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Abstract. An apparently new proof of the theorem in the title is given. The theorem is

then generalized to mean values over level surfaces of Green functions, of subharmonic functions

associated with a self-adjoint elliptic partial differential operator with variable coefrcients. The

analogue for subtemperatures is also proved by a similar method'

1. Introduction

Let u be subharmoniconanannulus {r e R": 11 < 1116 -rll < 12}, andlet
r(r): -logr lf n:2, r(r) - r2-n if. n) 3. A classical result of F. Riesz states

thai the integral mean of u over {c : llc6 - rll: r} i.. convex function of r(r)
for r €lr1,12[. We give below a simple, apparently new proof of this result, that
uses only Green's formula and a standard approximation argument. The proof
invites generalization, and we proceed to give analogues for subsolutions of both
second order, Iinear, elliptic partial differential equations with variable coefficients,

and the heat equation. The general elliptic case is far from elementary, since the
necessary existence and properties of the fundamental solution, the monotone ap-

proximation of arbitrary subsolutions by smooth ones, and even the existence of
suitable surfaces in sufficient quantity, all require sophisticated theorems. For

parabolic partial differential equations, there is apparently no suitable approxima-
tion theorem in the case of variable coefficients, so we restrict our attention to the

heat equation, in which context the method was first discovered.

For clarity of exposition, we give the new proof of Riesz's theorem first. In
the general elliptic case, the means may be defined only almost everywhere, so we

next show that if a function is defined a^nd satisfies the usual convexity inequality
almost everywhere on an interval in R, then it can be extended to a function
convex on the whole interval. We then consider the general elliptic case in our main

result (Theorem 2), and incorporate recent generalizations of Riesz's theorem to
means over level surfaces of Green functions, proved for the Laplacian case in [19].
We subsequently extend these results to means of. Lp and similar type, using

the elementary technique of Fugard [4], which fits in very well with our overall
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approach. Finally, we consider the case of the heat equation, where the only
real difference is that the singularity of the Green function must be handled in a
different way.

It is a pleasure to thank David Armitage, Heinz Bauer and Joel Schifffor their
help in obtaining material essential to the general elliptic case, and the referee for
helpful and informative comments.

2. The proof in the classical case

On any smooth surface, we use o to denote surface area measure, and D,
to denote differentiation along the outward normal. Let G(un,.) denote the fun-
damental superharmonic function with pole at zo € R", let A(*o,rt,,r2) denote

{ce R":11 ( llro-rll arr}, let B(os,r): {r €R": llro -rll <r}, andnut

-?(u,rs,r)_ uD rG(*g, .) do.

Ther 9(u,cs,r) differs from the usual spherical average of u by a positive con-
stant multiple, which does not a,ffect our results.

Theorem 1 (F. Riesz [13j). If u is subharmonic on A(ro,\,r2), then there
is a convex function g such that 9(urr0,.) : g o r on )rr,rzl.

Proof. Suppose
A(*0, sl r sz). If u is
that

(1)

Taking u - 1, we obtain

(2)

harmonic on A(*, ) rt ) rz), it follows from Green's formula

If we put u : G : G(*0,.) in (1), we obtain

GL,u dr

- Ir(,0,,)

l^, L^u d,r - lr^(, 
D,u - uD,u) d,o.

loo" 
d'r - lr^D 'u d'o'

l^ - r(r, ) t D,u d,o - r(r, ) t D,u d,o
J 0B(s2) J aB(rr)

t uD,G d,o * t uD,G d,o
J ?B(sz) J ?B(s)

- r(rr) *(tz) - r(sr)rc(sl) + 9(tr) - 9(tr),
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where

llote that, by (2),,

(3)

It follows that

9(sz) - 9(st)
r(sz) - r(sr )

K(sz) - rc(sr ) A,u dr.

L,u dr - rc(sz ).

