +1 <m < —1, B, is less than one and strictly decreasing in
m, and for m > 1, B, is strictly increasing.

Define Z.,(p,6) by

(6)

iN§

me _ NBm .
F(-l——ﬂ;jgNu ﬂm)(cosm(G—Gm)—z — sinm(8 — b))
if —N+1<m<-1

Zoof) = 4 = NGD g
m(0,6) = 4 N(p—l)g Hm=
. iN6
NI (cosm(f 6 + 0 (@ — )

if m>1.

Then there exists a po such that z(w) and ¢ admits a parametric representation
as follows:

a) There exist real sequences {Am}%__n41» {Om}oe—_n41 and a real number
bo such that A_n41 #0, A, >0 for m # 0, Amgévﬂ"‘ = O(m~F) for any
positive integer k, 0 < 6,,, < 2r and 6y = 0. The formulas

w=0e? (0>0), 20,0 = Y  AnZm(e,0)
m=—N+1

then define a homeomorphism from Wy = {w : [w| < g0} onto a neighbour-
hood Qg of z =0 and 2(g,6) € C*((0, 0] x R).
b) Let
A Np-2) :
~ +by if 2
po(e) ={ N(p-2)° o ip7
Ag log 0 + bo ifp=2.
For 0 < p < po the value of ¢ at z = z(p,8) is given by

-1

Am . - .
Me= > o sinm(0 — 6m) +@o(0)+ > Amo™ P sinm(6 — bnm).
m=—N+1 m=1

The series for z and ¢ converge uniformly for 0 < ¢ < o and 0 < ¢ < o,
respectively. Finally, the value of ¢, +i¢y at z = z(p,0) is (o~ te)N =N,

Proof. In order to get a neighbourhood of z = 0 in one-to-one correspondence
with a neighbourhood of 0 in the modified hodograph plane we put ¢ = o . We
then have the following relations between the different coordinates:

. s 1, 1
Yos+ipy=C=¢qe’ ==e’==, p=—logg=logo.

0 T
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Qo is now in one-to-one correspondence with the set W, = {w 10 < |w| < po
= g5 '} and z(w) € C(Wo) N C®(Wy).

Let {am(0)}>, be the Fourier coefficients of the function ¢(p,-). Since
© € C>((0, go] x R) and ¢(p,) is periodic with period 27 we have that

1 2T —im
am(e) = 5 / ¢(0,8)e="™?dp
0

is in C*((0, 00]). To simplify the calculations we switch from o to p. We shall
also abuse notation slightly and write

1 27 .
m = ’ 'mhde.
o () 27r/0 o(p,0)e 6
Now, let m > 1 and differentiate om(p) twice. From (5) we get

Oun = N(p—2)p, — (p — 1)ggs.

Thus,

om0 =N =25 [ oue0) 08— (o= 1) [ paati,0)c7 a8
d

(3) = N(p = 2)7-am(u) + m*(p — Dan(s).

Solving this equation and replacing e* with p yields

(9) am(@) = amQNﬂm + a—mg_Nﬂ_m

where

5= 3 ()02 44T (p =) £ (5 -2),

with + if m > 1 and — if m < —1. Since ¢ is real it follows that
(10) a-m(0) = am(o) = Tmo™Pm + amp NP

The remaining term ao(p) = 5= fo ¢uudf is obtained in the same way by differ-
entiating twice. Using (5) we get

KA —i/% d8 = N(p—2)-Lao(u) - ( 1)i/27r d6
;,010/1)—27r0 Pundd = N(p=2)7 00(u) = (P=1)g | ¢o0

= N(p = 2)7-c0li)
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Solving this equation yields
Ao N(p-2) i
—_— )+ by if 2,
(1) a0(0) = po(0) = { N(p-2)° o Hp#
A010g9+b0 1fp=2
Before writing the series for ¢ we derive the series for z since this will lead us to
conclude that some of the coefficients a,, are zero.

