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ON A THEOREM OF NEHARI AND QUASIDISCS
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Abstract. Let f be a locally injective analytic map of the unit disc D and let {f, z} be
its Schwarzian derivative. Suppose |{f, z}| ≤ 2p(|z|) . We use the classical connection between
Schwarzian derivative and second order linear equations to show that, for a particular class of
functions p , the image f(D) is a quasidisc. The analysis centers on the differential equation
y′′ + py = 0 and a finiteness condition of a positive solution y . The proofs are based on Sturm
comparison theorems. When p in the class is analytic and x = 1 is a regular singular point of
the linear equation, it is possible to obtain precise information about Hölder continuity of f from
considerations on the Frobenius solutions at that point. The main result in this paper resolves the
complementary case in a general theorem of univalence of Nehari.

1. Introduction

Let f be analytic and locally univalent, and let {f, z} = (f ′′/f ′)′− 1

2
(f ′′/f ′)2

be its Schwarzian derivative. Two main features of the Schwarzian derivative are
that all solutions to {f, z} = 0 are given by fractional linear transformations
T (z) = (az + b)/(cz + d) and that {T ◦ f, z} = {f, z} . The second property is
a consequence of the first and an important addition formula for the Schwarzian
derivative of a composition. There is a classical connection between the Schwarzian
derivative and second order linear equations: any solution of {f, z} = 2p(z) is
given by (au+bv)/(cu+dv) , ad−bc 6= 0, where u , v are two linearly independent
solutions of the equation

(1.1) y′′ + py = 0.

A well known fact that follows from this is that f is univalent on a given
domain if and only if any nontrivial solution of (1.1) vanishes at most once in
the domain (see, e.g., [D]). This characterization of univalence was systematically
used by Nehari, who derived several sufficient conditions for global injectivity.
Briefly, estimates on the size of

∣

∣{f, z}
∣

∣ together with comparison theorems for the
solutions of differential equations imply the absence of multiple zeroes of nontrivial
solutions of (1.1). In the unit disc D , some of the conditions of this type that
imply univalence are

(1.2)
∣

∣{f, z}
∣

∣ ≤ π2

2
,
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(1.3)
∣

∣{f, z}
∣

∣ ≤ 2

(1 − |z|2)2 ,

(1.4)
∣

∣{f, z}
∣

∣ ≤ 4

1 − |z|2 .

The constants π2/2, 2 and 4 are sharp in each case. All of these are particular
instances of the following general result due to Nehari (Theorem 1 in [N 2]):

Let p(x) ≥ 0 be an even function on (−1, 1) such that (1 − x2)2p(x) is
nonincreasing for x > 0.

Suppose that the solution y of

(1.5) y′′ + py = 0, y(0) = 1, y′(0) = 0

does not vanish on (−1, 1). If
∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

then f is univalent in the unit
disc.

With the choices for p as in (1.2), (1.3) and (1.4) the respective solutions of
(1.5) are given by cos( 1

2
πx) ,

√
1 − x2 and 1 − x2 . The odd solution of the linear

equation is

y(x)

∫ x

0

y−2(s) ds

and since the functions involved here are analytic on (-1,1) they extend to the unit
disc. Consequently

F (z) =

∫ z

0

y−2(ζ) dζ

gives in each case the extremal map with the normalizations F (0) = 0, F ′(0) = 1
and F ′′(0) = 0.

By using standard comparison theorems for solutions of differential equations
one can go a step further and derive upper and lower bounds for |f | and |f ′| when
f is normalized as F and

∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

([C-O]).
In Nehari’s theorem p is assumed to be continuous, and for such p we will

continue to denote by F the associated function defined on (−1, 1). Nehari also
showed under what circumstances the condition

∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

is sharp. It
states that if F (x) → ∞ as x → 1 then for any positive function r(x) on (−1, 1)
the condition

∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

+ r
(

|z|
)

is in general not sufficient for univalence (Theorem 2 in [N 2]).