(p,, q) - A(ro t p, Q) , we have

,(t) -- "(r) r(s) - ,(r)

: lo*,u(##å)ma*- "(r) - l^,,u(f;fii)d,ua** rc(s)

: I o,",(##ä ) 
m a* * I ou,,(#i+å) n, a*,

inview of (3). Since r(s) > G >r(t) on A(s,t), and r(r) > G > r(s) on A(r,s),
the last two integrals are both non-positive. This proves the reuslt for smooth
subharmonic functions.

Suppose now that u is arbitrary. Let 11 ( s1 ( s2 < 12, and take a decreas-
ing sequenc" {";} of smooth subharmonic functions which converges to u on a
neighbourhood of A(s1,s2). Then, for each j, there is a convex function gi such
that 9(ui,o0,.): gjor on ]s1,s2[, so that

I (u, xs,') : lirr;, 9(uj 7 no ;') : limPi o r,

and limg; is convex because 9(u,xs,.) is finite. Since s1,s2 äre arbitrary, this
completes the proof.

There are, of course, several known proofs of Theorem 1.. The method of
Riesz [13] involves the Dirichlet problem; those of Doob [3, p. 24] and Gardiner [5]
rely on symmetry properties of the sphere; and that of Dinghas [2] is elementary
but complicated. Another proof, supplied by the referee, is as elementary and less

complicated than the one given abovel but it does not generalize easily. Thus none
of the earlier proofs are so inviting of generalization.

Generalizations of the spåeri cal mean convexity

B(r) - B(ro, s), g(t) - 9(u, *0, s), and

f

"(')_ Jrut,)D,trdo'
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l^
)
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r(,

an

)
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r(s

: 
I^

9('
erefore,

s(t) -
Th

L,ud,r -r(s1)(r(rr) - K(rr))) - K(s2)
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3. Convexity of functions deflned on a dense subset of an interval

In this section, we show that a function which is defined and satisfies the usual
convexity inequality on a dense subset of an open interval in R, can be extended
to a function convex on the whole interval.

Deffnition. Let J be a dense subset of a bounded open interval 1_C R. A
function f : J --+ R is called convex if

/((1 - t)a+tb) < (r - t)f(") +tf(b)

whenever 0 <r< L and a,b,(L-t)a*tbe J.
We derive some basic properties of /, following the treatment of functions

convex on I in [15, p. 199]. Thus, if a,b,c € "I and a < b <c, then

(4) f(o),- f(a) . f(") - l@) < f (,) - {(b)
o-a c-a j 

c-b

Given any , € "I, define a function ry' on the set "I, : {h + 0 : z * h e J} by

,h@):f(a+h)-f(r).
h

Then (a) shows that tlt is increasing (in the wide sense) on Jr, so that, taking
limits through the set J,, we have r/(0-) < r/(0+). Defining f +(r) to be /(0*),
and /l(o) to be r/(0-), we obtain functions f'+,f'_: J * R such that /1 < f+.
These functions are increasing on J; for if a,b,c e J and o < ä, it follows from
(a) that

fl(,)s t(u),-f(a) ( lim fk)-f(b):r,,
/ - b- a - "1T* 

--;:f : I+(b)'

and similarly that f'-(a) 3 f'-(b). We can now deduce that / is locally uniformly
continuous on ,.I . For if a, B € ,.I and M -- max i l/i (") l, lf l@l) , th"r, whenever t
r,A€ J and alr<y< B wehave

-M <4(.) a f,,(r) 
= 
{+y < r-@) < r'-@) < M,

so that lf(r) - /(y)l < Ml* -yl. It now follows [7, p. 169] that / can be extended
to a locally uniformly continuous function on .f , and the convexity of the extension
then follows, by continuity from that of /.
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we,",,, i, :H:; äH:JI#Tj:;:" 
cie n'f s

Lu D;(o;i D iu),

where each o;y and its first and second order partial derivatives a.re assumed to
be bounded and locally Lipschitz continuous on R', and o;i : aji.

