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Abstract. In this paper it is proved by classical analytical methods that a Borel-monogenic
function is completely determined by its derivatives at one point if the absolute value of these
derivatives is bounded by Mn where the sum over (Mn/n!)−1/n diverges.

1. Introduction

In 1912 Émile Borel published his paper [1] where he introduced the non-
analytic monogenic functions. This paper deals with these functions and with the
question under what conditions they will form a class of quasianalytic functions
in the sense of J. Hadamard: If a function is infinitely often differentiable at a
point z0 and if the function itself and all its derivatives vanish at z0 , it follows
that the function vanishes identically in its domain of definition. Equivalently, if
two functions f and g coincide at one point z0 together with all their derivatives,
they are identical.

Up to now a positive answer to Hadamard’s question could be given for the
monogenic functions introduced by Borel only by applying the theory of real quasi-
analytic functions or equivalent results. The assumptions one needs for this are
very strong. But Borel’s monogenic functions have much more structure than real
functions, so that Hadamard’s question should get a positive answer for a wider
class. In this paper we will provide a positive answer to Hadamard’s question for
such a wider class. It should be mentioned that this paper is based strongly on
Borel’s and Carleman’s work. We especially use these particular classical methods
and avoid the concept of “finely holomorphic and meromorphic functions”.

As the domain of definition of a monogenic function as well as the function
itself are nowadays not very well known, the definitions will be given in this in-
troduction. In Section 2 of this paper we will establish some further facts about
these functions and formulate our result. The proof of the result will be given in
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Section 3. In the final Section 4 we will provide a comment which enables us to
apply the result of this paper in special cases under less restrictive assumptions.

So let us define the domain of definition: Let G be a domain in C , a1 , a2 ,
a3 , . . . a sequence of points with aν ∈ G for all ν , and let r1 , r2 , r3 , . . . and
̺1 , ̺2 , ̺3 , . . . be two sequences of positive real numbers with

1 ≥ ̺ν > rν for all ν = 1, 2, . . .

and

(1.1)

∞
∑

ν=1

rν < ∞,

∞
∑

ν=1

̺ν < ∞, and

∞
∑

ν=1

rν

̺n
ν

< ∞ for each integer n.

Sometimes we will additionally assume that
∑∞

ν=1

√
̺n < ∞ . We shall write

D(a, r) =
{

z | |z − a| < r
}

. For each non-negative integer p we define

Cp = G \
∞
⋃

ν=1

D(aν , 2−prν), C∗
p = G \

∞
⋃

ν=1

D(aν , 2−p̺ν),

and, if
∑∞

ν=1

√
̺ν < ∞ ,

C∗∗
p = G \

∞
⋃

ν=1

D
(

aν , 2−p√̺ν

)

.

Finally we define

C =

∞
⋃

p=0

Cp, C∗ =

∞
⋃

p=0

C∗
p ,

and, if
∑∞

ν=1

√
̺ν < ∞ ,

C∗∗ =
∞
⋃

p=0

C∗∗
p .

Clearly C ⊃ C∗ ⊃ C∗∗ , and for each p = 0, 1, 2, . . ., Cp ⊃ C∗
p ⊃ C∗∗

p , C ⊃ Cp ,
C∗ ⊃ C∗

p , and C∗∗ ⊃ C∗∗
p . Here and in what follows any assertion involving

C∗∗ is made under the hypothesis
∑∞

ν=1

√
̺ν < ∞ . We further mention that,

because of (1.1), C and C∗ contain (Lebesgue-measure) almost every point of G .
It can happen that the aν are dense in G , so that C , respectively C∗ , contains no
domain of C . We now introduce for any point z0 ∈ C , respectively z0 ∈ C∗ , ε-

neighbourhoods U
(z0)
p,ε , respectively U

∗(z0)
p,ε in each Cp , respectively C∗

p , as follows

U
(z0)
p,ε = Cp ∩ D(z0, ε) , respectively U

∗(z0)
p,ε = C∗

p ∩ D(z0, ε) . We are now ready to
introduce the notion of a “monogenic function” in C :
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Definition. A complex valued function f of the complex variable z is mono-
genic in C if

1. f is defined in each Cp ,
2. f is continuous and bounded in each Cp ,
3. f is (complex) differentiable in each non-isolated point of Cp .