In this paper we shall be concerned with the question of what happens when
F (1) < ∞ . Our main result is
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Theorem 1. Let p(x) ≥ 0 be an even function on (−1, 1) with (1−x2)2p(x)
nonincreasing for x > 0 . Suppose that the even solution y of (1.1) is positive and

is such that
∫

1

0

y−2(x) dx < ∞.

If
∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

then f(D) is a quasidisc.

A quasidisc is the image of D under some map which is quasiconformal in
the entire plane. Let Ω be simply-connected with its Poincaré metric λ(z) |dz| . A
combined result of Ahlfors and later Gehring gives a characterization of quasidiscs
which is necessary and sufficient: there exists a positive constant η such that the
inequality

∣

∣{φ, z}
∣

∣ ≤ ηλ2(z)

implies that φ is univalent in Ω (see, e.g., [L]).

The function p in Theorem 1 is assumed to be continuous. As previously
shown, there are important cases when p is actually analytic and x = 1 is a
regular singular point of (1.1). This allows to simplify the analysis by considering
the possible Frobenius solutions at x = 1. The assumption that F (1) is finite
implies that either y ∼ (1 − x)m as x → 1, for some 0 < m < 1

2
, or else that

y(1) > 0. In the latter case, the normalized function f will be Lipschitz continuous
on D while in the former case, it is possible to prove Hölder continuity.

I would like to thank C. Epstein for helpful discussions concerning the proof of
Lemma 1. The referee’s valuable comments allowed a simplification of the original
proof and gave greater clarity to other parts of the exposition.

2. Proofs

The proof of Theorem 1 will be divided in a series of lemmas. In what follows,
let p and y satisfy the hypothesis of the theorem. Let α ∈ [0, 1). Most of the
analysis ahead depends on the solution u of

(2.1) u′′ +
α

(1 − x2)2
u = 0, u(0) = 1, u′(0) = 0.

This function is given explicitly by

u(x) =
1

2

√

1 − x2

{

(1 + x

1 − x

)β

+
(1 − x

1 + x

)β
}

where β = 1

2

√
1 − α [K, p. 492]. In particular,

u(x) ∼ (1 − x)
1

2
−β , x → 1,
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and therefore
∫

1

0
u−2(x) dx < ∞ . Let µ = limx→1(1 − x2)2p(x) . Clearly µ ≥ 0

and we claim that µ < 1. If not then p(x) ≥ (1 − x2)−2 . Let P (x) = (1 − x2)−2

so that the function q(x) = p(x) − P (x) is non-negative. Then z(x) =
√

1 − x2

satisfies

(2.2) z′′ + Pz = 0, z(0) = 1, z′(0) = 0.

Multiplying (2.2) by y , (1.5) by z , and subtracting, we get

z′′y − zy′′ = qyz.

We integrate this equation, using the initial condition on y and z , to obtain

(z

y

)

′

(x) =

∫ x

0
(uqy)(s) ds

y(x)2
.

Hence (z/y)′ has the same sign as x and therefore y ≤ z on (−1, 1) since z(0) =
y(0) = 1. It follows that either y vanishes on (−1, 1) or else F (1) = ∞ . This
contradiction proves our claim. Choose α such that µ < α < 1 and let now

q(x) = p(x) − α

(1 − x2)2
.

Lemma 1. Let l = lim infx→1(1 − x)(y′/y) . Then −1

2
< l ≤ 0 .

Proof. Following an argument almost identical to the one given above, we can
write

(2.3)
y′

y
=

u′

u
−

∫ x

0
(uqy)(s) ds

u(x)y(x)
.

Since y′′ = −py ≤ 0 we have y′ ≤ 0 on (0, 1) because of the initial condition.
Hence l ≤ 0.

By considering the graph of the function F it follows from elementary geom-
etry that

lim
x→1

1 − x

y2
= 0.

Hence (1 − x)(uy)−1 → 0 as x → 1.
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On the other hand, the limit of (1 − x)(u′/u) as x → 1 can be computed
directly and it equals −( 1

2
− β) . This, together with equation (2.3) and the fact

that q(x) < 0 for x sufficiently close to 1 imply the lemma.

