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Abstract. Until now, non-linear potential theory, the examples as well as the axiomatic
theory, has mainly been based on the Perron-Wiener-Brelot method to solve the Dirichlet problem.

In a linear context, the PWB-solution of the Dirichlet problem is sufficient to develop notions like
specific order, potential kernels, balayage of measures, etc. In non-linear theory however, these

notions present great difficulties. We will define specific order and potential kernels in a non-linear
context. One of the results is a local version of the Riesz decomposition property. We only consider

semilinear perturbations of harmonic spaces. However, our methods are axiomatic in nature and

they promise to be very fruitfull in the further development ofnon-linear potential theory.

1. Introduction

One of the main motivations of potential theory is to describe solutions of
differential equations L(f) : 0. The potential theory of linear operators .L has

been studied extensively. For non-linear operators .t however, much less is known,
especially not in axiomatic theories. Axiomatic non-linear potential theory until
now has been mainly based on the Perron-Wiener-Brelot method of solving the
Dirichlet problem. Several people have tried to maintain some weak version of
linearity (for instance scalar multiplication or addition of constants, see [1], [4],

[5j, [13], [14], [15] and [16]), but all attempts in that direction have failed, until
now, to give essentially more results than described in [8] or [9], where linearity is
discarded completely. However, from examples it is clear that a lot more structure,
than described in that paper, exists.

In this text, we will use the example of semilinear perturbations of harmonic
spaces to introduce extra structure in a non-linear potential theory. Linear pertur-
bations were first considered by Walsh in [18]. After that, several people considered
linear perturbations (see [2], [3], [10], [11] a,nd [12]) and non-linear perturbations
(see [5] and [17]). We will only consider semilinear perturbations of harmonic
spaces, similar to the perturbations defined by Maeda in [17]. However, the tools
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we will use, in particular the idea of biased hyperharmonic functions, are axiomatic
in nature and can also be applied in other examples of non-linear potential theory.

Our main motivation is the specific preorder in linear potential theory. In
linear theory we say that / i g if there is a hyperharmonic function ä such that
f : g * ä. In terms of the operator .D this is equivalent to Z(/) 2 fk). This
last characterization can also be applied to non-linear operators "L and this was
the idea behind the specific preorder we will define. We will prove one of the
forms of the Riesz-decomposition property for this specific preorder. We will also
show that two potentials p and g are equal if. p - C (i.e. if. Lp:.Dq). This will
enable us to define apotential p@g that has the property L(pgq): Lp* LS.
Of course, in general, p O g is not the pointwise sum of p and g. However, the
set of potentials, with this addition and a similar scalar multiplication, is a lower
complete prevector lattice. Furthermore, similar to the linear case, we can define
a specific multiplicaiion.

2. Preliminaries

In this text, X will be a harmonic space with a countable base in the sense
of [6], whose notions and notations will be followed unless stated otherwise. Fur-
thermore, for any open set U

L. g(U) will be the set of continuous bounded potentials on [/;
2. C(U) will be the set of continuous real functions on U;
3. LSC(U) will be the set of lower finite, lower semicontinuous numerical func-

tions on U;
4. C l(U) will be the set of locally bounded fine continuous Borel functions on

U;
5. g(U) will be the set of (numerical) Borel functions on (J .

In the next three results, U will be an open set such that 7 i. 
"ompact 

and
contained in a 9-set. Furthermore, Su : I + Ku will be a map on B(U)t, where
Kry: $(U)t --. g(U) - g(U) has the following Lipschitz property:

there exists a p e g(U),such that for all / ) g,lfl < M, lgl 1M,

Theorem 2.L. For uJl f, s e g(U)b witå Su(/) - Su(s) e ,tr*(U), the
following statements are equiva)ent :

t' su([!u(g) > o;
2. Su(/) - Su(g) )- 0 on 0U ;
3./-g>o;
4. l-s20on0U.
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Furthermore, if one of those con ditions is fulfilled, then
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{f > g}: {su(/) > su(s)}.

Proof. I e 2 and 3 + 4 areevident.
4+L: There tre p, qe 9(U) suchthat Sg!f-Su(S)+p: f -g*9. Now

since Sy(/; - Su(r) * p e,tr*(t/) and (Su(/) - Su(g) +p) > 0 on 0U we have
Su(/) -Su(g) .lp> 0. But since p is apotential and Su(/)-Su(s) etr*(U),
this implies Su(/) - Su(s) > 0.

1 + 3: First we prove a lemma:

Lemma. Letp,e,k,le g(U) andlet f,ge g(U)+ suchthat lAg:0.
If wehave f .p+g.q> le and f .q+g.p>l,thenwecanfrnd p',qte I with
p' 1 p and q' { q sucå that f . p' + g. 8' : lc and f . q' + g. p' : l.

Proof of Lemma. Note that /c ,t (/. p) < (f .p+ 
S 

.d ),ff .p) : f .p . Hence there
isa /' eB(U)+ with /'( 1and kt (f .p): f'.(f .p):(f'.f).p: f .(f'.p).
Note that we may assume f' : 0 on {.f : 0}. Similarly /J. (S.d < g.p and hence
thereis a g'€g(U)+ with g'11,9':0 on {S:0} and /t (s.d:g.k'.p).
Now set p' : (f'+g').p, then wehave p' 1p, kx(f .p) : f .p' and /,t(g.p): g.p' .

In a similar way there is a q' e g(U) wiih g' { g and k x(s. q) : g. q' ard
l: 

^(f 
.q): f .g'. But nowwehave &:k ),(f .p)+k 

^(5.il: 
f .p'+g.q'

and also l: f .q' + g.p' . o

Note that

(f - g)+'p+(g -/)+ 'q> Ru(f)- Ku(g)> -Q -/)+ 'p-(f - il+'q
for some p, e e g(U) with llqll < 1. Now take &, I e 9(U) such that Xu(f) -
Ku(g) : b -l and k,( / : 0. Then we have (/ - s)+ . p+ k - f)+.g ts & and
(f -g)+.q+k -/)+ .p>l andhencewe canfind p', q'e g with p'{p and
q' 4 q such that (f - s)+ . p' *(g-l)+ - Q' : lc and (/ - s)+ . q' +(g-l)+ - p' : l.
So we have Kry(f) - Ku(g) : (f - g).p' - (f - g).c' with llq'll < L. Now we
can apply [3, Corollary 2.9] to (I + Kp, - Ko,)U - s) : Su(/) - Su(s) e .tr*(U)t
and we obtain the desired implication. o

Theorem 2.2. The map Sry is surjective (and hence bijective).

Proof. We use the same line of proof as in [t7, Theorem 2.1].
Let f e g(U)b, then we want to find u e 9(U)6 such that S(u):7.

First we reduce the problem to a more simple one. Take n e 9(U) such that
pr > Ku(f) > -pr and set po: (I - K)-t(pr). Then po e 9(U) and ps -
po. Q I Xv(f) F po . e - po. Now define X'vb) : Ku((-pg) V (p0 ng) + /)
for all g e g(U) - g(U). Now suppose we have u e g(U) - g(U) such that
u + K[(u): 0. Define u' :'u - ps, then

u' :'.) - po : -Kb@) - po < -Kb@')* (, - r'). q - po

: -K'u(?,) * po.q - po 1-Kb@') + Ku(f) : -Xb@') + K'uQ).
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Now using Theorem 2.L on Klt we get that u'( 0 a^nd hence ,1p0. Dually we
get u 2 -p6 andhence Su(u+/) :u*f +Kb@): /. Soit is sufficienttoprove
that Sy(u) :0 has a solution for any Ku: 9(U\ --. g(U) - g(U) such that:

L. There exists an r € g(U), such that for all / we have: r > Ku(f) > -r;
2. There exists a p e 9(U), such that for ull / > g we have:

Define u1 -r and un*r -(I+Kp)-l (I{o(rn)- Ku(r,)) .Since

(/+ Kr)(r, - u1 )_ -Ku(ul ) - u1 _ -Ku(") -, < 0

we get u2 { ur . Now suppose ?)n I un-t r then

(I + K)(u"1r - u,,) : Ku(un-t) - Ku(u") - (rn-, - r*)'p < 0

and hence un*t 1u,. So by induction we get that (u") is specifically decreasing.
Furthermore, note that u1 F -r and suppose we have un Y -r, then

(I + K)(u"+r *r) :r - Ku(r") * (r, + r)'p> r - Ku(u*)> 0

and hence ua*1 ts -r. So again by induction we get that (u") is specifically lower
boundedby -t. Hence u:infrru, existsand r>u>-r. Since

lNu(") - xu(u")l < lu - unl- p --+ 0

and since un*r*un117.P:'un.P- Ku(u") we get u *u.p: u.p- Ku(r). Hence
u is the function we vyere looking for. o

Proposition 2.3. Let F C 9(U)6 be upper directed such that F < f for
some f e B(U)6. Then we have Ku(vF): Iim-Ep Ku(.).

