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Abstract. We give conditions on the coefficients of equation (1.1) below which guarantee
that every solution of (1.1) has infinite order. We also show that if the coefficients of (1.1) satisfy
certain growth conditions, then any finite order solution of (1.1) satisfies certain corresponding
growth conditions. Several examples are given to illustrate the results.

1. Introduction

In this paper we consider the nonhomogeneous linear differential equation
(1.1) F 4 Ana()FTV 4+ A+ Ao(2)f = H(2)

where Ag(z), A1(z), -+, An—1(2), and H(z) are entire functions, H(z) # 0, and
n > 1. It is well known that every solution f of (1.1) is entire.

In (1.1), if p is the largest integer such that A,(z) is transcendental, then
[6] there can exist at most p linearly independent finite order solutions of the
corresponding homogeneous equation

(1.2) F 4+ A1 (2)fD 4 A(2)f' + Ao(2)f =0.

Thus it can be deduced that “most” of the solutions of (1.1) with at least one Ax(z)

transcendental have infinite order. On the other hand, there exist equations of this

form that possess one or more solutions of finite order. For instance: (a) f(z) =

e”* satisfies f" +e*f' +(e2*—1)f =e*—1,and (b) f(z) = c1sinz+cycosz + €*

(where ¢; and c, are arbitrary constants) satisfies f"'+e? "'+ f'+¢e* f = 2e*+2¢%*.
Two natural questions are:

(i) What conditions on A¢(z), A1(2), ..., An—1(z), and H(z) will guarantee that
every solution of (1.1) has infinite order?

(i1) If (1.1) possesses a solution f of finite order, then how do the properties of
Ao(2), A1(2), ..., An—1(2), and H(z) affect the properties of f?
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In this paper we obtain results on these two questions. We mention that [9]
contains results on these two questions for equation (1.2) when n = 2. See also
[11).

We note that if A¢(z), Ai(2), ..., An—1(z) are polynomials and H(z) is of
finite order, then (7, Lemma 2] every solution of (1.1) will have finite order. This
result follows by using the method of variation of parameters together with the
well-known result ([16, p. 108], [17, p. 65-68]) that if all the coefficients of (1.2)
are polynomials, then every solution of (1.2) has finite order.

Some recent papers that investigate the properties of solutions of (1.1) in the
case when Ay(z), Ai(z), ..., An—1(2) are polynomials include [1], [5], [7], and
[12].

2. Statement of the main results

For w(z) an entire function, we let o(w) denote the order of w.

Our first result shows that if f is a transcendental finite order solution of
(1.1), and if the growth of one particular coefficient A;(z) dominates the growth
of all the other coefficients in an angle, then f(9 will satisfy a certain growth
condition in the angle.

Theorem 1. Let p, 6, and 6, be real constants satisfying p > 0 and
61 < 62. Suppose in (1.1) that there exists a unique coefficient Ay(z) such that
for any 6 € (6, 62) there exist real constants a = a(f) and B = B(0) satisfying
0 < B < a, so that the following conditions hold as z — co along argz = 0:

(2.1) |Aq(z)[ > exp {(a + 0(1)) |z\"}

(2:2) |4k (2)] < exp {(8+ o(1))]2"}

for all k # q, and

(2.3) |H(z)| <exp{(B+0o(1))]z|*}.

Assume that a(6) and B(0) are continuous functions on 6; < 6 < 6.

Suppose that f is a transcendental solution of (1.1) with o(f) < co. If I > ¢
is an integer, then for any 6 € (6;, 62) we have

(2.4) |FO(2)| < exp { = (a = B+ o(1))]2]*}

as z — oo along argz = 6, where a = () and = (3(9).
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It is easy to construct examples which show that the inequality (2.4) is sharp
in the sense that we cannot replace the constant “a — 3” by a larger constant.
For example: (i) f(z) = 2% + 737 satisfies the equation

(2.5) f(v) + (e +3)f(iv) __64sz// —9e* f" +(2-—3Z)f’ £ 6f = 4z + 97 +926_3z,
and (ii) f(z) =1+ e(®~* satisfies the equation
(2.6) f(iv)+ebzfm_(b_a)2fu_+_(b_a)eazf/_(b_a)Bebzf — (1+a—b)(b—a)2ebz

where a and b are constants that satisfy 0 < b < a.

