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Abstract. We consider a general extremal problem from the theory of quasiconformal maps
with non-regular (and discontinuous) functionals, satisfying a condition of weak subharmonity.
The explicit form of extremals of such functionals is established. In this case the extremals do
not need to be of Teichmiiller type. We establish as an example some important properties of the
Grunsky functional.

1. fntroduction. Let E be a measurable subset of the Riemann sphere
Ö : C u {*}, whose complement E* :Ö \ A has positive measure, and let

B(8.) : {u e L*(8.)' llpll < t, plE : 0}.

Denote bV Q@) the class of normalized quasiconformal automorphisms urp(z)
of the sphere Ö 1*itt the topology of uniform convergence in spherical metric
or, Ö) with the Beltrami coefficients F- : 02wf 0,u e B(E*) and arbitrary
normalization, which ensures the uniqueness of a solution of the Beltrami equation
02w - p,O,w if. pr is given.

Let F(wr') be a real functional defined or Q(E), and assume that we have
to solve the problem of the maximum of this functional on (compact) subclasses

Qx(E)- {*r € Q@) ' lfur",ll S k],

The theory of such variational problems for quasiconformal maps is developed
only for the continuously differentiable real and holomorphic complex functionals
.t' (see e.g. [1], [2], [4], [8], [11], [13] and the references indicated there). The
problems with non-regular functionals have not been studied before.

We shall here investigate the non-regular functionals which are submitted to
a certain weakened subharmonity condition only.
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2. Theorem. Let F: Q@) - [0, *) be a bounded functional on Q(E),
and let for every fixed p, e B(8.) the function F(wtt"lllull*) be logarithmicaJly
subharrnonicint ontheunit disc A: {t: Itl < 1} andtheratio F(wtrlllrll)lltl
be bounded in a neighbourhood of t :0 (by a constant dependent on p). Then,
for all pr,

(1)

and if in ( 1) the

(2)

ot, what is equivalent,

(3)

(4)

and

(5)

F(*r) < Allpll"" (A: 
åiå 

F),

equality holds for some po # 0, then

F(*tt,olllroll ; _Altl foraltt€A,

F(*tt,o /llro ll;
Iim sup

Itl-*0
-4.

lrl

This theorem essentially sharpens Lehto's majoration principle [10] and a
general theorem on the ranges of values for holomorphic functionals proved in [8,
p. Il.

3. Proof of the theorem. We will use the following version of the Schwarz
lemma for logarithmically subharmonic functions (cf. [1a], [3]).

Lemma. Let a function u(z): A -+ [0,7) be logarithmically subharmonic in
the disc A and such that u(z)llzl is bounded in a neighbourhood of origin. Then

l,l-o^ lrl

The equality in ( ) , even for one z * 0, or in (5) can hold for the function
u(z) : lzl only.

Prcof. It is well-known that the Green function 9a,(2,0) - log lzl for the
disc A with a pole at origin is maximal among all subharmonic functions u: A --+

[--,0) such that
u(z) : log lzl + O(1),

where O(1) is bounded in a neighbourhood of z : 0. (Note that the classical
Green function is equal lo -96(2,0) and it appears as the minimal function for
the superharmonic functions A --+ (0, +*]).
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Flom hence, taking into account the conditions of the theorem, we immedi-
ately obtain

logu(z) < Iog lzl;

this proves (4).
The investigation of the equality cases requires certain auxiliary considera-

tions. First of all, it follows from the subharmonity of the function log u(z) in A
that the function

'"'# 
: blu(z) - log lzl

is subharmonic in the punctured disc A \ {0} (since log lzl is harmonic there).
Since the one-point sets are removable for the locally bounded above subharmonic
functions, the function

u(z) : lo*u,(',)
lrl

can be extended to a function subharmonic in the whole disc A I we reserve the
notation u for the extended function. The function

ut(z\- @-- e'(')' lrl

then be subharmonc in the whole disc A; hence it musttogether with ,(r) will
be

(6) ,r (0) 2 lim sup ,t(r).
z+O

Returning to (4), we see that it follows from the availability of the equality
u(zs) : lzsl at some point ,o * 0 that the function u1(z) attains at this point
its maximum equal to 1, but this is possible only if u1(z) : 1. If, however, the
equality holds for (5), this together with (6) Ieads to u1(0):1, which again is
possible only for ay(z) : 1. The lemma is proved.

The assertion of the theorem itself follows directly from this lemma applied
to the functions

u u(t) : f (wtt' l lh"ll) 
1 n'

Then lur(t)l < ttt, and putting t : llpll *" obtain (1) with the equality only
for po, which satisfy (2). It easily follows from the proof of the lemma that the
condition (3) is equivalent to (2) bV virtue of the subharmonity of uuo.