Proof. Note that we may assume that .F is bounded. Take p e 9(U) and
take a decreasing sequence Ft c F such that inf@p; : in1@]"). Then we
have r((/ - F').r) : (i"r1;- r')) .p and since { A(/ - f'') < inf(/ -r')} is
semipolar and inf(/ - .F,') bounded, we get

r((r-r).p) < r((r -F').p) : (^(/- F')).p: (^(/-r)) .p<(f -F).p.

Hence 
^((/ - 4.d: (^ (/ - r')) .p. Now

J,+?.D.f) - f .p- 
J,+(/ -?t)).p - f .p- A(/ -r) .p- vF.p.
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Nowfor all rp € F wehave (V.F'- *)'p > I(y(Vf') -Ku(-) > (to-V.F.)'q.
Since the left and right side of this inequality go to 0 if u "+ VF we get that
lim-6p Ku(-): Ku(vF). o

Now let 0 be a covering of X with 9-sets and let Q/ be the collection of
all U with 7 compact and contained in some W e 0. By the notation V e U
we mean that V e d)/ arrd7 CU. A semilinear perturbation is defined as map

U -' Su : I * Ku ot 4?/, wherefor every U e %, Ku: 0(U\ - 9(U) - g(U)
has the previously mentioned Lipschitz property:
(LL) There exists a qe 9(U), llqll ( 1', such that for all M > 0,

there exists a p e g(U), such that for all / 2 g, lfl l M ,, lgl < M ,

we have: (f - g)'p > Ku(f) - Ku(s) > (g - f) 'c.
F\rrthermore, we must have:
(SH) v e u + Ku(/) - H (v, Ku(/)) * Kv(/)

We will say that a semilinear perturbation is linear if. Ku is linear for aII

U e %. We will say that a semilinear perturbation is isotone if (LL) is satisfied

with g : 0 for all U e ?/ . It is easy to check that the linear perturbations
coincide with the perturbations defined in [3] and [12]. In the appendix we will
show that the isotone perturbations coincide with the perturbations defined in

[17]. Furthermore, we will have by Theorem 3.8, that any semilinear perturbation
can be obtained by a (negative) linear perturbation, followed by a (non-Iinear)
isotone perturbation.

Standard example. As an example, consider the classical harmonic space,

i.e. the harmonic space describing the solutions of the Laplace equation Aä : 0

on and let p be a smooth potential on X with Lp -- -7. Now take a Lipschitz
continuousfunction g on XxR anddefine Kx(/Xr) :9(*,f (*))'p and Kv(/):
fx(/)-H(U,I(x(f)). Then we have a semilinear perturbation and the perturbed
harmonic space will describe the solutions of the equation Lh - s(', ä) : O ' At the
end of the next section, we will refer to this example to get a better understanding
of the definitions and results in that section. Note that all remarks we will make

about this standard example are heuristic, so we will not worry about technicalities
like differentiability.

3. Biased semilinear hyperharmonic functions

In the rest of this text, S will be a fixed perturbation'
In linear theory, specific order plays an important role. It enables us to get the

same results on 'hyperharmonic functions relative to a hyperharmonic function /',
as on'hyperharmonic functions relative to the harmonic function 0'. The proof
of such results is usually ad hoc, but an analysis of such proofs reveals that the
essential steps are as follows:

L. subtract a hyperharmonic function /;
2. prove the result relative to the harmonic function 0;
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3. add the hyperharmonic function / again.

What we will do is formalize this technique. The most essential notion in
this formalization is the idea of a bias. This bias should be seen as the function
one wants to compare with (the function / above). In this section, we will define
hyper- and hypoharmonic functions with respect to a bias, and we will show that
these functions have similar properties as hyper- and hypoharmonic functions on
the original harmonic space. In the next sections, we will apply these biased hyper-
and hypoharmonic functions to prove some nice results on specific order.

An application of these ideas to linear harmonic spaces gives:

L. 9 ishyperharmonicwithrespect toabias f if S-f e,ff*;
2. g is hypoharmonicwithrespecttoabias f if S- f €tr*;
3. theharmonicoperatorwithrespecttoabias / is 9--+ H(S- il+f .

Note that also continuity must be seen relative to the bias /. This implies
that the boundary conditions for upper and lower functions with respect to a bias
/ become more complicated if / is not continuous. Furthermore, for technical
reasons, the bias is not always a function, but it is locally a function.

semilinear biases. A map g that assigns to every u e % a function
e(U) e CilU)o such that V a U implies Sv(e(v)) - Su(cp(n)) e .tr(V) is
called a (semilinear) bias. Evidently, every / € Ct(X) is a bias. Let g and g, be
two biases and ) a real number. We define a bias pl V, by Su(p 7 9,(U)) :
Su(.p(ff)) + Su(g'(U)) . I" a similar way we define s 1 p' and ,\ig. Note ihat
this defines a linear structure on the set of biases with a 0-element 0' defined by
61u;: sr'(o).

Lemma 3.1. Fbr any bias g, there is a tlt € g(X) such that for all U e %
we have p@) - ,b e C1U1.

Proof. Since X has a countable base, there is a countable covering (U") C %
of X. Furthermore, there are Vn e Q/ srtch that (Jn 6 V* lor all n. Define
Un : U?:rU" arrd Vn : U?=rVn. We will define a sequence ?bn of bounded
functions such that ry',, is defined on I/" for all n, tho - p(V;) e C(V* O V;) for alt
n and all i and $n+r : thn ot U" for all n. First set th : p(V) on y1 : VL .

Now suppose we have ry'" with the desired properties. Then there is a continuous
function / on X such that f : rbn - p(V"+t) on W nT,a1. Now we can define
rbn+r to b. p(V"+t) - "f on V,11 and to be r!. on Vn \ tr/"+, . It is easy to
check that /n+r satisfies the desired properties. Now we define ,h@) : {t"(x) if
0€Un.o

In the rest of this section g will be a fixed bias and r/ will be a fixed Borel
function on X such that for all u e d)/ we have 9(u) - ,h e c(u). Note that
for any r/' with the same property we have ,1, - ,b, € C(X). It is easy to check
that r! e Cy(X) and that all definitions and results stated in this section will be
independent of the particular choice of ry'.
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Biased semilinear Dirichlet problem. Let U e ?/ ar,d 9 a numerical
function on 0U. If g is upper bounded we define

r*(p;U,e): inf {f e a1u)tlsu(/) - Su(e(u)) e.tr.(U\,
R2s-goa\Uj.

If 9 is lower bounded, I*(9;U,,g) is defined dually and if I*(p;U,s) -_ I*(p;U,s)
for some bounded g, then we denote the common value by I(g;U, g) .

Proposition 3.2. If U cW e% and g isa boundednumericalfunctionon
0U , then

r*(p;u,e) s sul(E-(u, g - sw(v(w))) + sw(ew».

Proof. Take V G U and f e tr. (U,s - Sw(p(W))), and define:

r(W,p;U,s): Str(tr(u, g -Sw(p(W))) + Sw(rp(W)))

,f':sut(/+sw(e(w)))
h: f'+ (/ - K)-' ((r"(/') v o)v).

