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Abstract. Let X be a compact Riemann surface of genus g > 1 . A symmetry S of X is
an anticonformal involution. We write |S| for the number of connected components of the fixed
points set of S . Suppose that X admits two distinct symmetries S1 and S2 ; then we find a bound
for |S1| + |S2| in terms of the genus of X and the order of S1S2 . We discuss circumstances in
which the bound is attained, showing that this occurs only for hyperelliptic surfaces. In this way
we generalize a theorem of S.M. Natanzon.

1. Introduction

Let X be a compact Riemann surface of genus g > 1. A symmetry S of X
is an anticonformal involution S: X → X and a Riemann surface that admits a
symmetry is called symmetric. By Harnack’s theorem [1, 5, 9], the fixed-point set
of S is either empty or consists of k ≤ g + 1 disjoint simple closed curves or, as
we shall call them, mirrors. We write |S| for the number of mirrors of S , so that
|S| is the number of components of the fixed-point set of S .

Suppose that X admits two distinct symmetries S1 , S2 . If |S1| = |S2| = g+1
then by a theorem of Natanzon [8], S1 and S2 commute and X is hyperelliptic.
Usually, however, the total number of mirrors of S1 and S2 is much less than
2g + 2. In Theorem 3 we find a sharp upper bound for |S1|+ |S2| in terms of the
genus of X and the order of S1S2 . In particular, if S1 and S2 do not commute
then |S1| + |S2| ≤ g + 2 (Corollary 3).

Theorem 3 follows from a recent theorem of Hoare [3] on subgroups of NEC
groups. Using this theorem we find in Section 5 a graphical technique that allows
us to determine |S1| and |S2| in terms of the signature of a certain NEC group.
We then find, in Theorem 2, a formula for |S1| + |S2| involving this signature.
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Finally, in Section 7, we discuss circumstances in which the bound of Theo-
rem 3 is attained. We show that this is the case only for hyperelliptic surfaces, a
result which extends Natanzon’s original theorem.

2. NEC groups

A non-Euclidean crystallographic (NEC) group is a discrete group of isome-
tries of the hyperbolic plane H . As usual, we can choose for our model of H ,
the upper half-plane with the Poincaré metric. Then every isometry is given by
a Möbius or anti-Möbius transformation (the latter being a Möbius transforma-
tion composed with z → −z̄ ). We shall assume that an NEC group has compact
quotient space. If ∆ is such a group then its algebraic and geometric structure is
determined by its signature

(1) σ(∆) =
(

h;±; [m1, . . . , mr];
{

(n11, . . . , n1s1
), . . . , (nk1, . . . , nksk

)
})

.

The quotient space H/∆ is then a surface, possibly with boundary, and in the
signature h is the genus of H/∆, k is the number of its boundary components
and + or − is used according to whether the surface is orientable or not. The
integers m1, . . . , mr are the proper periods of ∆ and represent the branching over
interior points of H/∆ in the natural projection p: H → H/∆. The k brackets
(ni1, . . . , nisi

) are the period cycles and represent the branching over the ith hole.
The integers nij are the link periods. The maximal finite subgroups of ∆ are
either cyclic of order mi (i = 1, . . . , r ) or dihedral of order 2nij (i = 1, . . . , k ,
j = 1, . . . , si ) and each period represents a conjugacy class of such subgroups.

Associated to the signature (1) we have a presentation of the group ∆ and a
formula for the area of a fundamental domain for ∆. If σ(∆) has a + sign then
∆ has generators

x1, . . . , xr (elliptic elements)

c10, . . . , c1s1
, . . . , ck0, . . . , cksk

(reflections)

e1, . . . , ek (orientation preserving elements)

a1, b1, . . . , ah, bh (hyperbolic elements)

and relations

xmi

i = 1 (i = 1, . . . , r)

c2
i,j−1 = c2

ij = (ci,j−1cij)
nij = 1, i = 1, . . . , k, j = 1, . . . , si

eici0e
−1
i = cisi

(i = 1, . . . , k)

x1x2 · · ·xre1e2 · · · eka1b1a
−1
1 b−1

1 · · ·ahbha−1
h b−1

h = 1.