We cannot switch A,4(z) and H(z) in the conditions (2.1) and (2.3) since, for
example, f(z) = sinz satisfies f" 4+ f' + (1 +sinz)f = sin® z 4 cos 2.

If in Theorem 1, f is a polynomial solution of (1.1), then f(9 = 0 would
follow. We eliminate this trivial case by assuming that f is transcendental in
Theorem 1 (and in Theorem 2 below).

By combining Theorem 1, the Phragmén-Lindel6f theorem [14, pp. 270-271],
and Liouville’s theorem, we obtain the following two corollaries.

Corollary 1. Let 6,,6,,...,0,, be a finite set of real numbers that satisfy
0 < 0 < -+ <0y, =6, +27. Suppose that for each 1 = 1,2,...,m — 1,
there exists in (1.1) one particular coefficient Ay, (z) and a corresponding constant
wi > 0, such that for any 6 € (6;, 6iy1) there exist constants a; = ai(6) and
Bi = Bi(8) satisfying 0 < B; < a;, so that the following conditions hold as z — oo
along argz = 6:

(2.7) |A4qi(2)] = exp {(ai + o(1))]2]*}

(2.8) ‘Ak(z)l < exp {(ﬂ, + 0(1)) [z]“‘}

for all k # qi, and

(2.9) |H(2)| < exp {(B:i + o(1))|2]*}.
Foreachi=1,2,...,m—1, assume that a;(6) and $;(0) are continuous functions

on 0; <0< 0,'4.1.
Then every transcendental solution f of (1.1) satisfies o(f) = oo.

Corollary 2. Let 6,,0,,...,60,, be a finite set of real numbers that satisfy
6p <6 < - <0, =6, +27. Suppose in (1.1) that there exists a unique
coefficient A4(z) and a corresponding constant u > 0, such that for any ¢ > 0
there exists a constant o = a(e) > 0 so that

|Aq(z)| > exp {(a + o(l))|z]“}

asz—oooin b;+e<argz<0iyqy—¢fori=1,2---. m—1.
Ifin (1.1), o(Ax) < p for all k # q, and o(H) < p, then every transcendental
solution f of (1.1) satisfies o(f) = 0.
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By Corollary 1, all solutions of the following equations have infinite order:

(2.10) f" + (sinz)f' 4 (sin2)*f = cos z,
(2.11) f(iv) + e2izfm + ezfu +e—(l+i)2fl +f — 22 + 1’
(2.12) "+ ezaf" + (sinz)f' + ezzf = cos +/z.

If [ > 4 is an integer, then by Corollary 2 (or Corollary 1), all solutions of
(2.13) O 4 ezzf”' + (cos 2 ) f" + e_zsf' +zf =¢€*

have infinite order. Furthermore, given any real number x > 1, the Mittag-Leffler
function (3, p. 50] can be used to construct an entire function A4,(z) in Corollary 2
with o(Ag) = p.

Corollary 1 shows that if for each 7 the growth of one particular coefficient
Ay (2) in (1.1) dominates the growth of the other coefficients along any ray arg z =
¢ satisfying 6; < 6 < 6;11, then all transcendental solutions of (1.1) have infinite
order. Theorem 2 below shows that we can weaken this hypothesis and still get
the same conclusion. More specifically, Theorem 2 shows that if we have such a
dominating coefficient A, (z) in at least one of the sectors 6; < argz < 6,41, and
if we have certain other growth conditions in any sector 6; < argz < 6;,; where
such a dominating coefficient does not exist, then all transcendental solutions of
(1.1) will have infinite order.