Define

1 2m = .
Fa(e) =37 [ #(e0)7 4™,

ie. {Fm(g)}iooo are the Fourier coefficients of the function e™*"'z(p,-) which
belongs to C>°(R) for 0 < p < po. Since

e, )
Aa,y) el >0

we see that ¢ and ¢ are valid as new coordinates in a neighbourhood of any point
in Q. From [Arl, p. 90] we have, locally, that

9z et d 0z iei?’
— = an =
9 ¢ oy (¢')r!
Since ¢' = ¢V and ¢' = N6 we get
9z elNe 0z etV
= = and — = .
dp ¢V oy gNG-1)

The fact that these equations are only valid locally causes no problems since we
can split the interval of integration in as many and as small parts as we need.
We proceed in the same manner as above and differentiate to obtain

d 1 [?™/0z0p 0z ¢ ,
—F,, - Y vr e v —z(N+m)0d9
du (1) 2 /0 (&p ou + oY a,u)e
1 2w
= 2_71— |
From the Chaplygin system (4) we see that 1, = —e N(P=D#py  and thus for
m > 1 we get

(eN”‘Pu(H, 6) + ieN(p_l)ul/f'u(/la 0))e_imed9-

d 1 o Np . —imé Np d
im0 =50 | MM —ipo)e i = ¢ (@amm + mam(1))
(12) = am(m + NBpm)eN T8l L g (m — NB_p)eNEF-mlr
d d d
gpFom) =V (Grammle) - mon(1)) = * ( Z-am () — mam())
(13) = am(NBm — m)eN(Hﬂm)# —am(NBm + m)cN(l_ﬂ—m)F,

d
(14) 7 Fo(p) = Aoe™ P
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If m =N then B_y =1 and fny = p — 1. Hence, if we integrate (12), (13) and
(14) and replace e* with ¢ we obtain for m > 1

m + NfBm oN(1+Bm)

"N+ Bm)© N *
(18)  Fn(o) = +a_m_H NO=B-m) y ¢, fm#£N
aNQNP+cN ifm:N

g NBm =M N(4ga)
"N+ Bm) 5
m & NB-m N(-p_m) -
—-m = - —m——' i -m if N
(16) F_..(0) am NO—F) +c if m#
an(p—2
E—J\MQ Np _2Na_nlogp+c_n fm=N
\
Ao N(p—-1
Folo) = =2 —oN=D | ¢

It is clear that 3, and B_,, are increasing as functions of m. Since f_y =1 it
follows that 1 — 8_,, < 0 for m > N + 1. This together with lim,_ z(0,8) = 0
implies

2T

lim |Fm(g)1 < lim L |z(0,0)| d8 =0
e—0 0

0—0 271

for every m. Hence ¢, =0 for every m and a,, =0 for m < —N.
We can now write the series for ¢ in the following form.

o0

p(0,0)= > am(e)e™

m=—00

-1

Am o |
= Z NBm sinm(0 — 0n,) + @o(0) + E AmgNﬂ"‘ sinm(6 — 0,,)
m=—N+1 0 m=1

where A, = 2|apm| for m # 1 and 6,, depends on a,,. This proves (7).
Define Z,,(p,6) as in (6). For any o < pp we thus have

208)= Y Fu(@e™™= N 4,.Z.(0,6).

m=—0o0o m=—N+1
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To finish the proof we need only show that A_n4; # 0. Put

N(1-Bn) if—-N4+1<m< -1,
(18) Ym =< N(p—1) ifm=0,

N1+ Bm) ifm>1.
Looking at the formula for 3,, we easily see that

(19) lim %’—n—= p—1, hrn NBm —my/p—1= p

m—0o0

Np-2)

The sequence {ym}>y,, is positive and strictly increasing. Thls together with
(19) then implies that there exist positive linear functions fi(m) and fa(m) such
that

(20) film) < ym < fa(m) for every m > —N + 1.
Thus there exist positive constants ¢ and d, independent of m and 6 such that
(21) co™ < [Zm(g,0)| <dp™ for every m > —N + 1.