If σ(∆) has a minus sign then we just replace the hyperbolic generators ai , bi by
glide reflection generators a1, . . . , ah and replace the last relation by

x1x2 · · ·xre1e2 · · · eka2
1a

2
2 · · ·a

2
h = 1.
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The hyperbolic area of a fundamental domain for ∆ is given by

(2) µ(∆) = 2π

(

εh − 2 +

r
∑

i=1

(

1 −
1

mi

)

+ k + 1
2

k
∑

i=1

si
∑

j=1

(

1 −
1

nij

)

)

,

(see [11]) where ε = 2 if there is a + sign and ε = 1 if there is a − sign. If Λ < ∆
is a subgroup of finite index then

(3) |∆ : Λ| = µ(Λ)/µ(∆).

For more details about signatures see ([1, 6, 11]).
Now let X be a compact Riemann surface of genus g > 1. Then there is a

Fuchsian surface group Γ (i.e. an NEC group of signature (g; +; [ ]{ }) such that
X = H/Γ. Let G be a group of automorphisms of X containing a symmetry S .
Let ∆ be the group generated by all the liftings to H of the elements of G ,
then ∆ is an NEC group and there is a smooth homomorphism θ: ∆ → G whose
kernel is Γ. (θ is smooth means that θ maps finite subgroups of ∆ isomorphically
into G .)

Let L = 〈S〉 , (the group generated by S ) and Λ = θ−1(L) . We then have

(4) X/L = H/Γ/Λ/Γ = H/Λ.

For any NEC group Φ, we let Φ+ (the canonical Fuchsian group of Φ) denote
the subgroup of index one or two consisting of the orientation-preserving elements
of Φ. As Γ contains only orientation-preserving transformations and is torsion-
free, Λ contains orientation-reversing elements. As |Λ : Γ| = 2, Λ+ = Γ so that
Λ has no elliptic elements. Therefore Λ has a signature of the form

(5)
(

h0;±; [ ]
{

( )k
})

where the notation signifies that there are k empty period cycles. Thus k is the
number of period cycles of Λ which is the number of mirrors of S . Conversely it
is clear that if there is an NEC group Λ with signature (5) and containing Γ as
subgroup of index two then Λ defines a symmetry on X with exactly k mirrors.
This shows that the number of mirrors of a symmetry is an algebraic invariant of
an NEC group.

3. Dihedral group actions

We now suppose that X admits two distinct symmetries S1 , S2 . We let
G = 〈S1, S2〉 so that G is isomorphic to the dihedral group Dn of order 2n . We
also let ∆ be the lift of G to H , Li = 〈Si〉 and Λi = θ−1(Li) , (i = 1, 2), where
θ: ∆ → G is the homomorphism of Section 2. We have a subgroup diagram



310 E. Bujalance, A.F. Costa, and D. Singerman

∆

Λ1 Λ2

Γ

}}}}}} AAAAAAAAAAAA }}}}}}
where Λi has signature

(

hi;±; [ ]
{

( )ki
})

.
Now given the signature of an NEC group, Hoare’s theorem [3] gives us a

procedure for calculating the signature of a subgroup, given the permutation rep-
resentation of the group on the cosets. We will use the techniques of this theorem
to compute k1 , k2 from the signature of ∆. We find that the algebra in Hoare’s
results gives us fairly precise information about k1 + k2 = |S1| + |S2| .

We shall find the following simple lemma, also used by Hoare, useful.

Lemma 1. Let Dn act by right multiplication on the n Li -cosets (i = 1, 2) .
If n is even then S1 fixes exactly two L1 -cosets and no L2 -cosets while if n is

odd then S1 fixes exactly one L1 -coset and one L2 -coset.