Theorem 2. Let 6,,6,,...,0, be a finite set of real numbers that satisfy
bp < 6 < -+ < 6, = 6, +2n. For equation (1.1), suppose that for each
t=1,2,...,m—1, either condition (a) or condition (b) below holds for the interval
(6:, 0iy1), and suppose also that condition (a) holds for at least one interval:
pi > 0, such that for any 6 € (6;, 6,41) there exist constants a; = ai(f) and
Bi = Bi(8) satisfying 0 < B; < a;, so that (2.7), (2.8), and (2.9) hold as z — oo
along argz = 0. Assume that a;() and B;() are continuous functions on 6; <
0 < 9,’+1 .

(b) Condition (b) consists of when (2.14) and (2.16) below both hold for the
interval (65, 6;1+1). For any v satisfying 0 < v < n—1 and for any 6 € (6;, 0i+1),
we have

(a) There exists one particular coefficient Ay, (z) and a corresponding constant

(2.14) 2"V A,(z) > 0
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as z — oo along argz = 0. To describe (2.16) we first set u = maxyu; where
this maximum is taken over those values of j such that condition (a) holds for the
interval (8, 64+1). Then set

(2.15) T = soui) {ax(8) — Bx(6)}

where this supremum is taken over all § € (0, 6x+1) and all k such that condition
(a) holds for the interval (6k, Ox4+1) with px = p. Then the second part of
condition (b) is that there exists a constant A that satisfies 0 < A < 7, such that
for any 0 € (6;, 6i11) we have

(2.16) |H(z)| < exp {(A+0(1))]z]*}
as z — oo along argz =16.

Then every transcendental solution f of (1.1) satisfies p(f) = 0.

By Theorem 2, all solutions of the equation
flll+6zf/l+e32fl+e22f=ez_+_1

have infinite order. In this example condition (a) holds for the interval (—7/2,7/2),
while condition (b) holds for the interval (7/2,37/2) with p =1, 7 = 1, and
A=0.

We can generalize this example. The next result is an immediate corollary of
Theorem 2.

Corollary 3. Let Py(z), Pi(2), ..., Pn—1(z), and P(z) be polynomials
in z with n > 1 and P(z) # 0, and suppose that there exists one particular
integer q satisfying 0 < ¢ < n — 1 such that deg(P,;) > deg(Px) for all k # ¢,
deg(P,) > deg(P), and Px(0) =0 for all k =0,1,...,n—1. If I > 1 is a positive
integer, then every transcendental solution f of the equation

F® 4 Py (7)) 4o £ Py(eF ) + Po(e” )f = P(e7)

satisfies o(f) = oo.

Another illustration of Theorem 2 is that every solution of
" e? —1\2 , e —1\3 o
() () =
has infinite order. Of course, the earlier examples (2.10), (2.11), (2.12), and (2.13)

for Corollary 1 are also examples of Theorem 2 since Corollary 1 is a corollary of
both Theorem 2 and Theorem 1.
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Regarding condition (b) in Theorem 2, the examples in (2.5) and (2.6) illus-
trate that if condition (a) holds for some of the intervals (6;, 6;+1) but not all of
the intervals, then in order to obtain the conclusion of Theorem 2 we must have
some kind of condition(s) on the coefficients in (1.1) for the intervals (6;, 6;+1)
where condition (a) does not hold.

Condition (a) in Theorem 2 is sharp in the sense that if condition (a) holds for
every interval (6;, 6;41), : =1,2,...,m—1, then we cannot replace the condition
“0 < Bi < a;” with “0 < B; < «a;”. Consider, for example, that f(z) = sinz
satisfies f" — (sinz)f' 4 (cosz)f = —sinz.

The inequality (2.16) in condition (b) of Theorem 2 is sharp in the sense that
we cannot replace the condition “0 < A < 7” with “0 < A < 7” by the following
example: For any real constant ¢ satisfying 0 < ¢ < 1, f(z) = e~°* satisfies the
equation

o (CE) e (C22) = et — e (S e (S22

z z

In this example condition (a) holds for the interval (—m/2, 7/2), (2.14) holds for
the interval (7/2, 37/2), but (2.16) does not hold for the interval (r/2, 37/2)
since A =7 =c¢ (with g =1).