Now, since (X"(f')Y 0), >- 0 we get Sy(h) > f +Sw(9(W)) and hence Su(h) -
Sw(g(W)) e.tr*(tl)t. Furthermore, on U \ y we have

h> f' + (Ku(f')y 0)v > f' + Ku(l')v : f +sw(e(w)).

This implies Ci ) g - $ on 0U. So we have the following inequalities:

l*(p;U,s)-h<0
h - f' : (r - Kr)-, ((x"(f') v o)v)

f' -r(w,p;U,g) S (r - K)-' (/ - E-(u, g - Sw(e(W)))).

Now we can use the following lemma a^nd the boundedness of (f -Kr)-t , to choose

"f urrd V such that the right hand sides of these equations become arbitrary small.

Lemma. Let q€g(U) with llqll 17. ThenforallV cU ande )0 tåere
is a W GU such that (I - Kr)-'(U \W) < e on V.

Proof. Note that for all V e U and all e > 0 there is a W e U with
Ko(U \ W) < e on V. By induction we get the same property for Ki. Now fix
V eU and e > 0. There is a N such that DLrllqll" < |e. For any n ( N
thereis aWn G U such thar Ki(U iUz") <el2N orV. Set V7:u{iW".
Then (r - K)-,(u \ v7) : »r:, K;(u \ tll) < e on v. s

Hence we get I*(9;U,S) Sl(W,p;U,g).a
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Proposition 3.3. Let U e 4L , then we have:

7. If g is a bounded function on 0U , then I*(p;U,g) > I*(9;U,S);
2. If g € g@U)b and W e Q/ with U eW, then

r*(v;u,il:r*(p;tJ,s): srr(H(u, g -sw(p(w))) + sry(eWD;

3. If f,se 9(0U)5 with f -se LSC(AU)+ and r€IJ,thenl(p;U,/Xr):
l(p;U,g)(r) if and only if f : g on the support of H(U,.)(r);

4. If F € g(?U)b is upper directed such that "f : .up F e 9(0U)t and
sup H(t/, .F,) : H(t/, f) , then sup I(9; U, F) : I(p;U,, f) ;

5. If f e g(X)b is fine l.s.c. in a , then lim inf y*, I(p;V, f)(*) > f (r);
6. Let r e 0U be regular and f e g@U)b with f - $ continuous in a, then

limr-,(I(e;U, f) - rb)@) : f(*) - rl,@).

Proof. Claim 1 follows from 2.1, 2 from L and 3.2, 3 and 4 frorn2.l.
5: Take a neighbourhood W e % of r and h, 9 with S(ä) - Sw(e(W)) e

.tr.(W) and Sq,(e(W)) - S(s) e .ff*(W)t and h >- f > g. Set M: llåll v llsll
and let p, I e .q(W) be as in property (LL). Then for all V e W we have
h > l(p;V, f) > s and hence

(h - s)' (p -H(v,p)) > n"(l(e;v, f)) - Kv(il > @ - D. Q- H(%q)).

Now if v "+ r, then ((n-il'(n-H(v,d))(r) -- 0, ((g- h).(q-H(v,q)))(o) --+ 0
and Kv(s)(r): Kw(g)(") -u(v,xvv(s))(r) - 0' So we must have

Kv(I(p;v,f))("): H(% f -sw(e(w))(,) +sw(e(w))(r) - I(p;v,/) - 0

in o. Now if / is fine l.s.c. in z then so is / -Sw(g(W)) and hence

Iim inf H(v, f - sw (e(w )))(,) ,_ (t - sw (e@)))(r)V-z

and hence we must have lim inf v-,|(p;V, f)(") 2 /(r).
6: Take M: lll(p;U,f)ll, W e Q/ withU eW and p e 9(W) swh

that p > Kw(h)r -p forall å with llhll < M. Set p'- p-H(U,p), then
p'> Ku(h)> -p'forall ä with llall S M and limy*,p'(v):0. Inparticular
limy-" Xu(h)(y):0 for all ä with lläll < M. Now

Ku(r(p;u,f)): H(u, f -sw(e(w))) +sw(r\» -I(p;u,f)
and since

tim H(4 f - sw(p(w)))(y) : (/ - sw(e@)))(r)
Y+a
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we also have

li+_ (I(e; u, f) - sw(e(w)))(y) : f (*) - sw(e@))(,). o
Y+i

Lemma 3.4. Let U e % *d f ,g e 9(U) suchthat:
1. su(s) - Su(r(tr)) e,tr.(u)5;
2. f;! e LSC(u);
3. f-s>0on0U;
4. For aJI x € U, there is a neighbourhood V, G U of x such that f(*) >

r*(P;V,,/Xr).
Then f ) g.

Proof. Take a bounded strict potential p on a neighbourhood of 7 and define
ea: e-Q-Kr)-r(op). Forall V eU wehave H(%Su(e)-Su(e(ff))) )
Su(g) - Su(e(U)). Since Su(g) - Su(s") t ap and since p is strict, this implies
H(% Su(e") - Su(e(tl))) , Sr(g") -Su(e(U)) . Using (SH) this is equivalent to

H(V, g* - Su (e(U))) + su(,p(U)) > Sv(g,)

and using 2.1 we get I(cp; V, go) ) go.
Now suppose /(y) < g(y) for some y e U. Now there is a.n o ) 0 such that

I ) g" and /(c) : go(a) for some a e U . So we have the contradiction

/(") > l*(e;V,,/)(r) > l(e;V,,g")(x) > e*@) : f(r). o

Biased semilinear hyperharmonic functions. For each open U C X we
define the set of g-semilinear hyperharmonic functions by

"tr*(rru): {flf -rb e LSC(U), andfor all y G u:l*(e;v,f) < f}.
Again str*(p;U) is defined dually and we set s.tr(g;U) : s.tr*(g;U) n
s,l€*(p;U). Now for all numerical functions g or 0u we define

ttr*(p;U,s): {f e sx.(p;U)lf lower bounded and i -i ) s - g on 0U}

?nd 'E(p;U,,g) : inf.s.tr*(9;U,g). Dually we define s,tr*(g;(I,g) and
ttt(p;U,g). rf ttr(p; [J,g) : ttt(p;u,9), then we denote the common value by
sil(p;u,g).

Proposition 3.5. Let U e Q/ , then:
1. Su(ä) - Su(e(U)) e .tr(U\ if and only if n es,tf (,p;U\;
z. If Su(h) - Su(p(U)) e .tf,.(U)6, then h esdf,*(e;t)\;
3. Fbr any upper bounded numerical function g on 0U we have ttr(p;U,g) :

l*(p;u, g);
4. For any numerical function g on 0U we have ttr(p; fl, g) > ttt(p; U, g);
5. If F c " 

tr(p;U)t is upp.* directed a.nd bounded, then sup F e s.lf (g;tJ\ .
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Proof. Claim 1: From (SH) and 2.1 we get: I(V,h) : ä is equivalent to
H(V,h) + Su(e(U)) - u(V,,Su(e(n))) : Sv(ä) which is equivalent to

H(% su(ä)) + su(,p(u)) - H(v,,su(e(u))) : su(å).

2: From (SH) and 2.1 we get: H(% Su(ä)-Su(,p(U))) < Su(ä)-Su(e(U)) is
equivalent to H(% h-Su(e(U)))+Su(,r(u)) S Sv(h) and this implies l(e;V,h)
< h.

3: It is clear that ttr(p;U,g) 3I*(p;U,9).-Now take any f e s.tr*(p;U,il.
Thenthereis a h eg(AU)b, h) g suchthat f -r/> h-tlt on 0U. By 3.4we
get that f > l*(p;U,h) : l*(p;U,h) )_T.(p;t/,9) and hence also sfi(,p;U,d >
r*(p;u,g).

4: Takeany.fl e "tr*(p;U,g) ardany fz€s,tr*(?;I/,9). Thenthereisa
h e 9(0U)6 such that also h es.tr*1q;U,h) and /2 e s.tr*(?iU, ä). Hence we
have fi > tE(p;U,h) : I(p;U,h) : tE(p;U,h) > /2 and hence ttr(p;U,il >-
sH(p;tl,s).