Proof. Let Q = S1S2 . Then the n L1 -cosets are L1Q
r (r = 0, . . . , n−1) and

the action of S1 is L1Q
r → L1Q

rS1 . If n is even the only fixed cosets correspond
to r = 0, n/2 while if n is odd the only fixed cosets correspond to r = 0. If in the
action on the L2 -cosets, S1 fixes L2Q

r then QrS1Q
−r = S2 and thus Q2r+1 = I .

Hence there are no fixed cosets if n is even and one if n is odd.

Another way of stating this lemma is as follows:

Lemma 1 ′ . Let Dn act by right multiplication on the n L1 -cosets. If n is

even then S1 fixes exactly two L1 -cosets and S2 fixes no L1 -cosets. If n is odd

then both S1 and S2 fix exactly one L1 -coset.

We now explain how Hoare’s ideas apply. Let c ∈ ∆ be a reflection so that θ
maps c to a conjugate of S1 or S2 in G ∼= Dn . The action of c on the Λi -cosets
is the same as the action of θ(c) on the Li -cosets. Suppose that d is another
reflection in ∆ and that cd has finite order µ . Then cd , in its action on the
Λi -cosets, gives a product of disjoint µ-cycles. (Otherwise some power of cd , not
equal to the identity is an elliptic element of Γ which is impossible as Γ is a surface
group.) From Lemma 1, each of c and d fixes two cosets or no cosets if µ is even
and each fixes 1 coset if µ is odd. By Theorem 1, II(ii) of [3], (or an extension of
Lemma 1) each cycle of cd contains either two or none of these fixed cosets.

Suppose that c fixes a coset Λ1α . Then cα = αcα−1 is a reflection in Λi

which is called a reflection induced by c or just an induced reflection. Consider
a cycle of cd which contains α (we now identify α and Λiα). By the above
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discussion this cycle contains another fixed point β of c , if µ is even, or a fixed
point β of d , if µ is odd. In the first case we say that cα and cβ are linked and
in the second case we say that cα and dβ are linked and write cα ∼ cβ in the first
case and cα ∼ dβ in the second case. Once all the links are known we put them
together to form chains and then each chain (by Hoare’s results) gives a period
cycle in Λi .

Note. In general cα ∼ cβ (or cα ∼ dβ ) means that cαcβ (or cα ∼ dβ )
has finite order and so gives a link period in a period cycle of Λi . In our cases
the period cycles of the subgroups Λi are empty so that cα ∼ cβ means that
(cαcβ)1 = 1 or cα = cβ (or cα ∼ dβ in the other case).

Before we consider the general situation it might be helpful to look at some
examples.

4. Examples

Example 1. Let n = 12 and ∆ have signature

(

0; +; [ ];
{

(2, 4, 4, 6, 3)
})

,

and presentation

〈

ci, (1 ≤ i ≤ 5)
∣

∣c2
i = 1 (1 ≤ i ≤ 5),

(c1c2)
2 = (c2c3)

4 = (c3c4)
4 = (c4c5)

6 = (c5c1)
3 = 1

〉

.

Consider the following homomorphism

θ: ∆ → D12 =
〈

S1, Q
∣

∣S2
1 = (S1Q)2 = Q12 = 1

〉

;

θ(c1) = S1, θ(c2) = S1Q
6, θ(c3) = S1Q

9, θ(c4) = S1Q
6, θ(c5) = S1Q

8.

We have the following decomposition of D12 as a union of L1 -cosets (L1 = 〈S1〉):

D12 =
11
⋃

i=0

L1Q
i

and letting i denote the coset L1Q
i we obtain the following permutation repre-

sentation of D12 on the right L1 -cosets,

c1 → (0) (6) (1 11) (2 10) (3 9) (4 8) (5 7)
c2 → (3) (9) (1 5) (2 4) (7 11) (8 10) (0 6)
c3 → (0 9) (1 8) (2 7) (3 6) (4 5) (10 11)
c4 → (3) (9) (1 5) (2 4) (7 11) (8 10) (0 6)
c5 → (4) (10) (1 7) (2 6) (3 5) (0 8) (11 9).
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The induced reflections are

c1,0, c1,6, c2,3, c2,9, c4,3, c4,9, c5,4, c5,10.

