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Abstract. The relationship between multiplicity and dimension of the range of spectral mea-
sure for J0 -regular stationary sequences is established. As a consequence spectral characterizations
for J0 -regular sequences of multplicity one with positive angle are obtained.

1. Introduction

We were inspired to write this note by the paper by Mesropyan [6], where the
problem of positivity of the angle between the past and future for two-dimensional
stationary sequences of rank one was studied. Our aim is to point out that J0 -
regular sequences of finite multiplicity behaves “like” finite dimensional sequences.
This behaviour is a consequence of Theorem 2.2 which examines the range of the
spectral measure of a J0 -regular sequence and relates its dimension, the dimension
of the error space and the multiplicity of the process to each other. Consequently
all results concerning the angle problem for sequences with multiplicity one can
be easily derived from analytic conditions available for the one-dimensional case.
We also include a characterization of J0 -regular sequences with finite multiplicity.

The paper can be considered a continuation of [3]. In the present paper
the J0 -regularity plays a fundamental role, whereas in [3] attention was directed
toward the extrapolation problem.

Throughout the paper, N , Z and C will denote the sets of positive integers,
all integers and complex numbers, respectively; H , K will denote complex sep-
arable Hilbert spaces with norm ‖ ‖ and inner product ( , ) ; L(H, K) will stand
for the space of all bounded linear operators from H to K and | | will denote the
operator norm in L(H, K) . An element Γ in L(H, H) is non-negative, Γ ≥ 0,
if (Γx, x) ≥ 0 for all x ∈ H . For G ⊂ H , G will denote the closure of G and
sp{G} the linear span of G . All functions will be defined over [−π, π) ; B will
denote the Borel σ -algebra in [−π, π) and dt the normalized Lebesgue measure
on [−π, π) . Integrals will be over [−π, π) unless otherwise is stated.
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(1.1) A sequence X = {Xn : n ∈ Z } ⊂ L(H, K) is said to be an L(H, K)-valued
stationary sequence if X∗

mXn = X∗
0Xn−m for all n, m ∈ Z .

If X is an L(H, K)-valued stationary sequence then the following notation will
be used:

(1.2) M(X, A) = sp{Xnx : x ∈ H, n ∈ A } , A ⊂ Z ; M(X) = M(X, Z) ;
(1.3) U will denote the shift operator of X , i.e., the unitary operator in M(X)

defined by UXn = Xn+1 , n ∈ Z ;
(1.4) E will stand for the spectral measure of U , i.e. E is a weakly countably

additive orthogonal projection valued measure in L
(

M(X), M(X)
)

such that
for all x, y ∈ M(X)

(Unx, y) =

∫

eint
(

E(dt)x, y
)

, n ∈ Z;

(1.5) m(E, G) = sp{E(∆)z : ∆ ∈ B, z ∈ G } = sp{Unz : n ∈ Z, z ∈ G } ,
G ⊂ M(X) ;

(1.6) F will denote the spectral measure of X defined by F (∆) = X∗
0E(∆)X0 ,

∆ ∈ B ;
(1.7) A sequence X = {Xn : n ∈ Z } ⊂ L(H, K) will be said to have a spectral

density with respect to dt if there exists a function G(t) ≥ 0, G(t) ∈ L(H, H)
such that for all x, y ∈ H and ∆ ∈ B

(

F (∆)x, y
)

=

∫

∆

(

G(t)x, y
)

dt.

Spectral density is unique dt a.e. if it exists. For the sake of convenience the
spectral density will be denoted by the same symbol F when there is no danger
of confusion. Note that the spectral density does not have to exist even if the
sequence X has multiplicity one (see Example 3.7).

2. J0 -regular sequences of finite multiplicity

Let us recall that a stationary sequence X = {Xn : n ∈ Z } ⊂ L(H, K) is
said to be:

(i) minimal, if M(X, Z − {0}) 6= M(X) ,
(ii) J0 -regular, if ∩nM(X, Z − {n}) = {0} .

The subspace N0(X) = M(X)⊖M(X, Z−{0}) is called the error space of X . The
multiplicity m(X) of a stationary sequence X = {Xn : n ∈ Z } is the smallest
number n ∈ N ∪ {+∞} such that there exist a sequence { xk : 1 ≤ k < n + 1 } ⊂
M(X) such that

M(X) =
⊕

1≤k<n+1

m(E, {xk})
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where E is the spectral measure of the shift U of X . From [3, Theorem 3.3] it
follows that if X has the spectral density F (t) , then

(2.1) m(X) = ess sup
[

dim
(

F (t)H
)]

.