We do not know whether the exponents “n — v” in (2.14) are sharp or not.
Regarding this question, we mention that f(z) = e~ satisfies the following two
equations:

@) fHEFDf e = -,

z __ 1 2 z __ 1 2
(ll) fll+ (6 ) f/ + [(6 ) _1 +e3z:lf — 622.
z z
We next consider the particular case where the orders of the coefficients in

(1.1) are all less than 1/2. We have the following result.

Theorem 3. Supposein (1.1) that max {p(A1), 0(A2),...,0(An-1), o(H)} <
0(A¢) < 1/2. Then every solution of (1.1) has infinite order.

In contrast to Theorem 3, there exist equations of the form (1.1) where

1
Osrilgif_lg(Ak) <o(H) <3

which possess a solution of finite order (see Section 7).
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3. Lemmas
We shall use the lemmas in this section in the proofs of our results.

Lemma 1 [8]. Let w(z) be a transcendental entire function of finite order
o, let T = {(k1,71), (k2,72),.-- y(km,jm)} denote a finite set of distinct pairs of
integers that satisfy k; > j; > 0 for i = 1,2,...,m, and let ¢ > 0 be a given
constant. Then the following two statements hold:

(i) There exists a set E; C [0,27) that has linear measure zero, such that if
6 € [0,27) — E;, then there is a constant R = R(6) > 0 such that for all z
satisfying argz = 0 and |z| > R, and for all (k,j) € T, we have

w®(z) (k=7)(e-1+¢)
‘ < 2| .
w(])(z)

(i1) There exists a set Ey C [0,00) that has finite linear measure such that for all
z satisfying |z| € E, and for all (k,j) € T', we have

k
Mz_)l < [o|F-Dtete)
w(]) (z) -
The next result can be deduced by using standard reasoning with the classical
Phragmén-Lindelof theorem (see, e.g., [13, p. 49]).

Lemma 2. Suppose that w(z) is an entire function where p(w) < oo. Let
i, 61, and 8, be real constants satisfying u > 0 and 6; < 6, and let \(6) be a
continuous function on 6; < < 6, where \(6) > 0 for all §. Suppose that there
exists a set E C R that has linear measure zero such that for any 6 € (6,,6,) — E
we have

(3.1) |w(z)| <exp { — (/\ + 0(1)) |z|"}

as z — oo along argz = 6, where A = A(6).
Then for every 6 € (61,02), (3.1) holds as z — oo along argz = 6, where
A= A(9).

The next lemma is a generalization of Lemma 1 in [10].

Lemma 3. Let § and Ry > 0 be real constants. Let w(z) be analytic on
the ray {z cargz = 0 and |z| > Ro}, and let n(r) be a non-decreasing positive
function on the interval Ry < r < oco. Let [ > 1 be an integer and set

|w(l)(rei9)l '

(3.2) G =5
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If G(r) is unbounded as r — 400, then there exists an infinite sequence {r;}
satisfying Ry < rj < oo and r; — 400, such that as rj — +o0o we have both

(3.3) G(r;) = +o©
and
wO(re?
(3.4) W > (14 0(1)) (r];,_k

for each k =0,1,...,1—1.

The exponent ! — k on the right side of (3.4) is sharp by consideration of the
functions f1(2) = Q(z) + ¢* (when 7/2 < 6 < 37/2) and f,(z) = Q(z) where
Q(z) is a non-constant polynomial, with n(r) = 1 in (3.2).

Proof of Lemma 3. Since G(r) is unbounded as r — oo, it follows that there

exists an infinite sequence {r;} where Ry < r; < oo and r; — oo, such that
G(rj) — o0 as rj — oo and

(3.5) G(r) < G(rj)

for all r satisfying Ry < r <rj. Thus (3.3) holds, and so it remains to show that
(3.4) holds.

Set zj =rje'? set (o = Roe'?, and let [(, zj] denote the line segment joining
Co and zj. We claim that for ¥k =0,1,...,l — 1, we have

[w® ()] < [w®(Go)] + 2l (Go)]
oo T w D (o) + [zl [w D (25)]

for all z € [(o, 2;]. We will then obtain (3.4) by setting z = z; in (3.6) and noting
that w()(z;) — 0o as j — oo, which follows from (3.3) and (3.2). We now show
that (3.6) holds for each k =0,1,...,1—1.