5: Since F cs.tr(g;I/)6 we have that Su(r) - Su(e(U)) e ,X(U)6. Fur-
thermore, since .F' is upper directed, by 2.1 also Sy(.F) - Su(ia(U)) is upper
directed and we have that Sy(sup .F.) - Su(e(U)) : sup (Sy(f) - Srr(e(ff ))) . S"
by the Bauer convergence principle Sy(sup.F') - Su(e(U)) e tr(U\ and hence
sup-F e'tr(p;tJ)6. "

We say that a numerical function / on an open set [/ is nearly g-semilinear
hyperharmonic on U if f is locally lower bounded and for all r € U there is
a neighbourhoodbase r, C Q/ such that for all V e r, we have V A U ard
tE(p; v, f)(*) s f (,).

Theorem 3.6. Let f benearly g-semilinearhyperharmoniconU andlet g
be the fine l.s.c. regularization of f , then g e s.tr*(g;U) 

.

Proof. It is easy to check that
ttt(p; u,s) : l*(p;u,e) : sup {r(v;u,D I s < h e 9@u)o}

and hence 'U(p; V, f) - r/ e LSC(I/). In particular sH(g; V, f) is fine l.s.c., and
so also g is nearly cp-semilinearhyperharmonic on U. Note also that from 3.3 we
get liminfy*, tH(p; V,g)(") > S@). Hence for any neighbourhood W € Q/ of. a
we have

f,i@, ,,ltp*, (sH(e; v,,s) -,b)@) > s@) -,p@) r_Gi@).

So g -rl, € LSC(U) and now for any V e U we can apply 3.4 to show I*(9; V,,g) S
g.o

Note that this result immediately implies that s.ff* is a sheaf. Note also that
X, endowed with s .tr* (d - 1b and s ,ff*(g) - r/ satisfies all the assumptions made
in [8] and [9]. Hence all the results and notions from those papers can be applied.
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Theorem 3.7. If the perturbation is linear, tåen (X, t,tr.(i)) is a harmonic
space and we have Su(s.tr.(O'; U)r) : .tr*(U)t for all U e % .

Proof. It is easy to check that s./f*(6;U) is a convex cone and from the
previousresultsitisclearthat X witlns.?f*(6) satisfiesallaxiomsof aharmonic
space. Since we have Sy(s.ff(0';U)o) : .tr(V)i and. Sy(s.tr.(6;U)u) t .tr*(V)o
we carr use 2.L to show that Srr(p) is an d-semilinear potential for any e e 9(U).
Hence Sut o Ku is a difference of potential kernels and so Sr' : I - Sut o Ku
defines a perturbation on the ö-semilinear harmonic space that returns our original
harmonic space. Hence we must have Sy(s,tr.(d; t/)a) : ff*(V)u. o

Theorem 3.8. Any semilinear perturbation can be obtained by a (negative)
linear perturbation followed by a (non-linear) isotone pefiurbation.

Proof. For any U e % ,let qlUl be the smallest q e 9(U) for which property
(LL)holdsontheset U. Take 7GU and f,ge9(U)a with f > g. Using(SH)
we get that Ky(f) - Kv(s) b (s - f) . qlUl. Since Kq - H(V, Kr) : Kq-H(v,p)
this implies slvl S qlul -H(V, qluj). Again using (SH) we get xu(f) - xu(il >-

@-f).qlv). Nowtake s:slUl on t/\V and q:slulA(ä+q[I/]) on V,for
some h e tr*(V,q) n C(V). Then q €. g(U) and s >- qlu)y slv) on V. Hence
Ku(f)-Ku(g)l,Q- /).q andso q > q[U]. Hence h+clvl> qlul forall
h e ,tr*(V,s) and so q[7] >- qlUl-H(V,slUD. So we have q[Iz] : q[U]+H(V,qlu))
and hence the Kopl form a linear perturbation.

Now define Klr: (I - Kop)-'(Ku * KqVl). Then for all f > g we have
(I - Kop)-'((f - il. (p+c)) > I{irU)- KirG) > O. Furthermore, for all
/ and V c U we have thal Kl1ff) - Kiff) is '(-q)-harmonic' ot V. Hence
K' defines an isotone perturbation on the '(-q)-harmonic' space. Furthermore,
(I - Kopl) o (/ + K'u) : Q + Ku). o

Proposition 3.9. Let U e Q/ , then:

1. Su(ä) - Su(e(U)) e tr.(U)6 if and only if h es.tr*(e;U)b;
2. The fine topology is tåe coarsest topology, frner than the original topology,

for which all g-semilinear hyperharmonic functions are continuous.

Proof. 1: First suppose the perturbation is isotone. Then from (SH) and 2.1
we get

H(% su(ä) - su(cp(u))) < su(rz) - su(e(n))

is equivalent to

H(v,h- su(e(u))) + su(e(u)) < sv(ä)

and this is equivalent to I(g;V,h) 3 ä. Now suppose the perturbation is linear.
Then the statement follows from 3.7. In the general case we can combine these
two results using 3.8.
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2: Let o be the fine topology generatedby s,ff*6(9). Take [/ open, / €

"tr*(prU) and r e U.If /(o) : oo, then since f -rb is lowersemicontinuous,
it is continuous and hence o-continuous in c. If /(r) ( 6, then there is a

neighbourhood Y of o and a g e"tr*(prV)a such that 9(c) > f("). Since
g A f e"tr*(p;V nU) we have that g A / is a-continuous on V 11[/. Since also
g is o-continuouson YIIU and g(r)> (gnl)(r) wehavethat g ) gAl ona
o-neighbourhood W of. a. Hence g A f : f on W and so / is o-continuous on
W and, in particularin r. So any f e s,tr*(p) is o-continuous andhence o is
the fine topology generated by s,tr*(p). SimilarlS the fine topologies generated
by 4* and ,ff* coincide.

Now take U e % a,nd ,f es.tr*(9;tJ)t. Then s : Su(/) - Su(g(ff)) e
tr.(U)u andhence f :g-Xu(f)+e(U)*Ku(e(U)) € Cr(U). So o isfiner
than the fine topology.

Now take tJ e % and s e.tr*(U)t. Then,f : SD1(e+Su(r(U))) €

'tr*(p;U)a and hence s : I + Ku(f) - p(U) - I{u(v(U)) is o-continuous.
(f ,v(U) e'tr*(p;U) and l{u(f),Xu(e(U)) € C(I/).) So o is coarser than the
fine topology. o

Standard example. Now let us go back to our standard example. The first
thing we should note is that the definition of the semilinear bias g is such that
for all [J, V e ?/ we have Ag(V) - g(., pV» : L4(U) - s(',,p(U)) on U flV .

This implies that LV - S(,cp) is a well defined expression. Now we can see the g-
semilinear hyperharmonic functions as those functions / such that A/ - S(, f) <
Ag - S(,p). Similar expressions hold for the g-semilinear hypoharmonic and
the g-semilinear harmonic functions. Furthermore, it is easy to check that the
specific preorder / is ä defined in the next section is equivalent to A/ - g(', f) <
Ah - s(.,h).

4. Speciffc order

For U openand f,ge Ct(U) wesay /iss on U if forall V eU wehave
Sy(/)-Sv(s) e,tr*(V). If boih /is9 and /)9 on [/ thenwesay "f >sg
on[J.If both f \ss andgis"f ot Uthenwesay f -g on[/. Obviouslyf,s
is a preorder, Fs is an order and - is an equivalence relation on C;. Note that
/ is g on t/ implies /-9 € LSC(U) andthat if U e% and /, g eCy(U\,
then / is g ot [/ if and only if Su(/) - Sn(g) e tr*(U). The next theorem
is the main reason for introducing biased semilinear hyperharmonic functions. It
will enable us to prove the other results on specific order.