It is also known that if X is J0 -regular then F (∆)H , the range of the spectral
measure of a stationary sequence X = {Xn : n ∈ Z } , is a constant subspace of
H for all sets ∆ in B of nonzero Lebesgue measure (see [2, Corollary 47] or [4,
3.1]). The following theorem relates the dimension of the range of the spectral
measure and the dimension of the error space to the multiplicity of a J0 -regular
stationary sequence.

2.2. Theorem. Suppose that X = {Xn : n ∈ Z} ⊂ L(H, K) is a nonzero
J0 -regular stationary sequence. Then

(i) F (∆)H = X∗
0N0(X) dt(∆) , ∆ ∈ B ,

(ii) dim
(

F (∆)H
)

= dim N0(X) = m(X) , provided dt(∆) 6= 0 , ∆ ∈ B .

If, moreover, the spectral density F (t) of X exists, then

(iii) F (t)H = X∗
0N0(X) dt a.e.,

(iv) dim
(

F (t)H
)

= dim N0(X) = m(X) , dt a.e.

Proof. Let x ∈ N0(X) . Then for every y ∈ H and n ∈ Z ,
∫

eint
(

y, X∗
0E(dt)x

)

= (UnX0y, x) = (X0y, x)δ0n =

∫

eint(y, X∗
0x dt).

Therefore

(2.3) X∗
0E(∆)x = (X∗

0x) dt(∆), ∆ ∈ B, x ∈ N0(X).

Note that if X∗
0x = 0, x ∈ N0(X) , then for all y ∈ M(X) , (x, Xny) = 0 and so

x = 0. Thus X∗
0 is a one-to-one mapping from N0(X) into H and from (2.3) it

follows that F (∆) 6= 0 if dt(∆) 6= 0, ∆ ∈ B . Let z = F (∆)u = X∗
0E(∆)X0u ,

u ∈ H , ∆ ∈ B . Since X is J0 -regular, X0u = limk

∑mk

i E(∆i,k)xi,k where
xi,k ∈ N0(X) . Therefore

z = lim
k

∑

i

X∗
0E(∆ ∩ ∆i,k)xi,k = lim

k

∑

i

X∗
0xi,k dt(∆ ∩ ∆i,k) ∈ X∗

0N0(X) dt(∆).

On the other hand, from (2.3) we have that X∗
0E(∆)N0(X) = X∗

0N0(X) and so

F (∆)H =
(

E(∆)X0

)∗(

E(∆)X0

)

H

= X∗
0E(∆)M(X) ⊇ X∗

0E(∆)N0(X) = X∗
0N0(X)

if dt(∆) 6= 0, because if T = A∗A then TH = A∗K , A ∈ L(H, K) . This proves
(i).
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To prove (ii) let us first note that from (i) it follows that for dt(∆) 6= 0,

dim
(

F (∆)H
)

= dim X∗
0N0(X) = dim N0(X) ≥ m(X),

because X∗
0 is a one-to-one mapping from N0(X) into F (∆)H and X is J0 -

regular. We shall prove that m(X) ≥ dim N0(X) . Observe that if M , N are two
(not necessarily closed) subspaces of M(X) and K0 = (M + N), then

K0 ⊖ M = (I − PM )K0 = (I − PM )N,

where PM denotes the orthogonal projection onto M in M(X) and I is the
identity operator in M(X) . Applying the relation above first to M = M(X, Z −
{0}) , N = X0H and K0 = M(X) and then to M = M

(

X, (−∞,−1]
)

, N =

X0H , K0 = M
(

X, (−∞, 0]
)

we obtain:

{

N0(X) = (I − P )X0H
M

(

X, (−∞, 0]
)

⊖ M
(

X, (−∞,−1]
)

= (I − Q)X0H,

where P and Q are orthogonal projections in M(X) onto M
(

X, Z − {0}
)

and

M
(

X, (−∞,−1]
)

, respectively. Since (I−P ) = (I−P )(I−Q) , N0(X) is equal to

the closure of (I − P )
(

M
(

X, (−∞, 0]
)

⊖ M
(

X, (−∞,−1]
))

. Hence dim N0(X) ≤

dim
(

M
(

X, (−∞, 0]
)

⊖ M
(

X, (−∞,−1]
))

, and by [3, Lemma 3.4], this last dim is
equal to m(X) , for X is obviously regular in the sense of [3, p. 140].

Now suppose that X has the spectral density F (t) . From [2, Corollary 49]
(see also [4, 3.2.2]) it follows that F (t)H = H1 = constant dt a.e. It is clear that

X∗
0N0(X) = F

(

[−π, π)
)

H ⊂ H1 . On the other hand, if y⊥X∗
0N0(X) and y ∈ H1

then for each ∆ ∈ B and i = 1, 2, . . .

∫

∆

(

F (t)ei, y
)

dt =
(

F (∆)ei, y
)

= 0

where {ei : i = 1, 2, . . .} is a fixed orthonormal basis in H . Therefore y⊥F (t)ei ,
i = 1, 2, . . . dt a.e., which proves (iii). (iv) follows immediately from (i), (ii) and
(iii).

