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CYCLIC PARABOLIC QUASICONFORMAL

GROUPS THAT ARE NOT QUASICONFORMAL

CONJUGATES OF MÖBIUS GROUPS
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Abstract. P. Tukia published in [T2] the first example of a uniformly quasi-isometric and
hence quasiconformal group acting on Rn , n ≥ 3 , which is not a quasiconformal conjugate of
any Möbius group. We have analyzed this group and have shown that it contains elements which
generate cyclic parabolic uniformly quasi-isometric groups that cannot be conjugated by a quasi-
conformal map to a Möbius group. By an argument of Martin these groups can be chosen smooth.

Since these groups also act on the upper half-space Un , we can use our result to give a
negative answer to a conjecture of Martin and Tukia, where the hope has been that every three-
dimensional quasiconformal Fuchsian group, which are groups of quasiconformal homeomorphisms
of U3 , was quasiconformally conjugated to a Fuchsian group.

1. Introduction

By a quasiconformal group we mean a group of homeomorphisms of Sn ,
n ≥ 2, which is uniformly K -quasiconformal. It was asked by Gehring and Palka
[GP] if such a group is always quasiconformally conjugated to a group of Möbius
transformations.

If n = 2, Sullivan [S] and Tukia [T1] independently gave an affirmative answer
to the question. Their proof depends heavily on the Ahlfors–Bers or measurable
Riemann mapping theorem, for which no analogue seems to exist in higher dimen-
sions.

Later Pekka Tukia gave in [T2] the first example of a quasiconformal group
acting on Rn , n ≥ 3, isomorphic to (Rn−1, +), which is not a quasiconformal
conjugate of any Möbius group. Even the discrete subgroups of maximal rank of
this group have been shown by Gaven J. Martin [M1] to be counterexamples of the
question. In the same paper he indicates how to modify this group to get smooth
(except at infinity) discrete counterexamples.

So, what happens with simpler, for example, cyclic groups? Quasiconformal
groups generated by an elliptic element are not necessary, not even homeomorphi-
cally conjugate to conformal groups (see, for example, Giffen [G] or Martio–Väisälä
[MV] for n ≥ 4). For loxodromic groups there is a quasiconformal conjugacy at
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least for n 6= 4, 5 [M2], and nothing is known about cyclic quasiconformal parabolic
groups.

The goal of this paper is to show that some elements of Tukia’s group and
of Martin’s discrete and smooth versions of it still generate cyclic quasiconformal
parabolic groups that are not quasiconformal conjugates of Möbius groups.

Incidentally, this will give a new proof of Tukia’s and Martin’s theorems, el-
ementary in the sense that it does not appeal to Bieberbach’s theorem on cristal-
lographic groups.

Our result means that there is a nontrivial class for the quasiconformal con-
jugacy of cyclic quasiconformal parabolic groups. Varying the construction of
Tukia’s group we get in fact uncountably many cyclic quasiconformal (even quasi-
isometric) parabolic groups that are all in different quasiconformal conjugacy
classes—they are all topologically equivalent.

Since all the considered cyclic groups act on the upper half-space Un , our main
result can be used to give a negative answer to a conjecture, originated by Martin
and Tukia [M1], where the hope has been that the so-called three-dimensional
quasiconformal Fuchsian groups, quasiconformal groups acting on U3 , are always
quasiconformally conjugated to Fuchsian groups.

Using the fact that Tukia’s group G is quasi-isometric, Martin has already
remarked that G × Id is a quasi-isometric Fuchsian group which states that a
higher-dimensional version of the conjecture cannot be valid.

The three-dimensional negative answer is more surprising because, with the
help of the two-dimensional affirmative answer of the conjugacy problem and the
extension theorem for quasiconformal mappings of Tukia and Väisälä, we may
assume that the boundary group G|R2 is conformal. It was hoped that G was
quasiconformally conjugated to the Poincaré extension of the conformal boundary
group.

I wish to thank Michel Zinsmeister, the initiator and guide of this work.

2. Tukia’s and analogous groups

Tukia’s group is built by conjugating the group of translations
{

x 7→ x +

a; a = (a1, 0, a3, . . . , an), ai ∈ R
}

by a homeomorphism F = f × Id : Rn → Rn ,
where f : R2 → R2 is a quasiconformal extension of a quasisymmetric embedding
h: R → R2 whose image J is the well-known snowflake J of von Koch. Here
we will repeat this construction in a slightly generalized setting in order to get
uncountably many groups in different quasiconformal conjugacy classes.