Theorem 4.L. If U isopen and f , g €Cy(U), thenthefollowingstatements
are equivalent:

1. f |iss;
2. f e s.tr*(s;U);
3. g € s,t.17;U1.
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The proof follows from 3.9. o

Theorem 4.2. If Cr(U) > / is F cCy(U), F locallyupperbounded,then
tåe supremum V.F of F in C ilU) exists, it is equil to the fine upper semicontin-

uous regularization of sup F and we have Vf' js /.
Proof. sup.F is nearly /-semilinear hypoharmonic. o

Theorem 4.3. If Ct(U) ) "f >s F C C1(U), then the semilinear specific

suprernum YsF of F in Cy(tJ) exists and for all V c U and h e Cy(V) with
ä!s.F onV,wehave äf,sYsF onV.

Proof. Set k: n{gls >s F}. From 4.2we have k ts .F.Nowtake W eV
and g estr*(h;W,k) and define 9':lc Ag on W and 9':le on U\17. It is

easy to check that g es.tr*(f;W,k) for all f e F and hence \ut g'tss / for all

f e F. So g' ) k and thus g 2 k on I,7. So now we have sE(å;W,k)>k and

hence h i. f . This implies ts lg >s F) >s & >s F and hence k: Ys.E. o

Similar to the linear case, we define reduced functions by sfi*(p;tl,g):
inf {/ ertr*(p;u) I f > s}. Note that tE*(p;Up) ts nearly g-semilinear
hypärharmonic. So if g € CilU), then t.R*(p'U,il e str*(p;U).

Theorem 4.4. SupposeV C(J, I abias, g e CJ(U) and h eCy(V) with
h es.tr*(p;V) and s 7s h on V . If sR*(p;U,g) is locaL|y bounded on V , then
tJ?*(p;U,g) 7s h on V .

Proof. Take W G V and u e s.tr*(h;W,sB*(9;U,il) and define z' :
t4!'U,g) on U \W and u' :sR*(?;U,s) Au on W. Now we have u -l.l'>
(;-D+(i- t/) > (tn.(e;U,s) -h)+(h-r»: sE*(p;U,s)-rlt on 0W and
hence u' - $ € LSC([/). So we get u' e str*((P;U). Furthermore, we have

u e s.ff*(h;W,il and hence u > stt(n;w,g)2 g. So g_S.u' e t^tr*(p;t/) 
3,nd

hence "' )'A.(b;U,g). Since u was arbitrary we get sH(h;W,lR*(p;U,g)) >

"R*(V;U,g). Now, since 17 was arbitrary we get tR*(p;U,s) estr*(h;V)."
Note that this result implies that, for h e s tr*(g; U) with h ls g on [/, we

have lr >r t8*(g;U,g) on U. In linear theories, this is equivalent to the Riesz

decomposition property.

Lemma 4.5. Let U € Q/ and let F c Cy(U) be bounded. Then the
following st at ement s are equivalent :

1. There is a 91 e.tr*(U\ with 91> F;
2. There is a 92 e ,tr*(U)t with 92 \ F;
3. There is a 93 e s.tr*(6;U)t with gt rs F ;
4. There is a ga es.tr*(6;U)t with 9+\s F.

Frthermore, if we can choose one of the g to be continuous, then we can also

choose the other g continuous.
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Proof. 1 =+ 3: Take k e 9(U) with k > Ku(F) and set gs:Sit(gr * &).
3+4:Setga:gr.
4 + 2: Take k e g(U) with Ky(F) > -e and set sz: Su(sq,) + e.
2+ 1: Take k e.tr*(U)a nC(U) wiih lc > F - !2 ardset 91 - 9z * lc. a

For all open [/, define g(U): {/ € Cr(U) | for all V e U there exists
a s e"X*(6;V)unC(U),n e s.r*(6;tr/)anC(U): s \s f f,s å onlz). From
4.5 it is clear that I is lhe sheaf of functions that can locally be expressed as
difference of bounded continuous hyperharmonic functions. So I is independent
of the perturbation.

5. Potentials and their linear structure

Let U be an open set and g a bias. We define the set of g-semilinear
superharmonic functions on [/ by s.9*(p;U): {f ettr*(p;U) | for all y cc
U : sH(g;V, f) e'tr(prV)). Now for any h e C/U) we say that / is an upper
Ir.-semilinear potential on I/ if f e sZ*1tr;t/) and å is the greatest ä-semilinear
hypoharmonic minorant of /. We denote the set of å-semilinear potentials on U
by s?*(h;U). k is easy to check that if p esg*(h,I/) and p> q F5 ä on U,
then we have g es g*(h;t/). Furthermore, if / €' g*(g;t/) and g es g*(h;U),
then / e sg*(h;U). The set s?*(h;U) of lower ä-semilinear potentials on U
is defined dually.

In the rest of this section we will assume U e % and ä e Cy(U)6 and we
will only consider bounded potentials. These restrictions are necessary in 5.1, 5.2
and 5.5. All other results can, except for their dependence on Theorems 5.2 and
5.5, be proved for U open, ä € Cr(U) and potentials in Cy(t/).

Proposition 5.1. We have Su(s 9*(h;U)t) - Su(ä) : g*(U)t.

Proof. Take p e s g*(h;U)a, then evidently Su(p) - Su(ä) € tr.(U){ .

Now if s e,tr.(U)*, 9 I Su(p) - Su(ä), then we have 9 + Su(ä) 1 §y(p) and
s +Su(h) J Su(lr). Hence Sr'(g + Su(h)) 15 p and Sr'(g + Su(ä)) js A.
Nowsincewehad pesg*(h;U)a thisimplies Sr'(s+Su(ä)) {5 ä andhence
s +Su(h) < Su(ä). So g { 0 and hence Su(p) - Su(ä) e 9*(U)u.

Now take a p e 9*(u)t. Then evidently p' : SDl (p + Su(lr)) F5 h and
p' is bounded. Now if s 7s h and g ( p', then we have g <s pt and hence
Su(g) J Su(å) and Su(g) < p+ Su(lr). So Su(g) - Su(å) e tr.(h) and Sy(e) -
Su(ä) ( p. Hence Su(s) -Sn(lr) { 0 and so Sy(g) < Su(ä). So g {s å and
hence p' esg*(h;U)u. a

Theorem 5.2. If p, I €" g*(h;U)6 a.nd p - 8, then p : q.

Proof. Take / the smallest p-semilinear hyperharmonic majorant of ä. Then
f - p - q and f 1p,g andhencealso / esg*(h;U)b. Sowithoutlossof
generality we may suppose p ) q.
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Now set h' : siL (Su(lz) + Su(p) - su(q))' Then h' - h and bv 2.1 we

have Iz 3 h' (-p. So since p € s?*(h;U)a we get h' : h. But this implies
Su(p) : Su(c) and hence, again by 2.1, we get p : g. o

Let p, q es g*(h;t/)a and .\ > 0.

1. If there is a / ettr(pTq: t;U)nsg*(h;t/)r, then we write 7 : p@e.
2. If there is a / es"tr(^:(p:D+ ä) nt g*(h;[/)a, then we write .f : Åop.

Note that by 5.2, these definitions are unique and that it is not evident that
p @ g and ) O p always exist. Note also that these definitions depend on [/ and

ä. Itiseasytocheckthat p@q:8@p, fuOq)Oå: p@Ggk), p@h:p,
Åo(poc): (.lop)e(loe), (Å+7)op: ()oe)o(zop), ()7)or -.\o('r op)
and L Op: p. Furthermore, in all these equations, the left part exists if and only
if the right part exists.

Proposition 5.3. Let p, q es g*(h;U)u, then the following statements are

equivalent:

L. pFsgi
2. p>-s q;
3. Therc is a k es g*(hiU)6 with 'p : q @ lc;

4. qesg*(p;u)o;
5. p €s 9*k;U)0.

If either of these is true, then the le mentioned in the third statement is unique
and will be denoted by le : p O q.

Proof. 4,5 + 7 + 2 is evident.
2 + 3: It is easy to check that p 4_s.tr*(p+ n:q; t/) and h es.tr*(pl n:

S;U). Now let & be the greatest @4 n 1 q)-semilinear hypoharmonic minorant
of p. Then k es.tr(plt:ortl) and pFs,t tss ä, hence k es?*(h;t/)a. Since
k es,zf,(pln: q;U) is equivalent to p € tX(071r":h;U) we get p - s@k.
Now take a general k' e sg*(h;tl)t with p : q@k'. Then we must have
k' e s.tr(p 4 n: q; U) and hence k' - k and so k' : k .