If E is a subdomain of R", then a locally integrable function u ot E is said
to satisfy Lu 20 weakly if

whenever u ) 0 and u e C!@). Such functions were studied by Littman [10],
who showed that each is equal a.e. to an upper semicontinuous function that is
locally the pointwise limit of a decreasing sequence of C2 functions {u;} such

lhat Lu5 ) 0. Thus u car, be identified with a function -L-subharmonic in the
sense of Herv6 [8]. We shall adopt Herv6's terminology for all potential theoretic
notions relative to .t. Details of these can all be found in [8] or [1].

Throughout this section, we denote by D a subdomain of R" that possesses

a Green function in the following (classical) sense. Given arry z € D, there is a
positive function Go(2,.) on D such that:

(i) LGp(2,') :0 on D \ {z}; Gp(z,z): q;
(ii) Go(2,.) can be continuously extended to zero on 0D, including the point at

infinity if D is unboundedl
(iii) as y ---+ z )

G o(r, y)

where (ö;i) is the inverse matrix of (a;;);
(iv) given any compact subset K of. D, there are positive constants c1 , c2 such

that
cs (llz - yll ) I G p(z,y) < "rr(ll, - yll)

whenever yrz € K.
It is known [8] that (i), (iii) and (iv) hold for any D that supports a positive

.t-potential, where Go(r,.) is an .L-potential with support {z}. It follows that,
if .E is any bounded, Dirichlet regular domain with closure in such a D, then
(i)-(iv) hold with .E in place of. D, and with Go(2,.) equal to Gp(2,') minus
the Dirichlet .L-solution on E with boundary function Go(r,.). If n ) 3, the

:i
i,i:1

t,

, ))(2-n''', ,A'(i
i,i:l
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inequalities in (iv) hold for all y,z e R" by [11], so that (i)-(iv) hold also for
unbounded Dirichlet regular domains.

We now show that any .L-subharmonic function u satisfies Lu ) 0 weakly. It
is sufficient to prove this locally, and so we can assume that u is defined on D. If
[/ is an open set with closure in D, then u: h -p for some .L-harmonicfunction
h on U , and .t-potential p on D, by a result of Brelot and Herv6 [t, p. 97]. Since
the -L-potentials on D with point support are proportional [8, p. 563], there is a
non-negative Radon measure p, on D such that

p(r) G o(*, y) dp(y)

for all r e D_ [8, p. 481]. The logarithmic or Newtonian potential of the restriction
t, of p to U is locally integrable, so that (iv) implies that the .t-potential of p
on D is also locally integrable, from which it follows that p is also. Therefore, if
u)0andueC?(D),wehave

: l,

d'r: 
lror@ l,

since .tGp(.,y) < 0 weakly so that Lu ) 0 weakly.
'We now describe the surfaces and means which generalize those in Theorem 1.

For any rs € D and r > 0 such that r(r) > 0, the set

Bo(to,r) : {x e D : Gp(r6,c) > r(r)}

is open and has its closure in D (by (ii)). It is also connected, because if it
had a component C that did not contain ns, w€ would have Gp(xg,.) : r(")
on 0C arrd LGp(ro,'):0 throughott C, which would yield the contradiction
Go(ro,') : "(.) on C.

Since Gp(rg,.) € C'(D \ {"0}), for almost every r such that r(r) > 0 the
set

{r € D: Go(ro,r)- ,(r)}

is a C2, regular, (n - 1)-dimensional manifold, by Sard's theorem [14, p. 45]. We
call such a value of r a regulat value. Whenever r is a regular valye, the set
(5) is ä82(10,"), and its outward unit normal is given by the standard formula
u : -Y G o(16, .)llvGo("r, .)ll-, .

We shall consider domains bounded by two surfaces of the form (5), where
cs is fixed and r assumes two regular values. If. L: A and D:Rn, then such
a domain is an annulus. Given xo e D and regular values 11 <-12, we put

t p@)1,(,)
Jo

(5)

Ao(*o , rL, 12) - B o(*o , rz) \ E, (*0, rr ).