If a stationary sequence X = {Xn : n ∈ Z} has the spectral measure F
such that F (∆)H ⊂ H0 , ∆ ∈ B , and dim H0 < ∞ , then F (∆) = F (∆)PH0

,
∆ ∈ B .Hence if we consider the L(H0, K)-valued stationary sequence Y = {Yn :
n ∈ Z} defined by Ynx = Xnx, x ∈ H0 , then the spectral measure F̃ of {Yn :
n ∈ Z} equals F̃ (∆) = F (∆)|H0

and M(X, A) = M(Y, A) for any A ⊂ Z . This
analysis shows that the process X “behaves” like the finite dimensional process Y .
Combining this with Theorem 2.2 we obtain the following characterization of J0 -
regular stationary sequences of finite multiplicity.
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2.4. Theorem. Let X = {Xn : n ∈ Z} be a nonzero L(H, K) -valued
stationary sequence. The following conditions are equivalent:

(1) X is J0 -regular and m(X) = n < ∞ ;

(2) X has the spectral density F (t) that satisfies

(i) F (t)H = H0 is a constant n -dimensional subspace of H dt a.e. (n <
∞) , and

(ii)
∫ (

F (t)#x, x
)

dt < ∞ for all x ∈ H (or for all x in a linearly dense set
in H0) , where F (t)# = F (t)−1PF (t)H .

Proof. (1) ⇒ (2). From Theorem 2.2 it follows that F (∆)H =
X∗

0N0(X) dt(∆), ∆ ∈ B and dim X∗
0N0(X) = n . Therefore F (∆) = F̃ (∆)PH0

,
∆ ∈ B , where H0 = X∗

0N0(X) and F̃ is an L(H0, H0)-valued measure defined
as in the preceding paragraph.

Let F̃ (t) = dF̃ /dt and F (t) = F̃ (t)PH0
, t ∈ [−π, π) . Then F (t) is the

spectral density of F and by Theorem 2.2, F (t) = X∗
0N0(X) is a constant n -

dimensional subspace of H dt a.e. Moreover, the stationary sequence Yn = Xn|H0

is J0 -regular and by [4, 3.2.5],
∫

F̃ (t)−1 dt exists. Therefore (ii).

(2) ⇒ (1). From [4, 3.2.5], it follows that the n -dimensional stationary
sequence Yn = Xn|H0 is J0 -regular. Since M(X, A) = M(Y, A) , A ⊂ Z , X is
also J0 -regular. Obviously, by Theorem 2.2 (iv), m(X) = n .

3. Sequences with multiplicity one

In this section we discuss the interpolation and the angle problem for processes
with multiplicity one. Note that if F (t) ∈ L(H, H) , F (t) ≥ 0, is a weakly
integrable function with F (t)H = H0 being a constant one-dimensional space
dt a.e., then

F (t)x = |F (t)|(x, e)e, x ∈ H, and(3.1)

F (t)#x = |F (t)|−1(x, e)e, x ∈ H,(3.2)

where e is a fixed unit vector in H0 and |F (t)| denotes the operator norm of
F (t) . From (3.2) and Theorem 2.4 with n = 1 we obtain the following result.

3.3. Theorem. Let X = {Xn : n ∈ Z} be a nonzero L(H, K) -valued
stationary sequence. Then X is J0 -regular and m(X) = 1 if and only if X has
a spectral density F (t) of constant one dimensional range dt a.e. which satisfies
one of the following three conditions:

(i) for every x ∈ H either
(

F (·)x, x
)

= 0 a.e. or else
∫ (

F (t)x, x
)−1

dt < ∞ ,

(ii) there exists x ∈ H such that
∫ (

F (t)x, x
)−1

dt < ∞ ,

(iii)
∫

|F (t)|−1 dt < ∞ .
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Now we turn to the problem of angle between the past and future. Suppose
that X = {Xn : n ∈ Z} is an L(H, K)-valued stationary sequence. The quantity

̺(X) = sup
{

|(u, v)| : u ∈ M
(

X ; (−∞,−1]
)

, v ∈ M
(

X ; [0, +∞)
)

, ‖u‖ = ‖v‖ = 1
}

represents the cosine of the angle between past and future. A sequence is said to
be of positive angle if ̺(X) < 1. It is known ([4, 5.2.7]) that if ̺(X) < 1, then
X is J0 -regular. The remarkable results of Hunt, Muckenhoupt and Wheeden [1]
show that:

(3.4) a one dimensional stationary sequence {Xn : n ∈ Z} is of positive angle if
and only if {Xn : n ∈ Z} has the spectral density f(t) which satisfies the
condition (A2 ), namely

(A2 ) there exists a constant c < ∞ such that for every interval or complement
of an interval I ⊂ [−π, π)

(
∫

I

f(t) dt

)(
∫

I

f(t)−1 dt

)

≤ c
(

dt(I)
)2

.