We now form the products

c1c2 → (0 6) (1 7) (2 8) (3 9) (4 10) (5 11)
c2c3 → (0 3 6 9) (1 4 7 10) (2 5 8 11)
c3c4 → (0 9 6 3) (1 10 7 4) (2 11 8 5)
c4c5 → (1 3 5 7 9 11) (2 4 6 8 10 0)
c5c1 → (1 5 9) (2 6 10) (3 7 11) (4 8 0).

As fixed points 0, 6 of c1 belong to the same cycle of c1c2 we have a link c1,0 ∼ c1,6 .
Similarly, we have links c2,3 ∼ c2,9 , (from c2c3 ), c4,3 ∼ c4,9 (from c3c4 ), c4,3 ∼ c4,9

(from c4c5 ), c5,4 ∼ c5,10 (from c4c5 ), c5,4 ∼ c1,0 (from c5c1 ), c5,10 ∼ c1,6 (from
c5c1 ). We then get the chains

c1,0 ∼ c1,6 ∼ c5,10 ∼ c5,4 ∼ c1,0

c2,3 ∼ c2,9 ∼ c2,3

c4,3 ∼ c4,9 ∼ c4,3.

As there are three chains, Hoare’s theorem implies that Λ1 has three period cycles
and hence |S1| = 3. Similarly, we have the action of the generators on the L2 -
cosets,

c1 → (0 11) (1 10) (2 9) (3 8) (4 7) (5 6)
c2 → (0 5) (1 4) (2 3) (6 11) (7 10) (8 9)
c3 → (4) (10) (0 8) (1 7) (2 6) (3 5) (9 11)
c4 → (0 5) (1 4) (2 3) (6 11) (7 10) (8 9)
c5 → (0 7) (1 6) (2 5) (3 4) (8 11) (9 10),

and notice how Lemma 1 applies: e.g. c1 fixes 2 L1 -cosets and 0 L2 -cosets, c3

fixes 0 L1 -cosets and 2 L1 -cosets. The induced reflections are c3,4 and c3,10

and from the products c3c4 and c4c5 we find the single chain c3,4 ∼ c3,10 ∼ c3,4 .
Thus |S2| = 1. This example suggests that Lemma 1 should restrict the size of
|S1| + |S2| . As we shall see in Theorem 1 this is indeed the case, but before then
we consider another example which illustrates other aspects of Hoare’s techniques.

Example 2. Let n = 3 and ∆ have signature
(

0; +; [3];
{

(3, 3, 3)
})

,

and presentation
〈

e, x, c0, c1, c2, c3

∣

∣c2
i = 1 (0 ≤ i ≤ 3),

x3 = ex = (c0c1)
3 = (c1c2)

3 = (c2c3)
3 = ec0e

−1c3 = 1
〉

.
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Consider the following homomorphism

θ: ∆ → D3 =
〈

S1, Q
∣

∣S2
1 = (S1Q)2 = Q3 = 1

〉

;

θ(c0) = S1, θ(c1) = S1Q, θ(c2) = S1, θ(c3) = S1Q, θ(e) = Q.

With a similar notation to Example 1,

D3 =
2

⋃

i=0

L1Q
i

and we have the following permutation representation on the cosets

c0 → (0) (1 2)
c1 → (0 1) (2)
c2 → (0) (1 2)
c3 → (0 1) (2)
e → (0 1 2)

giving induced reflections c0,0 , c1,2 , c2,0 , c3,2 on Λ1 . As

c0c1 → (0 1 2),
c1c2 → (0 2 1),
c2c3 → (0 1 2),

(ec0e
−1)c3 → (0) (1) (2),

we get links c0,0 ∼ c1,2 , c1,2 ∼ c2,0 , c2,0 ∼ c3,2 , from the first three products. In
the final product c0 fixes 0, ec0e

−1 fixes 2 and c3 also fixes 2. By Theorem 1
(II(ii)) and Example 1 of [3], we have a link c3,2 ∼ c0,0 . This gives the single chain
c0,0 ∼ c1,2 ∼ c2,0 ∼ c3,2 ∼ c0,0 and thus |S1| = 1. As S2 is conjugate to S1 in
D3 , |S2| = 1 as well. As we shall see, this case is typical of the cases when n , and
hence all the periods of ∆ are odd.