Lemma 2. There exists a constant M such that

(2.4) F (1) − F (x) ≤ M
(1 − x

y2

)

.

Proof. The derivative of the left hand side of (2.4) is −y−2 while the derivative
of (1 − x)y−2 is

−y−2

(

1 + 2(1 − x)
y′

y

)

.

Lemma 1 implies that 1 + 2(1 − x)(y′/y) ≥ σ > 0 provided x is sufficiently close
to 1. Hence for all such x

F (1) − F (x) ≤ 1

σ

(1 − x

y2

)

and the lemma follows.

Now we state the key result in this chain.

Lemma 3. There exists a constant η > 0 such that the solution ϕ of

(2.5) ϕ′′ +
(

p(x) +
η

(1 − x2)2

)

ϕ = 0, ϕ(0) = 1, ϕ′(0) = 0

does not vanish on (−1, 1) .

Proof. Let c = F (1). On the image interval (−c, c) we consider the “Poincaré
density”

λ(w) =
1

F ′(x)(1 − x2)
=

y2

1 − x2

where w = F (x) . We will show that for η > 0 sufficiently small the solution h of

(2.6) h′′ + ηλ2(w)h = 0, h(0) = 1, h′(0) = 0

is positive on (−c, c) . By Lemma 2,

λ(w) =
y2

1 − x2
≤ y2

1 − x
≤ M

c − w
≤ 2Mc

c2 − w2
.

Thus it suffices to show that the solution of (2.6) with 4M2c2(c2 −w2)−2 instead
of λ2(w) does not vanish. This will be the case as long as 4M2η ≤ 1. To see
this, we rescale. The function h̄(x) = h(cx) solves h̄′′ + 4M2η(1 − x2)−2h̄ = 0
with even initial conditions. Then h̄ > 0 on (−1, 1) if and only if 4M2η ≤ 1 [K,
p. 492]. With h the positive solution of (2.6) we define ϕ by

ϕ(x) = y(x)h
(

F (x)
)

.

A straightforward computation shows that ϕ is the solution of (2.5). This finishes
the proof of Lemma 3.
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This lemma together with Nehari’s first theorem shows that

(2.7)
∣

∣{g, z}
∣

∣ ≤ 2
(

p
(

|z|
)

+
η

(

1 − |z|2
)2

)

is a sufficient condition for univalence. The proof of Theorem 1 is now quite simple.
Assume

∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

and let λ(ζ) |dζ| be the Poincaré metric on Ω = f(D) .
We will show that

∣

∣{φ, ζ}
∣

∣ ≤ 2ηλ2(ζ)

implies the univalence of the map φ . Let g(z) = φ
(

f(z)
)

. Then

{g, z} =
{

φ, f(z)
}

f ′(z)2 + {f, z}

and therefore

(

1 − |z|2
)2

∣

∣{g, z}
∣

∣ ≤ λ−2(ζ)
∣

∣{φ, ζ}
∣

∣ + 2
(

1 − |z|2
)2

p
(

|z|
)

where ζ = f(z) . It follows that g satisfies (2.7), hence g and consequently φ are
univalent. This shows that Ω is a quasidisc.

3. The analytic case

In this section we shall assume that, in addition, p is analytic and that x = 1
is a regular singular point of the equation (1.1). The assumptions on the even
solution y are as before. Recall that µ = limx→1(1− x2)2p(x) . From the analysis
of the possible Frobenius solutions at x = 1 we will prove Hölder or Lipschitz
continuity for maps f that satisfy

∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

. Because of the invariance
of the Schwarzian derivative under Möbius changes one can not expect such a
result unless f is properly normalized. The right normalization turns out to be
f ′′(0) = 0. Let u solve

u′′ + 1

2
{f, z}u = 0, u(0) = 1, u′(0) = 0

and let

v(z) = u(z)

∫ z

0

u−2(ζ) dζ

be the solution with odd initial conditions. If f ′′(0) = 0 then

f(z) = f(0) + f ′(0)

∫ z

0

u−2(ζ) dζ.