Clearly, if the aν are dense in G , a monogenic function need not be analytic.

Typical examples of monogenic functions are the functions

(1.2) f(z) =

∞
∑

i=1

Aνi

z − aνi

where for all ν = 1, 2, . . .
|Aνi

|1/4 ≤ rνi
.

For any z ∈ Cp we have |z − aνi
| ≥ 2−prνi

for all ν = 1, 2, 3, . . . and hence

|z − aνi
| ≥ 2−prνi

≥ 2−p|Aνi
|1/4 = 2−prνi

and
∣

∣

∣

∞
∑

ν=1

Aνi

z − aνi

∣

∣

∣
≤ 2p

∞
∑

ν=1

|Aν |3/4 ≤ 2p
∞
∑

i=1

rνi
.

So f(z) is defined in each Cp , and the series defining f(z) uniformly converges
in Cp . Therefore f(z) is continuous and bounded in each Cp . Further, for each
z ∈ Cp ,

∣

∣

∣

∞
∑

ν=1

Aνi

(z − aνi
)2

∣

∣

∣
≤ 2p

∞
∑

i=1

|Aνi
|1/3 ≤ 2p

∞
∑

ν=1

rν .

So it is easy to verify that f(z) is differentiable in each Cp . Hence f(z) is a
monogenic function in C . If the aνi

are dense in C , then f(z) is not analytic at
any z0 ∈ C .

We now want to integrate the functions monogenic in C along closed curves.
For this purpose we introduce the following notation: First each closed curve
γ is given a counterclockwise orientation. The simply connected region of G
bounded by γ is denoted by D . For any closed curve γ ⊂ G with length |γ|
we denote by γp the curve obtained from γ when we replace those parts of γ
which are covered by discsD(aν , 2−prν) by the corresponding parts of the circles
K ′

p,ν =
{

z | |z − aν | = 2−prν

}

which are contained in Cp ∩ D . Here the circles
K ′

p,ν are clockwise oriented. So it is easy to see that γp is always an at most
countable union of closed curves, all of which are positively oriented, and the sum
of the length of these curves is bounded by

|γ| + 2π

∞
∑

ν=1

rν .



108 Jörg Winkler

By Kp,ν we denote the union of those parts of the circles K ′
p,ν contained in Cp∩D

and not part of γp where the circles K ′
p,ν are orientatied counterclockwise and

the Kp,ν correspondingly. If we sum over all Kp,ν , this sum includes by definition
only those terms of Kp,ν which really occur (with respect to γ ).

By the above arrangement it is easy to see that for the function f(z) of the
type (1.2) we have

(1.3)

∫

γp

f(z) dz −
∑

ν

∫

Kp,ν

f(z) dz = 0.

In [1] Borel also stated that (1.3) holds for each monogenic function. For the
function of type (1.2) follows also directly for any point z0 ∈ C∗

p surrounded by
γp

(1.4) f(z0) =
1

2πi

∫

γp

f(z)

z − z0
dz −

∞
∑

ν=1

1

2πi

∫

Kp,ν

f(z)

z − z0
dz,

where the series converges absolutely and uniformly (in z0 ) because of (1.1). We
mention without proof that (1.4) also follows from (1.3) for each monogenic func-
tion. (This can be proved just like Cauchy’s formula if one observes that the
value f(z) is independent of p and that f(z) is continuous in each Cp ; and one
constructs circles

CR =
{

z | |z − z0| = R
}

⊂ Cp+k(R),

where k(R) is a positive integer and R can be chosen arbitrarily small. These
circles CR can be constructed by methods similar to those to be described in 2.)

2. Results and further preliminaries

First we get the following theorem from the integral formula.

Theorem B. If f is monogenic in C , the restriction of f to C∗
p is arbitrarily

often differentiable with

(2.0) f (n)(z0) =
n!

2πi

∫

γp

f(z)

(z − z0)n+1
dz −

∑

ν

n!