We use Hutchinson’s method [H] for self-similar sets to define the snowflake.
Thus, let α ∈ ] 1

2
, 1[ , τ defined by α = log τ/ log 4, and let a = (0, 0), b =

(

1
2 ,

√

(4 − τ)/4τ
)

and c = (1, 0). With these points we associate two contracting

similitudes S1 , S2 , mapping ~ac to ~ab for i = 1 and to ~bc for i = 2, having
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negative determinant. Then the map

S: E 7−→ S1(E) ∪ S2(E)

is a contraction of I , the complete metric space of all nonempty compact subsets
of Rn with metric δ the Hausdorff metric

δ(E, F ) = sup
{

dist(x, F ), dist(y, E) ; x ∈ E, y ∈ F
}

; E, F ∈ I ,

and has a unique fixed point C ∈ I . This is a self-similar arc whose Hausdorff
dimension is Hdim(C) = 1/α . By the choice of τ we have τnC ⊂ τmC , for
integers n ≤ m , which allows us to set

J =
⋃

n≥0

τn(C ∪ −C).

Denote, for p ∈ J , the subarc of J joining 0 and p by Jp and the d -dimensional
Hausdorff measure of this subarc by HMd(Jp) . So we can define a parametrisation
of J as follows:

h:

{

R → J ⊂ R2

x 7→ p =
(

p1

p2

) with xp1 ≥ 0 and HM1/α(Jp) = |x|.

This map satisfies, for a constant M ≥ 1, the Hölder inequality crucial from our
point of view,

1

M
‖x − y‖α ≤

∥

∥h(x) − h(y)
∥

∥ ≤ M‖x − y‖α for all x, y ∈ R,

which is a consequence of a result of Falconer and Marsh [FM].
A consequence of (1) is that h is quasisymmetric. With the aid of the

Beurling–Ahlfors extension theorem (see [T3]) h can be extended to a quasicon-
formal map f : R2 → R2 , and the homeomorphism looked for is F = f×Id: Rn →
Rn .

Let T = {x 7→ x + te1 ; t ∈ R} . We are interested in the parabolic group
G = {gt ; t ∈ R} = F ◦T ◦F−1 which is quasi-isometric and thus quasiconformal.
More explicitly,

gt(x) = F
(

F−1(x) + te1

)

=
(

f(f−1(x1, x2) + (t, 0)
)

, x3, . . . , xn

)

.

Note that for Hdim(J) = log 4/ log 3 this exactly corresponds to Tukia’s con-
struction and for certain discrete values of α ∈ ] 1

2
, 1[ to that of McKemie [MCK].
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3. Conformal cyclic parabolic groups

In this and the next paragraph we consider the group G for an arbitrary fixed
α ∈ ] 12 , 1[ . We will now establish the necessary conditions for parabolic Möbius
groups that may be quasiconformal conjugates of G .

Such a group can be conjugated by a Möbius transformation to a group H
having the form H =

{

ht(x) = Ut(x) + te1 ; t ∈ R
}

, where

Ut =

(

1 0
0 Vt

)

and Vt ∈ O(n − 1).

3.1. The non-discrete case. In what follows we make use of the fact that
a quasicircle τ is characterized by the Ahlfors three-point condition, which means
that there is a constant c with

diam(τp,q) ≤ c‖p − q‖ for all p, q ∈ τ.

Here τp,q is the (shortest) subarc of τ joining p and q .
We will say that a family of quasicircles is uniformly of bounded turning if it

is possible to choose the constant c to be valid for all quasicircles of the family.

Lemma 1. If Vt 6= I for t 6= 0 , the trajectories τx =
{

ht(x) ; t ∈ R
}

,
x ∈ Rn , are not uniformly of bounded turning.

Proof. It is sufficient to examine the lemma in dimension n = 3. Otherwise
one can always find an H -invariant three-dimensional subspace W of Rn . Looking
at H|W , we turn back to the three-dimensional case.

Let θ ∈ R be the angle of rotation of V1 :

Vt =

(

cos tθ − sin tθ
sin tθ cos tθ

)

.

For x = (0, x2, x3) and t0 = π/θ we have

∥

∥ht0(x) − x
∥

∥

2
= t20 +

(

2‖x‖
)2

and
∥

∥h2t0(x) − x
∥

∥ = 2t0.

Hence
∥

∥ht0(x) − x
∥

∥

2

∥

∥h2t0(x) − x
∥

∥

2 =
1

4
+

‖x‖2

t20

and, by the Ahlfors three-point condition, we have proved the lemma, since this
last quotient cannot be majorized independently of x .