Using (3.5) and (3.2), we first note that for z € [(, 2;]:

(3.6)

z 2]
w V()] = [t 0 w® w1 0 r)n(r)dr
o) = [0+ [ O] < @)+ [ 6l

< [wP(Go)] + (I2] = Ro) G(rj)n(ry) < [ (Co)| + I2l|w®(z;)].
Thus (3.6) holds for £k =1-1.

For the induction step, we next suppose that m is any fixed integer satisfying
1 <m < 1-1 and that (3.6) holds for £ = m. We will show that (3.6) holds for
k =m — 1. Since (3.6) holds for k = m, we have for z € [{, zj]:

W™ ()] < [w™(Go)] + |2l|w ™+ (Go)|

3.7
( ) 4ot |Z|I—m—1|w(l—1)(<o)| + |Z|I_m|'w(l)(2j)|.
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Using (3.7) and (3.5), we obtain for z € [(o, 2;]:

[ @) = [ () + [ w0

< [w ™D (Go)| + (121 = Ro) { [ ™ (Go)]| + Izl w ™+ (o)
+ -~+|2|1_m_l|w“_l)(C0)| +|zll—mlw(l)(zj)|}_

This yields (3.6) for k =m — 1.
Hence we have now proven by induction that (3.6) holds for each k =
0,1,...,1—1, and the proof of Lemma 3 is now complete.

Lemma 4 below is used in the proof of Theorem 3, while Lemma 5 below is
used in the proof of the example in Section 7.

Lemma 4 [2]. Let w be an entire function of order o where 0 < p < 1/2,
and let € > 0 be a given constant. Then there exists a set S C [0,00) that has
upper density at least 1 — 2p such that |w(z)| > exp (|z]¢™¢) for all z satisfying
|z| € S.

For a definition of “upper density”, see, for example, [2, p. 679].
Lemma 5 [4]. If w is an entire function with lower order A\ > 0, then there

exists a curve ' that goes from a finite point to oo for which

lming 222G

> L
z—o00, z€T In ‘Zl mln( )

27

4. Proof of Theorem 1

From (1.1),
f(q) f(n) 1 +f(n D Ap_q e +f(q+1)A+1
(4‘1) f(q) Aq f(q) A, f(q) A,
+1+f(41)Aq1 +LA° _H
f@ A, f@0 A, T A

From Lemma 1(i) it follows that there exist a constant ¢ > 0 and aset E C R with
linear measure zero, such that if # € R— FE then for any k satisfying ¢ < k <n-—1
we have

®(2)
(4.2) f<9> B

= o(1)lz[*

as z — oo along argz = 6.
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We now let ¢ € (6,,6;) — E, and we assume that f(9(z) is unbounded
on argz = . Then from Lemma 3, there exists an infinite sequence of points
zj = rje'¥ where rj — oo, such that
(4.3) fP(z;) = o

and

F®(z)
f@(z;)

(4.4) | < (1+0(1)) |z;]7*

as z; — 00, for all £ satisfying 0 <k < ¢q—1.

Combining (4.2), (4.4), (2.1), (2.2), and (2.3) together with (4.1) yields
f@(2z;) = 0 as zj — oo. This contradicts (4.3). Hence f9(2) must be bounded
on argz = 1.

It easily follows that for all k satisfying 0 <k <q—1,

(4.5) [FP )] = O(=1"*)

as z — oo along argz = 1.
Now from (1.1) we have

F@ [ﬂl FOD Anoy | S0 A
f(q) A, f(q) A, f(q) A,

H A, A

-2 | flg-1) et 220
A, i 4, T +qu]‘

(4.6) +

Combining (2.1), (2.2), (2.3), (4.2), (4.5), and (4.6) we find that

(4.7) |79(2)] S exp { = (a = B+0(1))]2]*}

as z — oo along arg z =%, where a = a(¢)) and 8 = ().