4. Functionals weakly differentiable at the initial point. Now assume
that a functional .F, is differentiable in the sense of Gateau on the set Q(.8) at
the initial point id: z --+ z. This means: for a map

*r(r)- z+tH(z)+r(r) € Q@), t e R,
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F(ott'1: f Re L(H) + o(t) (r(id) : o)

holds; here Z is a continuous complex linear functional on the space of all contin-
uous functions on C. Having Z represented as

L(r): [[ raoNa\J / 
J JC

with the corresponding Borel measure )(z), one can extend .t to all functions
which are integrable on C with respect to this measure.

We have

where the variation H is represented by its kernel

h(id, () - + * holomorphic function of z and ((-z

according to the formula

H(,): -: l!r. p«)ä(id, O d€d,t (( - € + ;,t1

the equality

ry: -Re t(* ll,.ps(Oh(id, 
q1a6an).+

: -Re + Ilr.lts(OL(h(id,,O)d( 
an+*,

and it follows from (1), (3) that

(7) tto(z): {å:'"'" 
v6lle@l' 

12uu.,'

where

9o(z) : -f'Qt1ia'z\
and

+ llr.lz(a1ia, o)l d" dv : A (z : r + iv)'

Hence, if .F' is (weakly) differentiable even at one zero point, then all its
extremals are maps of Teichmiiller type. This means that the Beltrami coefficient
po of. an extremal map has the form (7): luo(r)l : "orr.t 

(on .E*) and ar11to
is determined by a sufficiently regular function gsQ) $t the problems of the
distortion theory rps is usually a rational or holomorphic function).

Note that a similar result in [8] is established under the assumption that the
functionals are complex holomorphic.
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5. Non-regular case: the Grunsky functional. Now we show that
in the non-regular case the extremals can be of non-Teichmiiller type also, even

for the functionals which satisfy the condition of the theorem. In other words,

the conditions (4), (5) do not imply (7) in this case. we emphasize that we

here consider problems of a different type from the Teichmiiller problem on the

minimization of quasi conformality coeffi cient.

Let E' : Q(4.) be the class of univalent functions

(8)

in the region

oo

*(r):z+»a,z-n
n:o

A* - {z € Ö ,lrl> 1}

with a quasiconformal extension to Ä. The closure of E' in the topology of
uniform convergence on the compacts in A* coincides with the class E of all the
univalent functions in A* with the expansion (8).

It is well-known that a meromorphic function ro with the expansion (8) is
univalent in A* (i.e. belongs to E ) if and only if, for its Grunsky coefficients

a*r(w) determined from the expansion

los 
*Q) - Y(e) -z-(

(where the branch of logarithm is equal

m rrl:l

12 with the norm llrll
sharpened inequality

ll,ll',

but the reverse is not true: from

,@

l» 't-*"a*n(w)x^x,l =*ll'll' forall xe12
tnrn:l

it does not at all follow that tl would admit quasiconformal extension d' to Ö
with llp,lll ( fr (see e.g. [9], [5]).

»
mrn:L

e mn(u)z-* e-n

to zero for z - ( - oo ), the inequality

(e)

( 10)

holds for any element n - ( rn) of complex Gilbert space

(» l*nl')'/' .The fact that w belongs to ,' leads to a

I i \ffiotmn(*)****ls llp,-11".
m rrt=l



300 S.L. Krushkal'

It is enough in (9), (10) to take c : (xn) € /2 only with llrll : 1, and this
will be assumed hereafter.

Let us consider on E' the functional

(11) r,(.f): .,rp i. A"^n(f)x*an.
ll,ll:t ^--_r

As it was established in [5], [6], the equality

F(f) :inf { llp-ff- :wP I L* : f}
(i.e. in (10)) holds for those and only those functions / € E' which are the restric-
tions to A* of the quasiconformal automorphisms urpo of the sphere Ö wiih the
Beltrami coefficients po satisfying the condition

(12) ;ä I I l^u,r,lve) 
dr dyl ilpo il- ,

where C0 is the set of holomorphic functions in the disc a with //o l9l fu dy : 1;
these are the squares of holomorphic functions: g - Q2 .