Consequence 1. The conformal group H cannot be quasiconformally con-
jugated to the group T =

{

Tt(x) = x + te1 ; t ∈ R
}

unless H = T .

Consequence 2. If there is a conformal group which is a quasiconformal
conjugate of G , it must be the translation group T .
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3.2. The discrete case. Let h(x) = h1(x) = U1x + e1 and g(x) = gt(x) ,
t > 0. We want to establish discrete versions of consequences 1 and 2.

Lemma 2. Let V1 6= I and define E(x) =
{

hk(x) ; k ∈ Z
}

. Then it is not
possible to find trajectories τx , for x ∈ 0×Rn−1 , which are uniformly of bounded
turning such that E(x) ⊂ τx .

Proof. As in the proof of Lemma 1 it suffices to treat n = 3. It is handier to
write here h(x) = (x1 + 1, e2πiαz) with z = x2 + ix3 and α ∈ R \ Z .

i) α rational: there are p ∈ Z∗ ; q ∈ N \ {1} with α = p/q . Put q′ = 1
2q for

even q and q′ = 1
2(q − 1) otherwise. Then

∥

∥hq(x) − x
∥

∥

2
= q2

and
∥

∥hq′

(x) − x
∥

∥

2
= (q′)2 + |z|2

∣

∣e(2πiq′p/q) − 1
∣

∣

2
= (q′)2 + c|z|2,

where c = c(p, q) > 0. So for every m ∈ N we can find an x = (0, z) such that

m <

∥

∥hq′

(x) − x
∥

∥

2

∥

∥hq(x) − x
∥

∥

2 =
(q′

q

)2

+
c

q2
|z|2,

which implies the lemma for rational α .

ii) α irrational: let ε > 0. By Weil’s theorem we can find p ∈ N and k ∈ Z
such that pα = k + 1

2 + δ/2π; |δ| < ε . Hence

∥

∥hp(x) − x
∥

∥

2
= p2 + |z|2|e2πipα − 1|2 = p2 + 4| cos 1

2δ|2|z|2

and
∥

∥h2p(x) − x
∥

∥

2
= (2p)2 + |z|2|e4πipα − 1|2 = 4

(

p2 + 4| sin δ|2|z|2
)

.

Applying once again Ahlfors’ three-point condition and proceeding by contradic-
tion, there must be a constant c ≥ 1 such that

c ≥

∥

∥hp(x) − x
∥

∥

2

∥

∥h2p(x) − x
∥

∥

2 =
p2 + 4| cos 1

2
δ|2|z|2

4
(

p2 + 4| sin δ|2|z|2
) ,

which implies, for ε sufficiently small,

(c − 1
4
)p2 ≥ (cos2 1

2
δ − c sin2 δ)|z|2 ≥ (cos2 ε − c sin2 ε)|z|2.

Because this inequality cannot be valid for all z = x2 + ix3 , we have the contra-
diction we looked for.
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Consequence 3. Let h(x) = Ux + e1 be a parabolic Möbius transformation
with non-trivial rotation matrix U ∈ O(n) \ {I} . Then the discrete conformal
group generated by h cannot be quasiconformally conjugated to the group gener-
ated by T1(x) = x + e1 . (But the two groups are topologically equivalent; see for
example [GM].)

Consequence 4. If there is a conformal group which is a quasiconformal
conjugate of a discrete subgroup of G it must be a group of translations, for
example 〈T1〉 .

4. The main results

We are now able to prove

Theorem 1. There is no quasiconformal homeomorphism conjugating G to
a Möbius group.

Theorem 2. No discrete subgroup of G or its smooth Martin version is a
quasiconformal conjugate of a Möbius group.

We only need to prove the second theorem.