%o(u, rs , r)_ t (av G o(ro , .), u)u d,o
J 0Bo(ro,t)

whenever the integral exists, where

Generalizations of the spherical mean convexity theorem 247

The surface means are defined as follows. Given ao € D and a regular value

of r, we put

(Avf ,rl: L a;i(D1f)u;.
i,i=L

Such means have been studied independently in [9], where conditions under which
they characterize solutions of various elliptic equations are given.

Theorem 2. If u is L-subharrnonic on Ao(*o,rttrz), then there is a convex

function I on lr(rz),"("t) [ such that

9o(u,r6,r): e("?))

for all regular values of r in lrr,rzl. Moreover, given any \ € D ,

(6) 9o(Go(',T),uo,t) : *it {Gr(*0,d,"0)}
for every regular vaJue of r.

Proof. Suppose first that u e C2. Let s1, s2 be regular values such that
11 ( s1 1s2 z-12, andput A2 : Ao(rarsr,s2). For every u e C2(Ao) we have,

by Green's formula,

ff
| 1rt" - uLu)d* : I (n'PVu - uYu),uldo.
J,q, Jaeo'

In particular,if. Lu:0 then

(T) lo,rru 
o* : 

luo,(t(uvu- 
uvu), u) do.

Taking u : 1, we obtain g

(8) | ̂ ' 
Lu d'r : I uo'(^'u ' 

ul d'o '

If we put u - Go - Go(ro,') in (7), we obtain

l^rGoLud,r - 
r(rr) *(rz) - "(sr)rc(s1) 

+ 9»(rr) - 9o(rr),
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where Zo(t) - -?o(u, rs, s) and
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o(r) - (AY u, u) do.

Note that, by (8),

o(tz) - rc(sr) -

It now follows, exactly as in the proof of T

I u, ,(, o ,,)

I^, Lu

heorem

dr.

1, that

9o(r) - 9o(r) 9o(r) - 9o(r)
,(t) - "(') r(s) - ,(r)

whenever r, srt areregularvaluessuchthat ry<-r <§ < tlrz. Hencethereis
a convex function g , defined on the r -image of the set of regular values in ]r1 , 12 [,
such that 9o - g o r. The discussion in Section 3 shows that rp can be extended
to a convex function or,fr(r2),r(rr)[.

Now consider the general case. If st, s2 , arrd Ap are as above, then by [10]
there is a decreasing sequence {ui} of C2 functions, such that Lui } 0 for all j
and u; --+ u on a neighbourhood of Äp. For each j, there is a convex function
gi on ]r(rr),"("r)[ such that -?e(ui,os,,r): ei(r!)) for all regular values of
r in ]s1,s2[. Hence

Zo(u, rs, r) : lim 9i (t(")),
and limgi is convex if it is finite at one point. Since s1 ) s2 are arbitrary, the
result will follow from the finiteness of -Zp.

To prove the finiteness, we use a method based on that in [18] for the heat
equation, and thus simultaneously establish (6). Let r7 € D, and let r be
a regular value (corresponding to rs). If. B : Bo(ro,r), then Gs(xs,.) :
Go(xy,.) - r(r), so that it follows from a result in [12, p. 80] that the measure

-(.lVCp1ro,.),r) do on äB is the ,t-harmonic measure relative to B and c6.
Therefore 9o(Go(.,,\),t0,.) is d".r".sing, and if n $ B then gp(Gr!.,r1),ro,r)
: Go(r0,ry) because Go(.,r1) is .L-harmonic on an open superset of B. Suppose
that ry e B. Then 11 e Bp(rs,t1) forsomeregularrralueof t1 ( r, sothat, forany
regular rralue of t2 ) r, the functior Gp(',4) is .D-harmonic on Ap(rs,h,tz).
Therefore, by the first part of this proof, there are constants )r, Åz such that

Zo(Go(.,\),ro,r) : )rr(r)+ )z

for every regular value of f in ]t1,t2[. Since t2 is arbitpry, this holds for every
regular t ) tr. Because Go(.,q): Go(rt,.), which has a continuous extension to
zero on 0D, for each e ) 0 the set

D"_ {r € D: Go(*,ri 2 u}
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is compact. Therefore, since {Bp(rs,s): r(r) > 0} expands to D as s increases,

we can choose s such that D. e Bo@o,s), so that for all regular values of t > s

we have
Zo(G o(.,T), ao,t) < t p(e, rs,t) : e.