3+2: Since p€s,trk+k:h;U) wehaveforall V eU that Sy(p)-Sv(q)-
5y(/c)+Srz(Q e ,tr(V). Since alsofor all V G [/ wehave 5r(fr)-Sv(h) e .tr.(V)
we get Sv(p) - S"(q) e tr.(V) for all V e U and hence p is q.

2 + L: Let / be the greatest g-semilinear hypoharmonic minorant of p.
Then p > / > ä and f - qFs ä. So / e'g*(hrU)r and hence f -- c. Hence
q<p.

| + 4: Let f be the smallest p-semilinear hyperharmonic majorant of g.
Thenp>/>ä and f -pFs ä.So /e 'g*(h;U)r andhence f :p. Hence
q es 9*(p;U)t.

L + 5: Let / be the greatest g-semilinear hypoharmonic minorant of p.
Then p >- f >ä and f - qts ä. So / e tg*(h;U)r and hence f : q. Hence
p es g*(c;U)t. o
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Nowit iseasy to check that uOo: u@to implies u: tp and that p@q:h
implies p: q: h.

Lemma 5.4. Let ) >0 and pe sg*(h;u)6. Nowif .\O p exists,thenfor
all 1 with 0 < 7 < \ we have that 1Op exisfs.

Proof. Take 7 with 0 <1<,\ anddefinethe bias I:7:(p:D4t.lt
is easy to check that ,\Op €'tr*(g;t/) and h e s.tr*(g;U). Now let & be the
greatest g-semilinear hypoharmonic minorant of ) Op. Then k es.tr(g;U) and
) Op >s k >s h, hence k es g*(h;U)5. o

Theorem 8.5. For ull p, q es g*(h;(t)6, p O g exists.

proof. p @ q :srr(su(p) + su(q) - su(å)). o

Theorem 5.6. The set s 9*(h;U)t, equiooed with O, O is a lower complete
prevector lattice with }-element h and specific order Fs .

Proof. From 5.4 and 5.5 we get that s 9*(h;U)a is a convex cone with 0-
element å. From 5.3 we get that the specific order on tg*(h;U)a is Fs. From
4.3 we get that 'g*(h;t/)r is lower complete. The other properties are easy to
check. o

For any numerical function / and any bias ?, sc(g;/) denotes the smallest
closed set K such that-/ is g-semilinear harmonic outside K. Since s"*1g1 is
a sheaf, it is clear that sC(g;/) always exists.

Theorem 5.7. The map sC(h;.) is an abstract carrier on (s g*1h;U)t,U) .

Proof. Evidently tC(hp) :0 if. and only if. p: ä. Also evidently p 4s g
implies tC(lr;p) c sc(ä;g). Now let p € "g*(h;U)6 and tet .F'r and, F2 te tw"
closed subsets of U with Fr U Fz : U. Define

pr : Y U es g*(h;u)o 
I f <s p,sc(ä;/) c r.r).

9V 4.g we have tC(lr;pr) C Fl. Furthermore, p Fs pr Fs h and hence p1 6
'g*(h;U)a and there is a pz e. tg*(h;U)6 with p : pr@pz. Define g -
i"f{/ l"f >s å arrd "f ) p2 on X\.F'ri. Then hl.s I (p2 andhence q €
"g*(h;t/)a. Define f : t**(O'U,pzO (pr.tr q)). Since p2: q on X\.F'r we
have p2O(p, fs g) - h on X\F1 andhence f - h on X\.Fr. Furthermore, since
PzO(p2,\s g) <s pz we have ä <s .f {s pz. So now we have p1O,f <s pt@p2 : p
and sC(h;pr 

@ /) C .F,l . Hence by definition of p1 we get h @ f {s pr andhencl
f : h. Hence h <s pzQ(pz.ts q) < h and so p2: q. Hence ,C(h;pr) C X Wr C
Fz. o

So, as in [6, p. 1,89], we can define the specific multiplication /Op of a positive
bounded continuous function / with p es g*(h;U)b.
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6. Polar and semipolar sets

For simplicity, we will prove the results in this section only in the isotone
case. However, using 3.8, it is easy to check that all results concerning polar sets,

thinness and semipolar sets also hold in the general case.

Balayage. Let U C X be a.rr open set. For any Ä C X, any / e Cy(U) and
any 9 e'tr*(f ;U) with s > f we define tno(4 f ;g): A{ä € "X*(f;U) lh>
g oa A,h> f\. Furthermore, for arry A C X and any 9 e,tr*(tJ)+ we define

Bo((l;e; = n{tz e ,tr.(u)+ I h>- s on .4}.

Lemma6.1. Let U C X be open, p abias, f e str*(g,U) and g e
tr*(U)+,then f +g e s,tr*(g;U). Furtherrnore,if f e tg*(p,U) a,nd g e
9*(U)+, then f * g e".g*$;U).

Proof. Take V CW eU, fn: (f - rb) A" a r/ and gn: 9 A n,. Then

ttt(p' V,fn * sn) :H(V, f, * sn - Sw(,p(W)))

+ Sw (e(W)) - lrv(stt (v;V, f, + s"))
S H(% sn) +H(V,s* - sw(e(w)))

+ Sw (e(w)) - n" (tH (p;V, f , + g"))

: H(% s; + tH(p' V, f ,) S H(% o) +s[(e;v, fl.
Since /, * gn - r/ € LSC(aV) we get

ttt(p; V, f + s) : 'lptlt(p; V,f.I e) 1H(V,il + tH(p; V, f)."

Lemma6.2. If u C Xisopen, f eCr(U) *d g e .tr*(U)+, tåen
Bo(u;s)+f ,tg'(u, f;f +s).

Proof. We have by 6.1 that

Bo(u;s) + f : n{1, + f lh e ,tr.(U)+,h) s on.4}

> A{ä e'tr*(f;U) I h2 / + s on A,h> f}
:sB/((/,f;f+il."

Lemma 6.3. Let U e %, f e Cy(U)t a,nd g e,tr.(U)t, th"n

sy(sBÄ1u, f; f + s)) >BA(u;s) + su(/).

Proof. Define F: {he'tr*(f;U\lh 2/+ s on A,h>-f}. Nowforany
h e F we have both Sy(ä) > Su(/) and Su(ä) - h+ Ku(h) > h+ Ku(f) >
g + f * Ku(f) : s +Su(/) on A. Hence Su(ä) - Su(/) > B'(I/;s) *d hence
Su(r) > BA(u;s)+Su(/). Now by 2.3 we get Su(sn1n, f; f +s)) : Su(nr) :

^Su(.F) 
> Bo(u;g) + su(/). "
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Lemma 6.4. Let U e % and f ,9 e C1(U)5 with f 4s g, then

Bo(u,su(g) - su(/)) . tB'(u, f;il + Ku(g) - su(/).

Proof. Take å. e Ct@) with / ts h ( 9 and 11: g on.4.. Then

h + Ku(g)- su(/) : su(ä) - su(/) + Ku(s) - Ku(h)> su(ä) - su(/) > 0

and ä + Ku(g) - Su(/): Su(s)- Su(/) on ,4.. Hence Bo(urSu(g) - srz(/))
h +.Ku(s) - Su(/) and since h was arbitrary we get Bo(U;Sn(g) - Su(/))
.so(r/, f; il + Ku(s)- su(/). "

Polar sets. As in [6], we say that a set A C X is polar if there is a covering
of X with open sets U such that BÄ(I/;oo) :0. Note that this is only one of
several equivalent definitions of polarity. As we will see, many of these equivalent
definitions have their semilinear counterpart.

Proposition 6.5. The following statements are equiva)ent:

1. A is a polar set;
2. ForallU eQ/ and f e Cy(U) wehave tB'(t/, f;a): f ;
3. There is a covering of sets U such that for all U, there are f e Cy(U) and

s estr*(f;U) with s > f and sBA(u, f;il : f .