Proof of Theorem 2. Let g = gt , t > 0, and 〈g〉 be one of the groups
of Theorem 2. We suppose that there is a K -quasiconformal map Φ: Rn →
Rn normalized by Φ(0) = 0 and conjugating the group to a conformal group.
Consequence 4 says that this conformal group must be a translation group, for
example 〈T1〉 . Then Φ must verify Φ(x + ke1) = gk

(

Φ(x)
)

for every x ∈ Rn ,
k ∈ Z . Define γ = Φ−1(Re3) . Inequality (1) and the definition of g give for every
p ∈ γ and k ∈ Z

(tk)α

M
≤

∥

∥Φ(p+ke1)−Φ(p)
∥

∥ =
∥

∥(f(tk, 0), q, 0, . . . , 0)−(0, 0, q, 0, . . . , 0)
∥

∥ ≤ M(tk)α

where Φ(p) = (0, 0, q, 0, . . . , 0). This, together with the fact that quasiconformal
maps of Rn are quasisymmetric (see [V]), becomes

(2)
(tk)α

C
≤

∥

∥Φ(p′) − Φ(p)
∥

∥ ≤ C(tk)α

for C = MK and for every p ∈ γ ; p′ ∈ Rn whenever ‖p − p′‖ = k ∈ Z .
Below we show that (2) and “Φ(γ) is a line” are not compatible. To do

this, let γN be the maximal subarc of γ contained in B(0, N) , and consider a
subdivision p0, . . . , pm of γN such that ‖pj+1 − pj‖ = 1, 0 ≤ j ≤ m− 2, which is
maximal. Then m ≥ 2N . (2) and Φ(γ) = Re3 allow us to establish

(3) diam Φ(γN ) ≤ 2C(tN)α,
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(4) diam Φ(γpj+1pj
) ≥

tα

C
(0 ≤ j ≤ m − 2),

where γpj+1pj
is the subarc of γN limited by pj and pj+1 . Putting (3) and (4)

together and appreciating that the Φ(γpj+1pj
) ⊂ Re3 are disjoint intervals we get

2N − 1

C
≤

m − 1

C
≤ t−α

m−2
∑

j=0

diamΦ(γpj+1pj
) ≤ t−α diam Φ(γN ) ≤ 2CNα,

which is impossible for N large enough (α < 1).

5. Different quasiconformal conjugacy classes

We now distinguish the different groups generated by different snowflakes
J = Jα and note them by Gα = {gt,α ; t ∈ R} as well as the corresponding map
by fα and the constant of (1) by Mα . We will establish

Theorem 3. Let α, β ∈ ] 1
2
, 1[ , α 6= β . Then the groups Gα and Gβ are not

quasiconformally equivalent, which means that there is no quasiconformal map
Φ: Rn → Rn with Φ ◦ Gα ◦ Φ−1 = Gβ .

Proof. Assume that there is a K -quasiconformal map Φ: Rn → Rn normal-
ized by Φ(0) = 0 satisfying Φ ◦ gt,α = gt,β ◦ Φ for all t ∈ R . Let γ = Φ−1(Re3)
and p ∈ γ .

i) p ∈ Jα ×Rn−2 : it suffices to apply inequality (1) twice in the same way as
in the previous proof to obtain, for all p′ ∈ Rn and a constant Cp ≥ 1,

(5)
1

Cp
‖p − p′‖β/α ≤

∥

∥Φ(p) − Φ(p′)
∥

∥ ≤ Cp‖p − p′‖β/α.

ii) p 6∈ Jα×Rn−2 : f = fα: R2 → R2 is, in a neighbourhood of p , a diffeomor-
phism because it is the composition of a conformal map with the Ahlfors–Beurling
extension of a quasisymmetric map which has this property. Thus we can calculate

1

t

∥

∥gt,α(p) − p
∥

∥ =
∥

∥

(

f ′
α

(

f−1
α (p1, p2) + (t, 0)

)

, 0, . . . , 0
)

e1

∥

∥ + o(1) =
∥

∥v(p)
∥

∥ + o(1)

for t → 0. Let us take p′ ∈ Rn with ‖p − p′‖ =
∥

∥gt,α(p) − p
∥

∥ = t
∥

∥v(p)
∥

∥ + o(t) .
Again, equation (1) permits us to get, for a constant c ≥ 1,

1

c
tβ ≤

∥

∥Φ(p) − Φ(p′)
∥

∥ ≤ K
∥

∥Φ(p) − gt,β

(

Φ(p)
)
∥

∥ ≤ ctβ .

Hence we can choose constants Cp ≥ 1 and t0 = t0(p) > 0 such that for all t ≤ t0

(6)
1

Cp
‖p − p′‖β ≤

∥

∥Φ(p) − Φ(p′)
∥

∥ ≤ Cp‖p − p′‖β.

For every q ∈ Re3 we now have because of (5) and (6)
∥

∥Φ−1(q) − Φ−1(q′)
∥

∥ = o
(

‖q − q′‖1+ε
)

for q′ → q and 1 < 1 + ε < 1/β . Consequently, Φ−1 restricted to the line Re3 is
constant, which is impossible.
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