It follows that Åz : 0, so that

# Bo(*o,r),
€ B o(ro, r).

Since the

(e) 9o(G ,(., r1), ,o , ") 
( min {G "(ro 

, ri, r(r) }
for all regular values of r. If s1 , s2 and Ap are as above, there exist at L-
potential u on D and an -t-harmonicfunction h on Ap suchthat u:h -u on
Ao,by [1, p. 97]. Since the .L-potentials on D with point support are proportional

[8, p. 563], there is a non-negative Radon measure pr on D such that

u(c): I crp,ddp(rt)
J»

for all c € D, by [8, p. a81]. We can assume that p. is supported by ,4,p, and
hence is finite, because [»1AoGo(-,rl)dp(q) is Z-harmonic on Ap. Then, by

Tonelli's theorem and (9)

for
the

set

p. 61.

(ii) It is easy to show that an .t-subharmonic function u has an .t-harmonic
majorant on D if and only if. 9p(u,cs,.) is bounded above. The case .L : A is
given in [19].

(iii) The corresponding volume means can be developed and their properties
established, exactly as in [19].

When Dinghas gave his proof of Theorem 1, !e also proved similar results
for the corresponding Le means of non-negative subharmonic functions [2]. These
were extended to mea^ns over level surfaces of Green functions in [19], by u, essen-

tially similar method. We now prove analogues in the present setting, using the
method of Fugard [4] which, conveniently requires only that the surfaces used are
level surfaces of some .t-harmonic function. Since [4] is not readily accessible, we
include the details.

9o(Go(.,\),ro,r) - {ftl ;\'') ;i?,

mean is decreasing, )1 S 1. Hence

9o(r,xs,r) - lrrr{ro(.,r),xo,r) 
dp(y) < r(r)pt(D) < oo

every regular value of r in ]sr, sz[. Sirce 9p(h, r0, .) is obviously finite-valued,
convexity of. ?p(u,re,.) follows.
Finally, Zo(Go(.,T),ro,') is the restriction of a function continuous on the

{r : r(r) > 0}, so that equality holds in (9), and (6) is established.

Remarks. (i) For the case L : L, D : R" , the ideniity (6) is given in [3,



250 N.A. Watson

Theorem 3. If u is L-subharmonic on Ao(*o,rr,rz), then there are convex
functions gp, L 1p < oo , on lr(r2),"(rr) [ such that

9o(("* )P , *0,, r)t/'
Iog 9o("" , ro ,, r)

(1 <p< *),: ep(t(t))
- P". ('("))

for aJl regular uaJues of r in lrrrrzl.

Proof. Theorem 1 (ii) in [6] implies that (u+)r and e' are ,t-subharmonic
on Ap(xs,\,rz), so that the finiteness follows from Theorem 2.

Consider the case 1 < p < oo. W'e can obviously suppose that z ) 0, and
by considering u * &-1 and then making k * oo, we can further suppose that
u ) 0. We shall omit the subscript D, and put

-ge(u, r) - ! (uo , no , r)r In

Let r, s, J beregularvaluessuchthat 11<-r <s < t<-12. Inviewofthe
discussion in Section 3, we have only to establish that

lf. Zn(u,r) : Zp(u,t), then (10) reduces to Zn(u,s) 3 Zr(u,f), which follows
from Theorem 2 applied to up. Suppose that Zo(u,t) < 9o@,r); the case
9o(r,r) < Zr(u,f) is similar. For any number a < r(t), the function Gp(rs,.)-a
is positive and .t-superharmonic on an open superset of Är(rr,r,t), so that the
function

y:(Gp(rn,.)-")'-'un

is .L-subharmonic on such a set, by Theorem 1 (iii) in [6]. Therefore, by Theorem 2
applied to u,

( 10)

(11)

r (r)9r(r, t) -, (t)90(u, r)
If we take

cl, - Zp(u,,t) - -gp(u,r)
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and calculate r(s) - a, r(r) - a, and ,(t) - o, then (11) yields

(r(t) - ,(r))'

which easily reduces to (10).