Let M > —N + 1 be the smallest integer such that Aps # 0. Since z(p,-) €
C>(R) for 0 < ¢ < gy we get that App™ = O(m™*) for any k > 1. This
together with (20) and (21) implies

f:Am|zm(g, <C’ZAmgo ( )"'

M+1 M+1
(22) _ YM 41 - Ym —IM+1
() S e (2)
< C(§)7M+l < Co™+ < %AM|ZM(Q,9)|o

Thus, we immediately get
(23) |2(0,0) — AnZum(0,0)| < 3|AmZum(0,0)|
if p > 0 is sufficiently small. Take such a p and let 8 increase from s to 6pr+27.

By the above reasoning and inspection of the formula for Zps(p,6) we see that
the change in argument is

arg z(p,0pm + 27) — arg z(p,0m ) = arg Zpr(o0,27) — arg Zum(p,0) = 27(N + M).
Since we know that the difference should be + or —27 we get M = —N £+ 1.
Since A_ny-1 =0 we get

A_n41 #0.
This completes the proof. o
Remark. In [M], J. Manfredi obtained the same series for z(p,6) using a
different variant of the hodograph method. The series in [M] is obtained in the

same way as here, i.e. by studying an ordinary differential equation for the Fourier
coefficients.
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3.2. Analysis of the stream function . Let Q and o be as in The-
orem 2 and define ) as above. From the previous sections we know that ¢ has
a p'-harmonic stream function @ in Q. Further, ¢ and 9 satisfy the p-Cauchy—
Riemann equations (2) in 2. Hence V1 is smooth in Q.

Let A be a positively oriented simple closed curve around z = 0 such that A
is contained in §2g. It is clear that i is single-valued in Qg if and only if

/d¢=/¢zdx+¢ydy=o
A A
for every such A.

Theorem 3. Let ¢ satisfy the conditions in Theorem 2 and let i be a
stream function of ¢ in 2. Let A be as above. Then

/ i = 27rA0

i.e. v is single-valued in Qg if and only if N >2 and Ay =0.

Proof. Let 0 < ¢* < go and put A = {z: [Ve(z)| = 1/(o*)V} with positive
orientation. Then A satisfies the above conditions and

2m
/dw /s p<an Yo7, 60) do+ (0", 0) 6 = i (0, 6) db.
Q ‘
From the Chaplygin system (4) we get
po= 8077
p—1 T°¢
Hence,
(e* )1 M- 2)/ . 27(" 1 ~V=D) dag |
dp = ,6)df = a0 xy.
/ | velen0) p— 7 @)

(d/do)ao(p) = AOQN(P‘z)"l yields fA dyp = (2mAo)/(p — 1). % is single-valued if
and only if fA dy = 0, that is if and only if Ag = 0. Since Ay # 0 if N =1 the
statement follows. o

We will now derive an expression for ¥(p,#). It is clear that the series for ¢
can be differentiated term by term as many times as we please. Thus, if we insert
the series for ¢ in (4) and solve the system for 1 we obtain

mAm Ao

¥(p,6) = —-————-——cosm(e—ﬁm)+ 6
(20) "“;V“ Nime P
- Z ;7;'" NB-m cosm(f — 6,n).

We can now make the following additions to part b) of Theorem 2:
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Theorem 4. Assumptions and part a) as in Theorem 2.

b) If we cut Qo along the curve {z :z = 2(0,0),0 < p < Q()} then, in the
resulting domain Q, 1 can be represented by a series of the form (24). The
series (24) is uniformly convergent for 0 < p < po. Further, the value of
Yz + ity at z = 2(p,0) is (o' Pe?)N .

Remark. In the case where 9 is single-valued it has a pole at z = 0 of the
same order as the pole of . This is seen by substituting p'/(p' — 1) for p and
(oY@ =1 for o in (24).

We can also derive the following converse of the extended representation the-
orem.

Theorem 5. Let N > 1, 1 < p < oo and {An}w__n41 C R be such
that A_n4y1 # 0 and {Amo™P}2__y4, Is bounded for some o > 0. Let
{0m} - _n41 C[0,27) where 6y = 0.

Define Z,(p,0) as in (6) and put

20,0)= > AnZm(o.8)
m=—N+1

Then there is a po > 0 such that for 0 < p < 9o, the mapping z = z(p,0) is a
homeomorphism from Wy = {w = et 1 0<p < 0o} onto a neighbourhood 2
of z =0 and z(p,0) € C=(W, \ {0}).