2πi

∫

Kp,ν

f(z)

(z − z0)n+1
dz

and

(2.1)
∣

∣f (n)(z0)
∣

∣ ≤ n!M0

( |γ|
inf

{

|z − z0| | z ∈ γ
}n+1 + 2np+n+1

∞
∑

ν=1

rν

̺n+1
ν

)

.
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Proof. The proof of the theorem is essentially the same as the proof for ana-
lytic functions; we just have to prove in addition that the series of the derivatives
of the integrals will converge uniformly. To prove this we have to estimate
(2.2)

∣

∣

∣

∣

∫

Kp,ν

f(z)

(z − z0)n+1
dz

∣

∣

∣

∣

≤
∫

Kp,ν

∣

∣f(z)
∣

∣

(z − z0)n+1
|dz| ≤ 2π

M0

(̺ν2−p − rν2−p)n+1

rν

2p
,

where
Mp,0 = M0 = sup

{
∣

∣f(z)
∣

∣

∣

∣ z ∈ Cp

}

.

From this it follows that the series in (2.0) converges absolutely and uniformly for
z0 ∈ C∗

p . We only need to prove the estimate (2.1).
We have

2π
M0

(̺ν2−p − rν2−p)n+1

rν

2p
= 2πM0

( rν

̺n+1
ν

2np
) / (

1 − rν

̺ν

)n+1

≤ 2πM02
np

( rν

̺n+1
ν

) / (

1 − rν

̺ν

)n+1

.

For all sufficiently large ν we have rν/̺ν ≤ 1
2 , and so from (2.2) it follows

that

∣

∣f (n)(z0)
∣

∣ =
n!

2πi

∫

γp

∣

∣

∣

f(z)

(z − z0)n+1
dz

∣

∣

∣
+

n!

2π

∑

ν

∫

Kp,ν

∣

∣

∣

f(z)

(z − z0)n+1
dz

∣

∣

∣

≤ |γ|n!
M0

inf
{

|z − z0| | z ∈ γ
}n+1 + n!M0

∞
∑

ν=1

rν

̺n+1
ν

2n+12np,

but this just gives (2.1).

Next we want to discuss some construction methods also developed by Borel
when he introduced the monogene functions. We will not formulate these as the-
orems so as to be able to explain the ideas better. We first give a construction
applicable in C and C∗ . Suppose we have an interval s of length |s| on a straight
line, and we suppose s ⊂ G . Then there exists an infinity of points ζ on s
such that the straight line g perpendicular to s through ζ satisfies g ∩ G ⊂ Cp ,
respectively C∗

p , for each p ≥ p0 = p0

(

|s|
)

.
To see this we just project the discs D(aν , 2−prν) on the line through s .

The total projection will have measure less than 21−p
∑

rν . So if p ≥ p0 with
21−p0 < |s| , we always have infinitely many points with the stated property.
Obviously the same method can be applied to get circles which have prescribed
centers z0 ∈ G and intersections with G contained in Cp (or in C∗

p ) for large
enough p , with radii at certain intervals which can be chosen arbitrarily. Another
construction enables us to construct for any point z0 ∈ C∗∗ infinitely many straight
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lines g containing z0 with g∩G ⊂ C∗
p for all p ≥ p0 , and there is even an infinity

of such lines in each angle with vertex z0 . To achieve this construction we first
observe that z0 ∈ C∗∗

p1
for some integer p1 . If we now project from z0 each of the

discs D(aν , 2−p1−d̺ν) for some integer d ≥ 2 on K =
{

z | |z − z0| = 1
}

, this
projection can cover at most a point set of linear measure

arcsin
2−p1−d̺ν

|z0 − aν |
≤ arcsin 2−d ̺ν√

̺ν
≤ 2−d√̺.

Now
∑∞

ν=1

√
̺n < ∞ gives the assertion if we choose p0 = p1 +d sufficiently large

so that the projection of these discs cannot cover any prescribed arc on K .
This last construction was given for a particular reason: In the hypotheses of

the present paper we start with a certain property of the function at one point,
z0 . To prove the result we will need a straight line s through z0 with z0 ∈ s such
that s∩G ⊂ C∗

p for some p , and we have just seen that this assumption is fulfilled
for any point z0 of C∗∗ .