Proof. L+2: By 6.2 weget f :BA((l;oo) +/ ) tB'(U,/;-) > /.
2+Sisevident.
3 + 1: Take o € X and a neighbourhood V of r with V C U for some

U inthecovering. Now g 2 f +e onV forsome e > 0 andwecantakea
h e,tr.(V)f with e > h ) 0. Furthermore, / is bounded on tr/. Now evidently
f =sBA(u,f;g)2ts'(% f;il2tn(% f ;f +h)> f .so bv 6.8 we get

sv(/) : sv(sB(% f; f + h)) >-BAV;ä) + sv(/)

and hence Bo(V;h) :0. o

Proposition 6.6. If A is polar and f e Cy(U), then there is a g €tg"(frU) with g > f and Ac {s : m}.

Proof. From 6.1 we get that for all 9 € 9*(U)+ there is a h e t,g*(f;U)
with {e - m} - {h: m}. o

Proposition6.7. Let Abeaclosedpolarset,U CX open, g abias
and f e 'tr*(p;U \,4) such that i it 1o*", finite on U. Then there is a
s e s.X*(p;U) with g: I on U \A.
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Proof. Define s : (R) * r/ and take V e Lr and u e .tr*(V)+ with
u:oo on A. Define ä:oo on A and ä:oon(/+u): f *u on V\.4. Then

h-rh eLSC(y) andhence hes.tr"(g;V). Furthermore ;i>;i> s-rb
on 0V and hence h estr*(g;V,g).Since inf {u e,tr*(V)+ lr: oo on A} : O

on I/\A weget />sE'(p;V,il>ttt(p;V,s) on y\.4. Since sH(g;V,s)-rh e
LSC(V) this implies s > tH(p;V,g) on V. o

Proposition 6.8. Let Abeaclosedpolarset,U CX open, g abiasand
f e s,tr(p;U \ ,4) such that i it 1o*", finite and i is upper finite on U . Then
there is a g es"rf(g;U) with g : f on U \A.

Proof. Define g* : 1fi) * r/ and g* dually. For any V e U we have by
6.7,

ttt(p;V,g*) 1 g* I g* a ttl(p' V,g*).

But since g* and g* are bounded functions ot 0V, equal on (äV) \ A we have
H(% g.) : H(% 9*) and hence tH(p; v, g*) : tn(p; v, g*) . o

Thinness and semipolar sets. As in [6], we say that a set A C X is thin
at x€X if therearetwoopenneighbourhoods u,V of. s and au€,tr*(U)+
such that V c tl and BÄnu(U;u)(r) < u(*). Furthermore, A is called totally
thin if it is thin at every r € X and it is called semipolar if it is a countable union
of totally thin sets. As with polarity, there are several equivalent definitions of
thinness and semipolarity.

Proposition 6.9. The following statements are equivalent:

1. A is thin at a;
2. For all neighbourhoods U e % of a, all f e C1(U) and all g €str*Uitl)

with f I g and S - f continuous and strictly positive in r, there is a
neighbourhoodV cU of a such164sgAnv(U,f;il@) < s@);

3. Fbr all neighbouråoods U e % of x and all f e Ct(U), tåere is a finite
s e s g*(f ;U) with s - f contjnuous ana sC(/; g) compact, such that
tB'(U, f;g)(*) < g(r);

4. There are neighbourhoods U, V of r, V C U, f € Cr(t/) and g e
tX*(f ;U) with f I g, such that'Bonu(U,f ;g)(*) < s@).

Proof. ! + 2; There is a u € tr*(U)+ nC(U) with BÄ(U;uXc) < r(r).
Take B)0 such that BBA(U;u)(c) < (/- il@) < 0r@) andtakeaneighbour-
hood V CU of r such that / - g < Bu on I/. Then by 6.2 we get

"Bonu(tJ,f;g)(*) < sB'4nv(u,f;f + gd S f(*)+ gBA"u(u;u)(c) < e(r).

1 + 3: There is a u € .tr*(U)+ n C(U) with BA(t/;rXr) < ,(r). Hence

sBA (tl, f; f * uX") < BA (u;rxr) + f <(/ + rX").
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Take g e"9*(f;U) suchthat g-,f ircontinuous, tC(/;9) iscompact, g (-J{u
and SBA(U,f;f + rXr) < 9(c). Now we have

tB'(U, f; s)@). tBo(,r, f; f + u)(x) < s(r).

2,3+ 4 isevident.
4+ L: Take a neighbourhood W AU fl V of c and note

"Bo(w, f ; g)(*) . tuonu (u, f , il@) < g(*).

Furthermore / bounded on W and there is a g' e ttr*(f;17)6 with g ) g') I
and s(r) > s'(r), sganv(t/,f;il@). Hence s'(*) >tBo(W,f;g')(*) and so by
6.4 we get

Bo(w;sw(g') - sw(/))(r) < tso(w, f; s')@) * r*ry(s')(x) - sw(/)(r)
< Sw(s')@) - Sw(/Xr). o

Proposition 6.10. The following statements are equivalent:

1. A is a semipolar set;
2. For ail U e Q/ a,nd aJl f e Cr@), there is a locally lower bounded F cttr*(f ;U) with AnU: {nF < inf .F'};
3. Tl:ere is a covering of open sets U such that for all U there is a bias g and

a F Cttr*(prU) locally lower bounded with Antl: {n.F' < inf F}.
Prcof. 1.+2: Let, U €Q/ and f eCy(U). Thereis a F c.tr*(U)+ with

AnU : {A.F' < inf F} . By 6.1 we have that -F' + / € t.f*U;U).
2+Sisevident.
3 + 1: Take r € X and a neighbourhood V G [/ for some U in the

covering. Let g be the bias corresponding to U. Take V G [/ and h e ,tr*(V)t
with h ) 1. Define fn:Syt(nh+S,(g(V))) and Fn: F A/,, on tr/. Then
G" : Sv(F"; - Sv(o) c tr.(V) is and hence {nG" < inf G,} is semipolar. But
by 2.3 we have AGn - Af; + Ky(AF") and inf G, : inf Fn * I{u(nF.) and
hence {nG" < inf G"} : {Atr'" < inf f'"}. So {nF ( inf tr'"} and hence also
AnV : {A-F < inf f,} : U,{A}, < inf F"} is semipolar. So for every c € X,
there is a neighbourhood V, e. q/ of c with AnV, semipolar. But there is a
countable covering of such V, and hence ,4, is semipolar. o

Proposition 6.11. Let g be abias*rd f,g e s.tr*(g;X). If f Md g
coincide outside a semipolar set, then f : g .

Proof. A semipolar set is of the first category in the fine topologS the fine
topology is a Baire space and "f ""d g are fine continuous. o
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7. Appendix: Isotone perturbations

In this section ?/ is the collection of all relatively compact sets for which the
closure is contained in a ?-set.

Lemma 7.1. Let (J,V e % and let (å) c g(U UV\ be a bounded
increasing sequence witå sup,, fn: f . For W e {U,,V}, suppose that:

1,. g(W) is a sublattice of g(W\ containing the consta,ntsl

2. (/") c s(w);
3. Ky: CI(W) + g(W) - g(W) is a map with the following property:

(+) for all M >O,thereexist p,qe g(W),
such that for aJI f > s, l/l < M' lSl l M,
we have: (f - s)' p > Kw(h) - Kw(g) > (s - h)' s.

Then there exist unique extensions of Kw that have the same property on the
sublattice of 9(W\ generated by 9(W) and f . The p and q needed for the
extensions are the salne as for the original map. Furtherrnore, if

(**) I{u(h) - Kv(h) e tr(U nV) for all h e s(U) n s(v),

then the extensions have the same property.

Proof. Let W € {U,V}. Let h be in the sublattice of 9(W)6 generated by
s(w) and /.

lf. h :/, then set ä, : fnY ( - ll}lll).
If. h e g(W), then set hn: fu.