Put T'={z:2z=2(p,0), 0 < 0o }. Then the formulas (7) and (24) define ¢
and 1 implicitly as functions of z in 0\ {0} and Q¢ \T', respectively. Further, ¢
is p-harmonic in Qq \ {0} with a pole of order N —1 at z =0 and % is a stream
function of ¢. If Ag =0 then v is single-valued, i.e. defined in § \ {0}.

Proof. In [Ar2, p. 86-89] a similar mapping z(p,6) is thoroughly analyzed
for the case that ¢ has a critical point at z = 0, i.e. Vp(0) = 0. There it is
shown that the mapping properties of z(p, ) are determined by the leading term
in the series. The same proof also applies here (with obvious modifications). Thus
z = 2(p, ) is a homeomorphism with the desired properties.

If we put ¢' = =N and 6’ = N6 then Theorem 3 of [Arl] applies locally in
a neighbourhood of any point in Wy with o > 0 and 0 < # < 27. Hence ¢ and
) have the stated properties. o

3.3. Singular expansions of ¢ and 1. Suppose that ¢ is p-harmonic in
Q={z:0<|z| <1}, 1<p<oo, p#2 and that ¢ is a stream function for ¢
on Q\ {z: ¢:(z) > 0,0y(z) = 0}. Further, suppose that ¢ has a pole of order
N—1latz=0 (N >1) and put z = re’®. It is then possible to derive singular
expansions of the following type:

p(rei®) = ' f(8) + O(rF %) (re®) = r'¥ g(g) + O(r¥ 7).
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The functions r*¥ f(¢) and r'Vg(4) are p-and p'-harmonic respectively and gen-
erated implicitly by the leading terms in the series for ¢ and 1, respectively,
together with the leading term in the series for z.

It can then be shown that

B-N+2 .
__1 ﬂ—N+1 1fN22 —m—l 1fNZ3
kn = p——Eﬂ—NH kv +tén=q P—-2 dN =2
e if N =1, 1- B naE
p—1 1 .
1 if N =1,
8 __Pn—2 if N >3,
l PNl N>, 1=B-Nt1
N = 1—B_Nt1 and Iy +yv = 01 if N =2,
0 1fN=1, —1 ifN:]..
p—

Further, In —1=(p—1)(kn — 1).
The proof of this is analogous to the proof of Theorem 6 in [Ar2] and it can
be found in [J, p. 22-25].

Remark. J. Manfredi has in [M], under the same assumptions, obtained a
singular expansion for ¢. In the cases N > 3 and N =1, p > 2, the result is
exactly the same as ours. The case N =2, 1 < p < 2 is not treated in [M] and in
the remaining cases, the exponent ky + éx given here is larger.

4. Classification of isolated singularities

The complex gradient ¢, —ip,, of any p-harmonic function has a representa-
tion hoyx where h is analytic and x is quasi-conformal. Since isolated singularities
of quasi-conformal mappings are removable (see [V, p. 52]) we see that ¢ has an
isolated singularity at zo if and only if A has an isolated singularity at x(zo).
This leads to a classification of the singularities as removable, poles and essential
singularities.

Let @ = {z:0 < |z|] < 1} and suppose ¢ is p-harmonicin Q (1 <p < o).
If h has a removable singularity at x(0) it is easy to show that

/ |VelP~2Ve - Vndz dy =0 for all n € Cg° (U {0}),
R2

i.e. ¢ is p-harmonic in QU{0}. We further say that ( has an essential singularity
at zo if h has an essential singularity at x(zo).

The type of singularity of h at x(0) is independent of the choice of represen-
tation, ¢, —ipy = hox (see [R]). From Theorem 2 we can now derive criteria for
the different types of singularities stated directly in terms of .
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Remark. The following results are well known in the case p = 2. In order
to avoid unnecessary technical and typographical complications we exclude that
case here. Although, if the calculations were to be carried out the result would be
the same as the classical.