With the preceding hints in mind we now state the result of this paper in the
following theorem and its corollary.

Theorem. Let there be given a domain G ⊂ C , a sequence of points aν ∈ G ,

n = 1, 2, . . . and a sequence of positive real numbers rν with

∞
∑

ν=1

rν < ∞

and
∞
∑

ν=1
rν 6=1

(

log
1

rν

)−1

< ∞.

Define ̺ν =
(

log(1/rν)
)−1

and for each positive integer p

Cp = G \
∞
⋃

ν=1

D(aν , 2−prν),

C∗
p = G \

∞
⋃

ν=1

D(aν , 2−p̺ν).

Let C = ∪∞
p=1Cp and C∗ = ∪∞

p=1C
∗
p . Let f(z) be a monogenic function in C .

Then f is arbitrarily often differentiable on each C∗
p . If now z0 ∈ C∗ is a point

such that there exists a straight line s through z0 with z0 ∈ s∩G ⊂ C∗
p for some

p and f(z0) = f (n)(z0) = 0 for n = 1, 2, . . ., then f(z) ≡ 0 for z ∈ C∗ .
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Corollary. If in the theorem we replace the supposition

∞
∑

ν=1
rν 6=1

(

log
1

rν

)−1

< ∞

with
∞
∑

ν=1
rν 6=1

(

log
1

rν

)−1/2

< ∞,

the proposition of the theorem holds for each z0 with

z0 ∈ C∗∗ =
∞
⋃

p=1

{

G \
∞
⋃

ν=1

D
(

aν , 2−p√̺ν

)

}

.

3. Proof of the theorem and its corollary

If the rν and ̺ν do not fulfill the condition 1 > ̺ν > rν , we just replace
such ̺ν with ̺ν = 3/4 and the corresponding rν with rν = 1/2. Because of the
convergence of the series of the rν and ̺ν there can be only finitely many such rν

and ̺ν . Hence, in the theorem and the corollary we can assume, without loss of
generality, the first condition of Section 1 with respect to C , C∗ (and in the case
of our corollary also with respect to C∗∗ ). In the case of the corollary we need the
definition of C∗∗ only to be sure that a straight line s through the given point
z0 ∈ C∗ exists. So in the remaining part of the proof of our theorem we only have
to replace

∞
∑

ν=1

(

log
1

rν

)−1

in the assumptions with
∞
∑

ν=1

(

log
1

rν

)−1/2

< ∞

in order to obtain the corollary. To prove the theorem we can assume without
loss of generality that after a linear transformation of C , s is an interval of the
imaginary axis and z0 = 0. Further, we can replace in our assumption the sequence
a1 , a2 , . . . by a1 , −a1 , a1 , −a1 , a2 , −a2 , a2 , −a2 , a3 , . . . and the sequence
r1 , r2 , r3 , . . . by r1 , r1 , r1 , r1 , r2 , r2 , r2 , r2 , r3 , . . ..

After these substitutions we have Cp = Cp = −Cp = −Cp for any integer
p ≥ 0, and similarly with Cp replaced by C , C∗

p , or C∗ . Or, instead, the

function F1(z) = f(z)f(z) and F2 = F1(z)F1(−z) F2(z) is monogenic in C , with

F2(0) = F
(n)
2 (0) = 0 for all n .
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Hence we can also assume without any loss of generality (by replacing again
F2(z) by the notation f(z)) that

f(z) = f(z) = f(−z) = f(−z).

The first consequence of this is that f(z) is real on the imaginary axis and at
all points of the same Cp belonging to the real axis. It causes no further restriction
if we suppose γ =

{

z | |z| = 1
}

⊂ G .
Now we apply the integral formula of Theorem B for the derivative of f .

Hence, for each z ∈ s and n = 0, 1, 2, . . . we have

f (n)(z) =
n!

2πi

∫

γp

f(ζ)

(ζ − z)n+1
dζ − n!

2πi

∑

ν

∫

Kp,ν

f(ζ)

(ζ − z)n+1
dζ

=
n!

2πi

∫

γ1
p

f(ζ)

(ζ − z)n+1
dζ +

n!

2πi

∫

γ2
p

f(ζ)

(ζ − z)n+1
dζ

− n!