If. h :/V9 for some 9 e g(U), then set h, : (f,vg) V ( - lläll).
lf. h: f Ag for some 9 eg(U), then set ä,,: (å n9)V (- llåll).
Since ,$(W)a is distributive, one of these four cases is aiways true. Note that

h"I h and llä"ll < llhll.

(Uniqueness) Take any extensionof. Ks to CI(W)U{ä} with (*) and denote
it again by Kw. Let p, g as in (*) with U : llhll. Then for all rn we have

(h - h*). p > Kw(h) - Kw(h") > (h* - h)' q. Since (h - h*)' pt'-'+ 0 and
(h^ - h) . q --.0 we get Kw(h") -'+ Kyy(h). So Ks7(h) is uniquely determined.

(Existence) Lel p, g as in (+) with M : llhll. For all n) m we have

(h - h*). p > Kw(h") - Xy71n*) > (h^ - h)' s.

Since (å-ä *).p [ 0 and 1n-h*)'t | 0 we get that Kw(h") is a Cauchy-sequence.

So we can define Kw(h) as the limit of this sequence.
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(*): Since

Kw(h) - Kw(h*): i (Kw(h,+r) - Kw(h,))

":
: 

å 
(K*(h,+r) - Kw(h*)) Y o

* i (K*(h.+r) - Kw(h,)) 
^o

and since for every n we have t*r,n ,=l"d g as in (*) with M: llåll)
(h,+r - h"). p > (K*(h.+) - Kw(h")) y o

(h" - hn+t).q < (I{w(h.+r) - Ifu(h")) Lo
we get that

(h - h*) .p > Kw(h) - Kw(h^) > (h* - h) .c.

Now suppose är ) h2 andlet p, q as in (+) (or g(W)) with M : llht llu llnrll.
For all n we have

(h, - h,"). p > Kw(hr) - xw(n) > (hr" - hr). q

(hr"v h'z" - h).q > Kw(ht") - x*(niv n) > (äl - hr.v hr").p
(hlv h'z" - h'").p > Kw(hiv n') - Nw(h,") > (hr" - hr.v hr"). q

(h' - h?,). q > Kw(h,") - Kw(hr) > (hr" - hr). p.

By adding these inequalities and taking the limit n --+ oo we get

(h, - hr). p > Kw(hr) - t<*(tr) > (h, - hr). q.

(+*): Take W resolutive in [/ O V. Since l{u(h") --+ Ku(h) uniformly on
0W, we have that H(W,Ku(h")) -' H(W,Ku(h)). Simitarty Kv(h.) + Ky(h)
and H(Iry, Kv(h")) -- H(W, xv(h)). Hence

H(W,Ku(h1- Xv(h)): limH(w, Ku(h.) - Kv(h"))

: lim(Ku(h 
") - Ky1h")) : Ku(h) - Ky(h). o

Proposition 7.2. Let U, V e % . For W e {U,V}, suppose that:
1. g(W) is a linea,r sublattice of 90(W)6 containing the constants a.nd dense in

c(wh;
2. Ks: fr(W)--+ g(W) - g(W) is a map witå (*).

Then there exist uniqu e extensions of Kqr to 9(W)6 that have the same property.
The p and q needed for the extensions a.re the s;une as for the original map.
Furthermore, if Ku and Ky have property (**) , then so do the exfensions.
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Proof. (Existence) Let W e {U,,V}. Consider the space of pairs (g,K),
where K is a map with the desired properties on a linear sublattice I of 9(W)6.
Define an order on this space by (g,K) > (g',K') if and only lf. g ) fr' ard
K:K'otQ'.

(Uniqueness) Let W e {U,V} and K1 and K2 be two extensions of Kw to
9(W)t. Consider the space of linear sublattices I of. B(W)r on which K1 and

K2 coincide. Define an order on this space by inverse inclusion.
(++): Let W : tJ U V. Consider the space of linear sublattices fr of fi(W)6

on which the extensions satisfy (**). Define an order on this space by inverse
inclusion.

In each of these cases, it is easy to check that the space is inductively ordered.
Hence, by Zorn's lemma, there exists a maximal element. Using 7'1 we show

that the fr of. this maximal element is closed for increasing sequences. Hence

CI -- 9(W)6. o

Now we must introduce some notions and notations of [17]. I is the sane
sheaf as we defined at the end of Section 4, i.e. it is the sheaf of local differences

of bounded continuous superharmonic functions. Furthermore, it is assumed that
7 e CI and that there is a (linear) sheaf homomorphism o of. fr into the sheaf -,//
of signed Radon-measures on X such that o(/) > 0 if and only if / e 9* .lrC. o
is called a measure representation. Furthermore, .//, is the sheaf Radon-measures
that are local images of o and for any U € Q/ we set -,//e6(U) : ou(g(q -
s(u)).

A semilinear perturbation in the sense of Maeda is defined as a sheaf morphism
F of. 9 to .tilo such that for all U e % we have

1. .F'(0) € 'ilsc(U);2. for all M > 0, there exists a p. e .,,ilac(U)
such that for all f > S, l/l < M , lSl < M
we have: (f - s)tr 2 Fu(f) - Fu(s) > Q - f)tr.
Lemma 7.3. Let F be a semilinear pefiurbation in the sense of Maeda. For

U e % there is a unique map Kar: g(U)t -- g(U) - g(U) such that for aJl

f e g(U\ we have: Ku(f) : q e o(s) : F(f) This map has the following
properties:

1. For aJl M ) 0, there exist a p e g(U),
such that for aJl f > s, l/l < M, lgl l M,
we have: (f - g). p > Ku(f) - Ku(g) > 0.

2. If VGU,thenKu(f)-Kv(f)e tr(V).
(See [7, p. 18] for first appearance of. Ku in this context.)

Proof. Take / e g(U)b. From [17, Lemma 2.1] we know there is a
g(U) - g(U) such that F(f) : o(q) ot U. Now suppose there is a
g(U) - g(U) with the same property. Then o(S - 9') : 0 and hence g -
.tr(U) n g(U) - g(U). Hence q : qt and K11 is well defined on 9(U).

q€
q'€
q'€
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L: Take M >0. Thenthereis a p e 9(U) suchthat forall f,g €g(U)
with -M < f 3 e < M wehave 0 S r(/) - p@)< (/ - g)"(p). Hence

"(0) 
< 

"(r{u(f) - xu(g)) s "((f - g). p)

and so we get O < Ku(f) - Ku(s) < (/ - g).p.

2: oy(Ku(/)) : "u(xu(f)) 
: Fu(f) : Fv(f): ou(xr171). "

Lemma 7.4. Suppose for aJl U e Q/ there is a map Ku: CI(U)u + g(U) -g(U) such that

1. -Fbr all M > 0, there exist a p e 9(U),
such that for all f > s, l/l < M, lsl l M,
we have: (f - s). p > Ku(f) - /(u(g) > 0.

2. If V eU, then Ku(f) - Kv(f) e tr(V).
Then Fu(f) : "u(Xu(f)) defines a semilinear perturbation in the sense of
Maeda.

Proof. Let V e U e Q/ and f e g(Uh. Then since Ky(/)-Xv(f) e tr(V)
we have

rvj): ov(Kv61) : oy(K"(/)) : ""(x"(f)) : Fu(f)

on V . So .F is a sheaf morphism on fr.
Let U €?/. Then evidently f'(0) € ,//ac(U). Nowtake /, g e fr(U) with

f > s and l/l,lsl < M. Then

"u((f - g). p) > 
"u(Ku(f) - xu(g)) > 

"u(0).

Hence (f -g)"u(p) > fu(/) -Fu(g) ) 0. Since p only depends or M (and t/),
.t, is a semilinear perturbation in the sense of Maeda. o

Theorem 7.5. Every positive semilinear perturbation is a pefturbation in
tåe sense of Maeda. Every perturbation in the sense of Maeda can be uniquely
extended to a positive semilinear perturbation.

The proof follows from 7.3, 7.4 and 7.2. o

Now it is easy to check that the sheaf of hyperharmonic functions considered
in [17] is just saf*161nC.
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