Theorem 6. Suppose that ¢ is p-harmonicin 2, 1 < p < oo and p # 2.
Then z = 0 is either a removable singularity, a pole of order N —1 > 0 or
an essential singularity. The type of singularity is determined by the following
criteria:

1. z =0 is a removable singularity if and only if
a) there exists a constant A such that lim, o p(2) = A, 1<p<2,
b) lim,_ IzI(Z_P)/(P'l)‘go(z) - Al = 0 for some constant A, p > 2.
In both cases, chosing ¢(0) = A makes ¢ regular.
2. z =0 is a pole of order 0 (singularity of fundamental solution type) if and
only if
a) lim,_ Iz{(Z’P)/(p_1)|go(z)| =C>0,1<p<2,
b) lim, o |z|(2'1’)/(1’_1)‘99(z) — A| =C > 0 for some constant A, p > 2.
Choosing ¢(0) = A makes ¢ continuous.
3. 2z =0 is a pole of order N —1 > 1 if and only if

B-N+1

limsup |2|"™ |¢(2)| = C, 0<C < oo, where yNn = —————.
e 1—B-nNs1

This can occur for at most one value of N .
4. z =0 is an essential singularity if and only if

lim sup |2]*|¢(2)| = o0 for all a € R.
z—0

To prove this we need the following lemma ([M], Lemma 5).

Lemma 7 (Manfredi). Suppose that ¢ is p-harmonic (1 < p < o) in
{z € R?: 0 < |z| < 1}. Further, suppose that the singularity at x = 0 is not
removable and that

-2
|<p(z)| < Alz)? for 0 < |z] <1 and some 8 < p—l
p_

Then there is a Cy such that
|V<,9(x)| < Colz|?? for 0 < |z| < 1.
Proof of Theorem 6: Case 1. Suppose lim,_o¢(z) = A. Put ¢(0) = A.

Then there is a constant B such that ¢(z) + B > 0 for |z| < 1. Put @(w) =
¢(3w) + B. Then $(w) is positive and p-harmonic for 0 < |w| < 1. Classical
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results (see [S2, Theorem 1, p. 79]) say that in this case either the singularity is
removable or there exist positive constants Cy,C, such that

Cy|w|P=2/(p-1) < |§5(w)| < Cy|w|(P=2/(p=1) fl<p<?2
Ci|w|P=2/(p-1) < ]g(w) — 4;(0)1 < Colw|P=2/(P=1) if p > 2,

Since C; > 0 the singularity is removable.
Suppose z = 0 is a removable singularity. We have that ¢ € C,lo’: (Q U {O})

by [L2]. Thus ¢ is continuous at z =0 if 1 < p < 2. If p > 2, define @(w) as
above. Again using [S2, Theorem 1, p. 79] we get that 'G(w) — {5(0)| tends to zero

faster than |w|(®=2/(P=1)  Thus b) holds.

Cases 2 and 3. If z =0 is a pole of order N —1 > 0 then we are in the case
treated in Theorem 2 which also provides the stated exponents of |z|.

Suppose one of the limits in question in 2 or 3 exists. Then Lemma 7 ap-
plies. Hence ¢ can not have an essential singularity, because if A has an essential
singularity, then |X(z)|a|h 0 X(z)| is unbounded for every a € R. Since K -quasi-
conformal mappings are Holder continuous with exponent K~! (see [L-V, Satz
4.3, p. 73]) it follows that

2% | o x(2)| = |2]*| V()]

is unbounded for every «, which contradicts the lemma. From 1 we get that the
singularity is not removable. Thus the only possibility is a pole or singularity of
fundamental solution type. Since ¥(N) > (2 — p)/(p — 1) and strictly increasing
as a function of N it follows by Theorem 2 that the order of the poleis N — 1.

Case 4. Suppose z = 0 is an essential singularity. Then by definition, A in
the representation ¢, —ip, = hox has an essential singularity. By the preceding
argument this is equivalent to saying that

|2 |k o x(2)] = |2|%|V(2)|

is unbounded for every «. This completes the proof. o

Corollary. If [, |[Vp|*dz < oo for some o > 0, then the singularity is not
essential.

Proof. By Lemma 6 in [M] we have that there exists A > 0 and a constant
C such that

[(2)] < Clel™.

Thus, by Theorem 6 the singularity is not essential. o
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