6. The continuity of the Grunsky functional on holomorphic discs
in B(A). Let us show, first of all, that the functional (1L) satisfies the conditions
of the theorem proved above. This is interesting in itself also, due to the important
role of the Grunsky functional in the function theory.

of these conditions only the following one is not trivial, due to (g) and (10):
for every p e B(L) the function

Ft U) : F(wtulttt'tt1: 
rrili!, I å, 

1,/mna*,(wtulllull)u*x,l , o --+ [0,1)

is logarithmically subharmonic in t, i.e. the function logr],(t) is upper semi-
continuous in A and the inequality for the mean value

holds for it.
The main difficulty here is to prove the upper

that Fr(t) is in fact continuous in A (and even
semicontinuity. We shall prove
more); then the subharmonity
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of the function log&(t) will follow from the fact that this function is the upper
envelope for the family of functions tog la,(t)l where

h,(t) : » t/r-" "*,(totullb'll)***nnrn=l

are holomorphic in A (and *: (*n) with llcll : f ).
In order to prove the continuity of Fr(t), we use a method employed in

[7], where the functional F was considered on the finite-dimensional Teichmiiller
spaces.

Fix p € B(A) and denote it : Pl llPll-,

c1: vltL(lzl : 1), /.t: wtF (L), a| : urti (a.;.

Let us associate two functionals with the curves C1 :

1) the least positive Fredholm eigenvalue )t defined by the equality

1

. -sup
Ä1

lo",(h) - Da; (ä)l

D t,(h) + D t; (h) '

where Dn(h) : I[n lh,lz +lhylz) dr dy is the Dirichlet integral and the supremum

is taken over the set ä1 of the functions ä, which are continuous in Ö and
harmonic outside Cr with g 4 Da, (h) - Da;(ä) < o";

2) Schober's functional

rc(A1,A|):;.rå '#
On the basis of the known Schiffer-Kiihnau result 7l \, -- Fp(t) 172], [10], we

have
max {rc(Ar, Ai), rc(A}, A,)} - 1n /,\ t \ "' P\") - max {rc(41, A}), rc(Ai, Ar)} + 1'

and therefore, for the continuity of Fr(t), it will be enough to establish the contin-
uous dependence from I (and hence from the curves C1) of. functionals rc(46, A])
and rc(Af , A1).

We shall show that for any sequence {f"} which converges to a point fo € A,

(15) lim rc(A1,,AL) : rc(A1o,Afo), _liTLrc(Ai",Ar,) : rc(Älo,Aro).
n+6 7}+OO

The basic ideaof the proof is the same as in [7], although the reasonings are here
simplified. Thus we omit some details.
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For the sake of simplicity put the notations

Arr:Ar,, Al:AL, Cn:Ct^, Hn-Htnt wn:lptnq (n:0,Lrz,,...)

and consider the maps

"(Aä, Ao) ) limsup "(Al, A").

We now establish that

gl:.no.ö-', n:!r2,....

They are conformal in Afi and have in Ao the Beltrami coefficients

pst@): (H,r#)..i,,
so their quasiconformality coeffcients (maximal dilatations) are

(16) n(sl) - t + llp'; ll"" --, r for n --+ oo.
r _ ll/c; ll_

Now fix hn e Hn and define hs as hn o Si" I Co in As and as a harmonic
extension of the function h" o gl I Co in Ao. Then hs € IIs and, due to the
conformality of Sl, in Afi, we get Da;(ho) : Da;(h,). On the other hand,
the Dirichlet principle and the quasi-invariance of ihe Dirichlet integral under
quasiconformal maps give the relations

Da"(äo) 1 D6o(hno e;) < K(si)D6^(h").

Hence we obtain

n(Li.An))Da;(äo) :Dol(h.) > Da;(ä,) , Dol(h.)
\-u7-wl - Da.(äo) Da.(ho) - Doo(hoogi)- It(gi)D6^(g")

and consequently, for all n : 7,2,...

"(aä,Äo) 
> 

fr^{a;,1,1.
Thus, by virtue of (16),

( 17)
,z-)oo



Quasiconformal extremals of non- regular funct ionals 303

and this together with the previous inequality gives the first inequality in (15).

Let e > 0 be arbitrary. We can choose a function ho e Ho such that

Da:(ho)

dö > o(aä'ao) -€

and then transform it into a function ho e Hn, setting ä, equal to äs o g;-1 irt
§ *d in A,, equal to a harmonic function with boundary values hs o gl-1 on

C,r. Then, using similar considerations, we shall have

K(L.,,^,)>'ffi:m,.åffii;
. i-rn»('(aä,ao) - e);

hence
L"q,gf o(A;, A") > t(Aä, Ao) - e,

and since e is arbitrary, we obtain (17).

7. One construction. In order to obtain similar relations for rc(Ar,,A|),
we must construct the quasiconformal extensions g, of the conformal maps from
the region As onto Ä,, with K(5") --+ L for r, --+ oo.

This can be done, for instance, in the following way. Let us extend p into A*
symmetrically, i.e. take

t " (,) : {ffi-* *, * t;: 
:2i,.