5. A graphical technique

We now describe a method that enables us to perform the computations in
Section 4 fairly automatically. The examples there show that the number of mirrors
depend on the parity of n , the parities of the link periods and the parities of the
integers i in S1Q

i . We suppose that n is even. If θ(cj) = S1Q
i with i even then cj

gives a permutation of the cosets with two fixed points α , β ; if i is odd then there
are no fixed points. If the link period nj is even (recall the relation (cjcj+1)

nj = 1)
then α , β lie in the same cycle of the (permutation induced) by cjcj+1 , giving
a link cj,α ∼ cj,β . (All suffices are modulo s the length of the period cycle.) If
nj−1 is even then we get a link cj,β ∼ cj,α giving a chain cj,α ∼ cj,β ∼ cj,α .
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If nj is odd then the cycle cjcj+1 containing α also contains a fixed point γ of
cj+1 and the cycle containing β contains a fixed point δ of cj+1 . We then get
links cj,α ∼ cj+1,δ and cj,β ∼ cj+1,δ . If nn+1 is odd we get a link cj+1,δ ∼ cj+2,ε

and so on (and this argument shows that |S1| = 1 if all the link periods of the
period cycle are odd). If nj+1 is even we get cj+1,δ ∼ cj+1,γ ∼ cj,α ∼ · · ·. This
process can be illustrated graphically as follows. Suppose that the period cycle
has length s . Represent each generator cj by a vertex of an s -gon labelled cj . If
θ(cj) = S1Q

i , colour the vertex black or white according as to whether i is even
or odd respectively. If cj and cj+1 are two black vertices we join them by a black
edge if and only if nj is odd. Then |S1| is the number of black components. To
find |S2| we just change the colour of the vertices (as S2Q

i = S1Q
i+1 , changing

the parity of the index) and still join black vertices by a black edge if nj is odd.

Example. From Example 1 of Section 4 we obtain the following pictures.

c1

c5
•

c2

c4
• ◦ c3

|S1| = 3

•qqqqqqqqqqq• ◦ c1

c5
◦ ◦

c2

c4
◦ •

c3

|S2| = 1

From these graphical ideas we get a simple numerical result.

Notation. We let t = |S1|+|S2| the total number of fixed curves of S1 and S2 .

Theorem 1. With the previous notation, let n be even and suppose that

∆ has a single period cycle and at least one even period. Then t is equal to the

number of even link periods in the period cycle.

Proof. Suppose that the period cycle has length s . In terms of the above
graphs we need to show that if the total number of black edges in one graph is u
(this is the number of odd link periods) then the number of black components in
both graphs is s − u . This is by induction on u . If u = 0 then the total number
of black components is the number of black vertices in both graphs which is the
number of vertices in one graph, namely s . Suppose the result is true if there
are u black edges. Now increase the number of black edges by one. A black edge
cannot join vertices of different colours for if θ(cj) = SQi1 and θ(cj+1) = SQi2
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then θ(cjcj+1) = Qi2−i1 . As n is even and cjcj+1 has odd period, i2 ≡ i1 mod 2.
Thus if we introduce another black edge it joins two black vertices in one of the
graphs so that the total number of black components is (s− u)− 1 = s− (u + 1),
and the proof follows.

We now extend this result to the case when ∆ is a general NEC group. Let
us define a non-empty period cycle to be odd if it only contains odd link periods.
Then, as we saw near the beginning of Section 5, an odd period cycle induces just
one mirror on U/Λ1 and one on U/Λ2 and so contributes 2 to t = |S1| + |S2| .
Now consider an empty period cycle. The corresponding generators are ci and ei .
These obey the relation eicie

−1
i = ci . With the previous notation let θ(ci) = S1 .