2πi

∑

ν

∫

K1
p,ν

f(ζ)

(ζ − z)n+1
dζ − n!

2πi

∑

ν

∫

K2
p,ν

f(ζ)

(ζ − z)n+1
dζ,

where γ1
p = γp ∩

{

z | Re z > 0
}

, K1
p,ν = Kp,ν ∩

{

z | Re z > 0
}

and γ2
p = γp ∩

{

z |
Re z < 0

}

, K2
p,ν = Kp,ν ∩

{

z | Re z < 0
}

. Now

g(ζ) =
1

2πi

∫

γ1
p

f(ζ)

(ζ − z)
dz − 1

2πi

∑

ν

∫

K1
p,ν

f(ζ)

(ζ − z)
dz

is obviously analytic in Re z < 0, continuous and arbitrarily often differentiable
in

{

z | |z| ≤ 1
2
, Re z ≤ 0

}

= H

with

g(n)(ζ) =
n!

2πi

∫

γ1
p

f(ζ)

(ζ − z)n+1
dz − n!

2πi

∑

ν

∫

K1
p,ν

f(ζ)

(ζ − z)n+1
dz.

Further, by the construction of g(z) and C , respectively Cp ,

Im g(n)(−x) = 0 for x > 0 and n = 0, 1, 2, . . .

holds and
Re g(iy) = 1

2
f(iy).

So we will now first prove

(3.1) f(z) ≡ 0 for z ∈
{

z | z ∈ s, |z − z0| ≤ 1
2

}

= s1.

To do this we will apply the following theorem of Carleman [2], with the mention
that we have unified two theorems of [2] in Theorem C :
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Theorem C. Let f(z) be analytic in |z| < 1 , continuous in |z| ≤ 1 , and let

f(z) have the asymptotic development zero in z = 1 , that is,

(3.2)
∣

∣

∣

f(z)

(z − 1)n

∣

∣

∣
≤ An for n = 0, 1, 2, . . . , |z| < 1,

with An ≤ An+1 for all n . Then the necessary and sufficient condition that

f(z) ≡ 0 in |z| ≤ 1 follows from (3.2) is the divergence of

∞
∑

ν=0

1
ν
√

Aν

.

To apply Theorem C for the proof of (3.1) we have to estimate in |z + 1| ≤ 1
for all n = 0, 1, 2, . . .

∣

∣g(z)/zn
∣

∣ . To do this we first observe that g is bounded in

|z + 1| ≤ 1 so that with M = max
{

|g(z)| | |z + 1| ≤ 1
}

(3.3)
∣

∣

∣

g(z)

zn

∣

∣

∣
≤ 2nM for z ∈

{

ζ
∣

∣ |ζ + 1| ≤ 1
}

∩
{

ζ
∣

∣ |ζ| ≥ 1
2

}

.

If we apply the maximum principle to g(z)/zn , in view of (3.3) we only need
to estimate

∣

∣g(z)/zn
∣

∣ for z ∈ s1 . To do this we consider Re g(z) and Im g(z)

separately. Now by the extended mean value theorem, if we observe f (n)(0) = 0,
∣

∣ Re g(n)(z)
∣

∣ = 1
2

∣

∣f (n)(z)
∣

∣ and Im g(n)(0) = 0 for all n , we get for z ∈ s1

∣

∣

∣

Re g(z)

(−iz)n

∣

∣

∣
≤

∣

∣

∣

g(n)(ζ1)

n!

∣

∣

∣

and
∣

∣

∣

Im g(z)

(−iz)n

∣

∣

∣
≤

∣

∣

∣

g(n)(ζ2)

n!

∣

∣

∣
,

where ζ1, ζ2 ∈ s1 . Hence for z ∈ s1 and n = 0, 1, 2, . . .

(3.4)
∣

∣

∣

g(z)

zn

∣

∣

∣
≤ 2 sup

{

∣

∣

∣

g(n)(z)

n!

∣

∣

∣
z ∈ s1

}

.