Then u.,p' takes out A and A* into themselves and here K(wt"): K(wF). Now
we define for every t € A a quasiconformal automorphism

f'(t):wtL o(wtl')-r

of the whole sphere.
Counting its Beltrami coefficient py, according to an elementary formula for

the map composition

P f,o1-' o 7 : !J'--4!-0' f
I - trf tr* 0"f '

we see that /t maps conformally the disc A onto the region A1 and quasiconfor-

mally A* onto A|; in addition,

ttt,t^.(.) : -(r*,u" 6#l o (wt'u" 1-r.
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Hence, for any t' , t" e A, the map

(18) f1,1,,9 fr,, o fnt:tDt"i' o(w{'i")-'orf i'" o(wt'fr'1-r

has, due to the conformality of ut"i' ar.d wt'I in A, the coeffi.cient of quasicon-
formality

K(fr'r") : K(wt"i"o o (wt'F1-r1: 

=-]1,where
,:(t,,_t,)lG_1t,,).

One can see from this that l{(fr,r,,) --+ L for ttt -+ tt .

It remains to put, according io (18),

9n : ftotn (n : 7r2r. . .)

and then one carl apply to g,, the considerations similar to those employed above
for gi. This gives exactly the second equality from (15).

Remark. The construction from the previous section (and, of course, all
reasonings from 6) extends directly to the arbitrary sequences of maps {-r.}
with p,n e B(D), which converge to pr,n € B(D) in the Loo-norm. Then the
function

togr(p) I tos F(.u): B(a) --+ [-oo, o)

is continuous and plurisubharmonic in the baJI B(L), and since ,F depends on the
values of the maps top only in the region (disc) of their conformalitS it follows that
.t' is constant on the fibers of the holomorphic fibering O: B(A) -+ 

"(1), 
where

7(1) is the universal Teichmiiller space. Hence, log.i descends as a continuous
and p/un'subharmonic function to the universal space T(1.).

If, however, we consider p which are Beltrami differentials with respect to
an (arbitrary) Fuchsian group I in the disc A, we analogously find that log tr'
is continuous and plurisubharmonic on the Teichmilller space 

"(f) 
of the group

l. (This follows, however, from the above also, because all ?(r) are embedded
canonically in 7(1).) This supplements, in particular, the results from [6], where
only the finite-dimensional Teichmiiller spaces were considered.

on the other hand, it follows from what was proved in Section 4 that the
functional F (the Grunsky constant) is not differentiable at zero point.

9. An example. Now we shall show that there exist po € B(A) which
satisfy. the condition (12) and hence are extremal for the functional (11), with
luo(r)l f const in A.
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Consider the map
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fnQ):P(x)+iy, z:oliy

of the half-strip fI+ : {z : O < r < m,0 ( y < 1} onto itself, which is the

streching of this half-strip along the c-axis with the variable stretching coefficient

p(*) :2x * .l
r*1

increasing monotonically on [0, m] from 1, to 2. The Beltrami coefficient of this

stretching is equal to

trpQ)--o!'] ,1 :p(r) + t

llp, ll - å.thus arg puQ): ln and
Let us now take the

O,"(r) -
For it we have

3r*1'

I --zl*'/)m

sequence of the functions

z€fI". (m:L,2,...).

lo-(r)l dr dy _ 1,| 1,.

I ll,.1t'nQ)a*Q) 
a* aal: *l l,' e-iv/* ool l, ffi o.

(1e) :ll*{'-"'/*)l(T-;1"*fi0'1
: å(,.r(*)) (,- *n,'* l,:i")
: +(,.r(*))(r+o(Y))

With A mapped conformally onto fla using a function , : S(e), we construct
the map wuo € E' with lo equal to zero in A* and equal to (trp o g)g' lg' in A.
Then the corresponding sequence

v*G): (O- o g)s''(C), n'L : !,2,- - - ,

belongs to the mentioned set C0 and is a maximizing sequence for llrn6ll, because

it follows from (19) that

_,gl ll^r,r*ae anl: å: lko11-.
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Hence, the equality (12) is fulfilled and, consequently, wtt'o is an extremal of
the functional (11). Here sup6 lUrQ)l: I is attained only at a (unique) boundary
point, wherefore p. carr vary in A anyhow (without losing (12)).

Different examples based on the geometrical arguments were constructed by
Kiihnau (see, e.g. [9]). Note that these examples do not contain the property
for dilatation of an extremal map to attain its supremum only at one boundary
point. Kiihnau informed me that one can obtain such a property also by the
corresponding modification of his construction.

The example constructed above is interesting also because it gives an explicitly
geodesic holomorphic disc {O(atps) : f e A} in the universal space ?(1), which
is not a Teichmiiller disc and in which the Carathdodory metric coincides with the
Teichmiiller-Kobayashi metric according to [6].
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