If a function f satisfies (A2 ) we write f ∈(A2 ).
Below is a characterization of stationary sequences of multiplicity one with

positive angle. The characterization is a consequence of the fact that a J0 -regular
process with multiplicity one resembles a one-dimensional sequence with spectral
density |F (t)| (see (3.1)). The characterization provides extensions and entirely
different simple proofs of certain results in [6], where only the case of dim H = 2
was considered.

3.5. Theorem. Suppose that X = {Xn : n ∈ Z} ⊂ L(H, K) is a nonzero
stationary sequence. Then the following conditions are equivalent:

(A) ̺(X) < 1 and m(X) = 1 ,
(B) X has the spectral density F (t) of constant one-dimensional range dt a.e.

which satisfies one of the following three conditions:

(i) for every x ∈ H either
(

F (·)x, x
)

= 0 a.e. or else
(

F (·)x, x
)

∈ (A2) ,

(ii) there exists x ∈ H such that
(

F (·)x, x
)

∈ (A2) ,
(iii) |F (·)| ∈(A2 ).

Proof. (A) ⇒ (B). By [4, 5.2.7] and Corollary 2.4 X has spectral density
F (t) which has the form (3.1). Let Ynx = ein·

√

|F (·)| (x, e) , where n ∈ Z , x ∈ H ,
and e is as in (3.1). Then the sequence Y = {Yn : n ∈ Z} is an L

(

H, L2(dt)
)

-
valued stationary sequence with the spectral density F (t) and ̺(X) = ̺(Y ) .
Since M(Y, A) = sp{ein·

√

|F (·)| : n ∈ A} , A ⊂ Z , the sequence Y has positive

angle if and only if the L2(dt)-valued sequence ein·
√

|F (·)| has a positive angle,
which in view of (3.4), holds if and only if |F (·)| ∈(A2 ).
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(B) ⇒ (A). From Theorem 3.3 it follows that m(X) = 1. The same argument
as above shows that ̺(X) = ̺(Y ) < 1.

The equivalence of (i), (ii) and (iii) follows from (3.1) provided F (t)H is a
constant one-dimensional space dt a.e.

3.6. Example. Suppose that H = C2 , |q(t)| = 1 and

F (t) =

[

1 q(t)
q̄(t) 1

]

.

If {Xn : n ∈ Z} has a positive angle then it is J0 -regular and F (t)C2 =
sp{1, q̄(t)} = constant, which holds if and only if q(t) = constant (so we ob-
tain Theorem 1 in [6]). In fact, from Theorem 3.5 it follows that ̺(X) < 1 if and
only if q(t) = constant. Since |F (t)| = 2, this example also shows that condition
|F (t)| ∈ (A2) in general is not sufficient for stationary sequences with multiplicity
one to be of positive angle.

3.7. Example. There exist a stationary sequence X = {Xn : n ∈ Z} with
multiplicity one and spectral measure equivalent to the Lebesgue measure which
fails to have the spectral density. To see this consider the L

(

L2(dt), L2(dt)
)

-valued
stationary sequence defined by

(Xnf)(·) = ein·f(·), f ∈ L2(dt), n ∈ Z.

Then m(X) = 1 and the spectral measure F of X is given by
(

F (∆)f
)

(·) = 1∆(·)f(·), ∆ ∈ B, f ∈ L2(dt).

Suppose that F (t) ∈ L
(

L2(dt), L2(dt)
)

is a weakly integrable function such that

F (t) ≥ 0 and
(

F (∆)f, g
)

=
∫

∆

(

F (t)f, g
)

dt , ∆ ∈ B , f, g ∈ L2(dt) . Setting
f ≡ 1, g = 1(a,b) , where a , b are rationals we obtain

dt
(

∆ ∩ (a, b)
)

=

∫

∆

(

F (t)1, 1(a,b)

)

dt, ∆ ∈ B

and so there exists ∆0 ∈ B , dt(∆0) = 0 such that for all rationals a , b , −π ≤
a < b < π and t /∈ ∆0

(

F (t)1, 1(a,b)

)

L2
= 1(a,b)(t).

Hence if t /∈ ∆0 then F (t)1⊥sp{1(a,b) : (a, b) not containing t} = L2(dt) , which
leads to contradiction.

3.8. Remark. In [5], Masani showed that an orthogonally scattered measure
with a nonatomic control measure does not possess a Bochner density with respect
to any control measure. Our example 3.7 shows that an orthogonally scattered
measure need not even have a density in the sense of Pettis. This point should be
of independent interest.
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