Now we apply the estimate (2.1) of Theorem B. With some real constant k and
some real constant k1 this gives

sup
{
∣

∣g(n)(z)
∣

∣ z ∈ s1
}

≤ n!k1k
nM + k1n!M

∞
∑

ν=0

rν

̺n
ν

2np.
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We now take ̺ν =
(

log(1/rν)
)−1

and use the assumption
∑∞

ν=1

(

log(1/rν)
)−1

< ∞ . This gives (here with the positive integer t = 1)

∞
∑

ν=0

rν

̺n
ν

≤ (n + 1)!

∞
∑

ν=1

(

log
1

rν

)−1

.

In the case of the Corollary we now have to add the factors (n + t + 1),
(n + t + 2), . . ., (n + 2t) . Hence with some constants τ and T we finally get

sup
{
∣

∣g(n)(z)
∣

∣ z ∈ s1
}

≤ (n!)2(n + 1)(n + 2) · · · (n + t)τnT,

and therefore, by (3.4),

∣

∣

∣

g(z)

zn

∣

∣

∣
≤ 2n!(n + 1)(n + 2) · · · (n + t)τnT

for z ∈ s1 . Hence by this estimation and (3.3), where we choose τ ≥ 2, it follows
in |z + 1| ≤ 1 that

∣

∣

∣

g(z)

zn

∣

∣

∣
≤ 2n!(n + 1)(n + 2) · · · (n + t)τnT = An.

Therefore all suppositions of Theorem C are fulfilled wherever

∞
∑

ν=0

1
ν
√

Aν

diverges. Hence g(z) ≡ 0 for z ∈ s1 . Here we mention that this remains true if
we take the supposition of the corollary.

Because of Re g(z) = 1
2f(z) for z ∈ s1 the assertion (3.1) is proved. To get

from (3.1) the proposition of the theorem we again apply a theorem of Carleman
from [2], which we need slightly to extend. (As a hint on how this extension can
be done note that in Carleman’s proof we have to apply the subharmonic function
(log 1/|r − aγ |)t instead of the harmonic function (log 1/|r − aγ|)).

Theorem D. Let the supposition of the theorem hold where we replace the

supposition f (n)(z0) = 0 (n = 1, 2, . . .) with the supposition that f(z) ≡ 0 on

some analytic arc contained in C∗ . Then f(z) ≡ 0 in C∗ .

So, as from (3.1), Theorem C immediately gives the proposition of the theo-
rem. Hence the theorem is proved.

In conclusion, we want to mention that in principle the application of Theo-
rem D can be omitted. Then one has to repeat proving (3.1), where the straight
lines are constructed by the methods given at the beginning of this section. Clearly
in this case the proposition of the theorem can only be related to those points which
are accumulation points of such lines contained inC∗

p for some p .
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4. Extension of the theorem

In the theorem, and likewise in its corollary, we need the assumption

∞
∑

γ=1
τγ 6=1

(

log
1

rγ

)−1

< ∞,

respectively
∞
∑

γ=1
τγ 6=1

(

log
1

rγ

)−1/2

< ∞,

only to be sure that C∗ (or C∗∗ ), contains many straight lines, so that we can
reach almost all points of C∗ (or C∗∗ ). Further, this assumption means that C∗ ,
respectively C∗∗ , contains all points of G with the exception of a set of measure
zero at most. If we replace the assumption

∞
∑

γ=1
τγ 6=1

(

log
1

rγ

)−1

< ∞,

respectively
∞
∑

γ=1
τγ 6=1

(

log
1

rγ

)−1/2

< ∞,

with
∞
∑

γ=1
τγ 6=1

(

log
1

rγ

)−t

< ∞,

for some integer t ≥ 1 the conclusion f(z∗) = 0 of the theorem remains true
for all points z∗ ∈ C∗ on polygons P ⊂ C∗

p for some p . The complement of C
with respect to G is in this case not necessarily of measure zero, the existence of
such polygons is depending on the distribution of the points aν (the centres of the

excluded discs). The proof works with the same definition of ̺ν =
(

log(1/rν)
)−1

.
In the estimation of all integrals one only has to observe the estimate

rν

̺n
γ

≤ (n + t)!
(

log(1/rν)
)t ≤ n!

(

log(1/rν)
)t (n + t)t,

where limn→∞
n
√

(n + t)t = 1.
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