Now consider the case p : oo r again omitting the subscripts D, and taking
r, s, t as before. We need consider only the case 9(e',t) < 9(e",r). Here

, log 9("",t) - log 9(e",r)
u--\vr rlr) - rlt)

so that the function r, : u *bGo(ro,.) is -L-subharmonic on an open superset of
Äo(*o,r,t). Therefore, by Theorem 2 applied to e- ,

"b' 
(") s ("u," ) s ( #F# ) "t' 

<'t z 1"u, r) * ( #F# ) "o 
" t't s 1"", t1.

Calculating br(p)+log-?(e",p) for all p € {r,s,l}, we first see that

)

)

(r) - r(r)) s,

("(t) - ,(r)

t) + (r(t) -

'o(u, ,)t -e g'

(r,r) + (r(,

g1

?o(

P\'"

'Y"'
,\-?,,

r(s )) go(r, ,))

' ('(')(u',r)+ö

) - r(r))eo@,,

pc,-

_c2&1

L-p
9("

- "('))
- r(r))'
t)

s )

,(u,t)t-o g(uP ,,t)
(r(t) - ,(r)
(r(t) - ,(r)

P

so that

and then that

br(r) + Iog 9(eu,r)- br(t) + log 9(e',t),

r(s)log 9("",t)-r(s) log-?(e",r) + (r(r) w r(t)) logg(e",s)
< r(r)log I (e",t) - r (t)log I (e", r),

which is easily rearranged to the desired inequality, and the result follows as before.
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5. The heat equation

Let I denote the heat operator DLr D? - Dr, and g* its adjoint, in Ra+l -
{p -- (*,t) : r e R",, € R,}. All concepts relative to the adjoint will carry the
prefix 0* . A typical point of R"+1 will be denoted by p or (*,t) (q or (y, s),
etc.), whichever is convenient. We put

V, u - (Dr?.t ). . ., Dnu),, Yu - (Y ru, Dtu), riAit(*, y) -»
i-1

and use ll.ll t" denote the Euclidean norm in both R' and R"+r. Integrals with
respect to (n * l)-dimensional Lebesgue measure are denoted by I dp, and those
with respect to n-dimensional Lebesgue measure by ! dr. A temperature is a
solution of the heat equation, and subtemperatures and supertemperatures are
the corresponding subsolutions and supersolutions [3, 16, 17].

Let D be an open subset of R"+r which is 9* -Dirichlet regular, and let G6r
denote its Green function (in the sense of [17]), except that the subscript is omitted
if. D : R'+r . If po e D, then G o(po r.) is a non-negative d* -supertemperature on
D, a^nd a d*-temperature on D\ {po}. Furthermore, there is a positive, bounded,
0* -temperature å. on D such that

(12) Go(p0,.) : G(po, .) - h,

so that Go(pr,.) e C*(O \ {po}). (The function ä is the PWB solution of
the 0*-Dirichlet problem on D with boundary values G(p1,.) [17; 3, p. 331].) It
therefore follows from Sard's theorem [15, p.45] that, for almost every c ) 0, the
set

(13)

( 14)

is a C-, regular, n-dimensional manifold. We call such a value of c a regular
vaJue. For an arbitrary positive value of c, we put

0p(po,r)- {p e D: Go(pr,p)

For any regular value of c, the union of {po} with the set (13) is äOp(p6, c). Since
Go(por.) is lower semicontinuous, any Qo(porc) is open. The assumption that
D is 0* -Dirichlet regular implies that Gp(p6,.) can be continuously extended to
zero oa 0D, sothat Op(ps,c) is a compact subset of D. In view of (12), there is
a positive constant 6 such that G(ps,.) - 6 S Go(p1,.) a G@0,.) on D, so that
if d satisfies (And)-"lz : (4rc)-"/2 * 6, we have

{p e D : Go(pr,p)- $rc)-" l' .