Since ¢ € (61, 62) — E was arbitrarily chosen, we have thus shown that for
any 6 € (61, 62) — E, (4.7) holds as z — oo along argz = 6, with a = o()
and § = B(6). By combining this with o(f(?) < co and Lemma 2, we obtain
that for any 6 € (61, 62), (4.7) holds as z — oo along argz = 6, with o = a(6)
and 3 = B(6). This proves (2.4) for I = q. We can then use the fact that (2.4)
holds for I = ¢ together with the Phragmén-Lindelf theorem [14, p. 214] and
the Cauchy integral formula to deduce that (2.4) holds for all I > q. This proves
Theorem 1.
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5. Proof of Theorem 2

Let f be a transcendental solution of equation (1.1). We make the assumption
that o(f) < o.

Now suppose that p is a value such that condition (a) holds for (6,, fp+1)
with p, = u and such that the constant 7 in (2.15) satisfies

(5.1) T=  sup {ap(G) — ﬁp(e)}.

6€(6p,6p+1)

Then from Theorem 1, we obtain that for any 6 € (6,, 6p+1),

(5.2) ‘f(n)(2)| < eXP{ - (ap —Bp + 0(1))1'2]#}

as z — oo along argz = 6, where a, = a,(6) and 3, = (,(0). From (5.2) and
[15, p. 273] we obtain

(5.3) 0<p<o(f) <oo.
Now let £ be a constant that satisfies

(5.4) A<E<T,

For fixed real values of # we will consider the quantity

|f™ (re®))|

(5:5) exp (§r#)

as 1 — 0o. Below we shall use the Phragmén-Lindelf theory (i.e., the classical
Phragmén-Lindeldf theorem and related results); see, for example, [3], [13], and
(14].

We will now show that there must exist a real number i satisfying ¢ # 6;
for i =1,2,...,m, and 6; < < 6, = 61 + 27, such that for 1) = § the quantity
(5.5) is unbounded as r — oo. We will prove this by contradiction. Suppose
that this were not true. Since o(f) = o(f(™) < oo, we can then deduce from
the Phragmén-Lindelof theory that o(f(™) < . Then from (5.3), o(f™) = p.
Furthermore, it follows from the above assumption and the Phragmén-Lindelof
theory that the type o of f(™ satisfies

(5.6) o <€< oo

Now let

(n) 10
(5.7) h(6) = lim sup In |/ (re)]

r—oo rH
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denote the Phragmén-Lindeldf indicator function of f(™) (see, e.g., [3], [13], and
[14]). Since o < oo, h(6) is a continuous function for all @ (see, e.g., [14, p. 272
and p. 275]). Thus from (5.1), (5.2), (5.4), and (5.7) it follows that there must
exist a real constant ¢ € (6,, 6,41) such that

(5.8) h(¢) < —€ < 0.

Hence from (5.8) and the theory of the indicator function h(6) [14, p. 276-277], we
deduce that o > |h(¢)! > {. This contradicts (5.6). Hence the above assumption
must be false, and so there must exist a real number ¢ satisfying # 6; for
t=1,2,...,m,and 6; < ¢ < b, = 6; + 27, such that

)|
(5.9) hirisotip o G

Now if j is any value where condition (a) holds for (6}, 6,41), then from
Theorem 1 we obtain that for any 6 € (6;, 6,41), f(™(2) > 0 as z — oo along
argz = 6. Hence from (5.9) it follows that (2.14) and (2.16) must both hold as
z — oo along argz = 1.

Now from (1.1),

f(n—l)
f»)

f_HG)
F@ T T

(510) 1+ An_l(z) + -4 Ao(z)

Because of (5.9), we can apply Lemma 3 to f(z) with ¥ = 6 and 5(r) =
exp(ér#). Then from (5.9) and Lemma 3 it follows that there exists a sequence
r; — oo such that

|f™ (rjet¥))]
_—

(511) oxp (677)

as r; — 00, and

(n) (. i
(5.12) ‘f( (r]e‘ )' > 1+ 0(1)
fO (rjev) | = (rj)n=v
as rj = oo, for v=10,1,...,n —1.