From Lemma 2 in [C-O] it follows that if
∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

then

∣

∣u(z)
∣

∣ ≥ y
(

|z|
)
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and therefore
∣

∣f ′(z)
∣

∣ ≤
∣

∣f ′(0)
∣

∣y−2
(

|z|
)

.

We distinguish the cases µ > 0 and µ = 0. Suppose µ is positive. Then
p(x) ≥ µ(1− x2)−2 and hence the function y must vanish at x = 1. The possible
orders m of vanishing are given by the roots of the inditial equation

m2 − m +
µ

4
= 0,

i.e.,

(3.1) m1 =
1 +

√
1 − µ

2
, m2 =

1 −√
1 − µ

2
.

Note that 0 < m2 < 1

2
< m1 < 1. Since m1 −m2 is not an integer both orders of

vanishing can occur [H].

Theorem 2. Let f satisfy
∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

, f ′′(0) = 0 and suppose µ > 0 .

If F (1) is finite then f is Hölder continuous on D with Hölder exponent
√

1 − µ .

Proof. The assumption that F (1) < ∞ implies that y ∼ (1−x)m2 as x → 1.
Therefore

∣

∣f ′(z)
∣

∣ = O
(

(1 − |z|)−2m2

)

.

A standard technique of integrating along hyperbolic segments (see, e.g., [G-P])
gives

∣

∣f(z1) − f(z2)
∣

∣ = O
(

|z1 − z2|1−2m2

)

,

and the theorem follows.

Suppose now µ = 0. In this case, the roots of the inditial equation are 1
and 0. Hence two linearly independent solutions are y1 = (1 − x)h1 and y2 =
h2 + cy1 log(1 − x) , where h1 , h2 are analytic and nonvanishing at x = 1 [H,
Theorem 5.3.1].

Theorem 3. Let f satisfy
∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

, f ′′(0) = 0 and suppose µ = 0 .

If F (1) is finite then f is Lipschitz continuous on D .

Proof. The finiteness condition and the discussion preceding the theorem
imply that in fact y cannot vanish at x = 1. Hence |f ′| is uniformly bounded.

The following situation describes accurately the case µ = 0. For 0 ≤ t < 1 let
pt(x) = tp(x) , where p(x) = 2(1−x2)−1 . Since the inequality

∣

∣{f, z}
∣

∣ ≤ 2p
(

|z|
)

is

sufficient for univalence then
∣

∣{f, z}
∣

∣ ≤ 2pt

(

|z|
)

implies that f(D) is a quasidisc
(Theorem 6 in [G-P]). As mentioned in the introduction, the even solution of (1.1)
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is in this case y = 1 − x2 . We claim that the even solution yt of (1.1) with p
replaced by pt must be positive at the endpoints. To show this, let

Ft(z) =

∫ z

0

y−2

t (ζ) dζ.

This function is odd and has Schwarzian derivative equal to 2pt(z) . Therefore
Ft(D) is a quasidisc and hence Ft(1) < ∞ , otherwise the point at infinity would
be a point of self-intersection of ∂Ft(D) . This in turn would contradict the fact
that ∂Ft(D) is a Jordan curve. Since µt = tµ = 0 it follows that yt is a linear
combination of the functions y1 , y2 as in the paragraph preceding the statement
of Theorem 3. Thus Ft(1) < ∞ forces yt(1) > 0.

We consider finally examples for any µ ∈ (0, 1). For s ∈ (1, 2) let

p(x) = s
1 − (s − 1)x2

(1 − x2)2
.

Then µ = s(2 − s) and the even solution of (1.1) is

y = (1 − x2)s/2.

(The exponent s/2 corresponds to m1 in (3.1) and m2 = (2 − s)/2.) This shows
that the function F has F (1) = ∞ . On the other hand, by the argument given
above, changing p to tp has the effect of making Ft(1) finite. Consider now
equation (3.1) with µ replaced by tµ . Since yt ∼ (1 − x)m1 , x → 1, would make
Ft(1) infinite, we conclude that the order of vanishing of the solution yt must be
the other root, m2 .
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