O(po , d) ( flp (po, r) E O(po , c).
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Furthermore, Qo(po,c) is connectedl see [20] for details. If c is a regular value,

then the outward unit normal u : (urru1) to 1lo(po,c) is given by

L/ : -V G o(po,')llV G o(po,')ll -',

and we put

.tilo(u, po, r) K o(po, ')u do

whenever the integral exists, where

Ko(po, .) - llY" G o(p1,,.)ll'llVco(pr, .)ll-' - -(V,G o(po,

on ACI o(po, ,) \ {po } , and o denotes the surface area measure. It
[20] that K o(po , ') is bounded on AC) o(po, t) \ {po } .

Ao(po,ct,cz): op(po, c2) \ OD(ps, c1).

We can now give a simpler proof of [20, Theorem 3]. In the case D : R'*l ,

the finiteness of the means was proved in [18].

Theorem 4. Let u be a subtemperature on an open superset E of
Är(porct,cz). Thenthere is afunction g, either finite and convex or identically

-oo, sucå that -,//p(u,po,c): gQ-"12) for all regular values of c in l"r,rr).
Proof. Suppose first that u e C2. Let U by any bounded domain whose

boundary is smooth enough for the divergence theorem to be applicable, and
whose closure lies in E. It follows from Green's formula for the heat equation
that, whenever ? is a 9*-temperature on a neighbourhood of 0, we have

- lr. o (po,c)

.), ,,)

was proved in

(15)

( 16)

lrrou 
dp - lr"((rv r1.t, -uY ru,r,l - uuut) do,

where (rr,,ut) is the outward unit normal to 0U. Taking u_ 1

Ao(po,dt,dr). We would like to use (15) with U
the smoothness of this choice of u breaks down at

we obtain

.o

uut) do.

- Ao and u- Go(po,.), but
po. We must therefore employ

t ou d,p - t (tv xu,r,)
JU JAU

F(d;,t) - }Qo(po, dr) n (R"xl - *,f [) for i e {L,2},
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v(t) : AD n (R" xl - m,l[) and 
"(r) 

: ,4.D n (R' x {r}),
provided that the intersections are not empty. Applying (15) to the components
of V(t), with v: GD: Go(p0,.), we obtain

(17) 
Iuur* rtu oo : lurur({"ro,, - uY ,G p,u,> - uc r,,) ao.

On 
"(t) 

we have ux : 0 t t/t : L and do : d,a, so that

Irrrr(G'v'u - uv'GP'u') - uGPul) o' : 
lr1r1-ucoa*,

which tends to zero as t --+ ts-, because the integrand is bounded on Ap and the
Lebesgue measure of T(t) tends to zero (since Ao e Qo(po,d) e Q(ps,d2) by
(1a)). Next, as Kp(ps,.) is bounded on 0O(p6,d;) for each i, and (14) holds,

t ( - uV,Gp,r,) d,o ---+ -,ilp(u,po,dz) - ..,//p(u,ps,d,1)
J av6y1r61

as f --+ Js-. Also, since Gp : (4rd;)-"12 on }Qo(po,d;), as f --+ f6- we have

lururrrur(<" o' "'") - uc o") ao

--+ (atrd2)-"/2 [ ( (r,u,r,) - urr\ ao
Jaoplps,a2; \' /

- (4trd,1)-",, 
lun,rr",r,l ((v, u,u,) - urr) oo.

Making t --+ ts- in (17), we thus obtain

f
J o," otu dp : '//o(u,po, dz)-//o(r, po, d)+(ard2)-"12 

^(d,z)-(+trdr1-"lzl(d, 
),

where

)(c) : f unoto","t 
({o", ',) - u'r) ao

and, by (16) with U : Ao,

^(d,) 
-,\(d, ) : Io,r, oo. '

The result now follows exactly as for the subharmonic casel the necessary approx-
imation theorem is given in [3, p. 281].
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