Now by combining (5.4), (5.11), (5.12), (2.14), and (2.16), it can be deduced
that (5.10) will yield the contradiction 1 = 0 as r; — oco. This contradiction

implies that our original assumption that o(f) < oo must be false. This proves
Theorem 2.
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6. Proof of Theorem 3

Suppose that f is a solution of (1.1) with p(f) < oco. Then from Lemma
1(ii), there exist a constant ¢ > 0 and a set E C [0,00) of finite linear measure,
such that

(6.1) ‘f G

| < pof

for all z satisfying |z| ¢ E and for all k =1,2,...,n. Let « and B be any fixed
positive constants that satisfy

(6.2) max {o(A41), 0(A2),...,0(An—1),0(H)} < 8 < a < o(Ao).

From Lemma 4 there exists a set S C [0,00) that has upper density at least
1 —2p(Ao) > 0 such that

(6.3) |A0(z)| > exp {|z\°}

for all 2z satisfying |z| € S. From (6.2) we obtain that there exists a constant
R > 0 such that the following conditions hold for |z| > R :

(6.4) |Ak(z)| < exp {|z|ﬂ}
for k=1,2,...,n—1, and
(6.5) |H(z)| Sexp{lzlﬂ}.

Since E has finite linear measure and S has positive upper density, there
exists an infinite sequence r; — oo such that

(6.6) ri€e{r:r>R}NS  and r; € FE
for all j.
From (1.1) we have
f fOD Ana(z) | [ AR) _ H(z)
o0 ST aet T e 7oz T Ay

Then from (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), and (6.7), we deduce that for all

z satisfying |z| = r; we have
(6.8) f(z)»0 as r; > oo.

Relation (6.8) and the maximum modulus principle imply that f =0. But f =0
contradicts that f satisfies (1.1). This contradiction proves Theorem 3.
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7. An example

In contrast to Theorem 3, we will now show that there exist entire functions
Ao, A1, H, and f with max{g(Ao),g(Al)} < o(H) < 1/2 and o(f) < oo such
that f" + A1(2)f' + Ao(2)f = H(2).

Let Ao(z) be any entire function such that 0 < o(4y) < 1/2 and where the
lower order of Ay equals o(Ag). Then let A; and f be any transcendental entire
functions that satisfy

(7.1) (A1) < o(4o) < o(f) < 1/2.
Let H(z) be defined by the equation
(7.2) "+ A1(2)f' + Ao(2)f = H(z).
From (7.2) and (7.1), H(z) is entire and
(7.3) o(H) < o(f).
Now let o and § be any fixed constants that satisfy
(7.4) 0(A1) < B < o(Ao) < a<o(f) <1/2.
From Lemma 4 there exists a set S C [0,00) with positive upper density such that
(7.5) |f(2)| > €*°

for all z satisfying |z| € S. Since the lower order of Ay equals p(Ag), we deduce
from Lemma 5 and (7.4) that there exists a curve I' that goes from a finite point
to oo such that

(7.6) |Ao(z)| > €V’

forall z €T.
We also know from Lemma 1(ii) that there exist a constant ¢ > 0 and a set
E C [0,00) of finite linear measure, such that

(7.7) l%‘ < |z|° and f( ) I <zl

for all z satisfying |z| € E.
Now there exist arbitrarily large points zy that satisfy

(7.8) |20l € S— FE and z €T.
For such points 2q, we deduce from (7.2), (7.4), (7.5), (7.6), (7.7), and (7.8)

that as zg — oo:

s VA (5 "(z0) , f'(20)A1(20)
)] = oo oten | st + oo
Thus o(H) > a. Since « can be arbitrarily close to o(f) in (7.4), o(H) > o(f).

Then from (7.3), o(H) = o(f). Hence from (7.1), max {o(4,), ), o(A1)} < o(H) <
1/2, and the assertion is now proved.

+1| > exp {(1+0(1))|20]*}.
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