As the centralizer of S1 in G is {1} if n is odd and {1, Qn/2} if n is even,
θ(ei) = 1 if n is odd while θ(ei) = 1 or Qn/2 if n is even. In the case when n is
even the permutation on the L1 -cosets induced by ci is

(0)
(n

2

)

(1 n − 1)(2 n − 2) . . .

and the permutation induced by ei is either

(0)(1) . . . (n − 1) if θ(ei) = 1

or
(

0
n

2

)(

1
n

2
+ 1

)

. . . if θ(ei) = Qn/2.

The induced reflections are ci,0 and ci,n/2 . If θ(e2) = 1 we get two chains ci,0 ∼

ci,0 and ci,n/2 ∼ ci,n/2 and if θ(ei) = Qn/2 we get a single chain ci,0 ∼ ci,n/2 ∼
ci,0 . (Compare Example 2 in Section 4.) Thus if ei ∈ Γ then every empty
period cycle gives rise to two mirrors of S1 (and none of S2 by Lemma 1) and so
contributes 2 to t , whilst if e ∈ Γ then every empty period cycle gives rise to one
mirror of S1 , and none of S2 , contributing 1 to t .

Notation. We let α be the number of even link periods of ∆, β the number
of odd period cycles of ∆, γ the number of empty period cycles of ∆ and δ the
number of ei generators associated to the empty period cycles which do not belong
to Γ.

We proved the following result.

Theorem 2. With the above notation:

(i) if n is even then t = α + 2β + 2γ − δ ,

(ii) if n is odd then t = 2β + 2γ .

Note. If n is even then we usually let θ(ei) = 1 so that δ = 0. If n is odd
then |S1| = |S2| = β + γ .
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6. The main application

Theorem 3. Let S1S2 have order n .

(i) If n is even then t ≤ (4g/n) + 2 .

(ii) If n is odd then t ≤
(

(2g − 2)/n
)

+ 4 .

Proof. (i) Let ∆ have signature (1). Then by [11], ∆+ is a Fuchsian group
of signature

(

h+; +;
[

m1, m1, . . . , mr, mr, n11, . . . , n1s1
, . . . , nksk

]

{ }
)

where h+ = εh + k − 1, ε being defined in (2). As there is an epimorphism from
∆+ onto Cn we know by Harvey’s theorem [2] that

(i) If m is the least common multiple (lcm) of the periods of ∆+ then m|n and
also these periods obey the lcm condition which says that the lcm of all the
periods with one period deleted is also equal to m .

(ii) If h+ = 0, then m = n .
(iii) The number of periods of ∆+ cannot equal 1 and if h+ = 0 their number if

≥ 3.
(iv) If 2|m then the number of periods divisible by the maximum power of 2

dividing m is even.

Besides the notation α , β , γ introduced earlier we also let η equal the number
of period cycles with at least one even link period. Then k = β +γ +η . Our proof
is just to apply the area and index formulae (2) and (3) but we need to break up
the calculation into several cases.

(a) r ≥ 1. From (2) and (3)

2g − 2 ≥ 2n

(

−2 + k +

n
∑

i=1

(

1 −
1

m1

)

+
1

2

k
∑

i=1

si
∑

j=1

(

1 −
1

nij

)

)

≥ 2n
(

−2 + β + γ + η +
1

2
+

α

4

)

.

If α 6= 0, then η ≥ 1 so that

2g − 2 ≥ 2n
(

β + γ +
α

4
−

1

2

)

≥ 2n
( t

4
−

1

2

)

.

Hence t ≤ 4(g − 1)/n + 2 < (4g/n) + 2. If α = 0 then η = 0 and now

2g − 2 ≥ 2n
(

β + γ −
3

2

)

≥ 2n
( t − 3

2

)

.

Therefore

t ≤
2(g − 1)

n
+ 3 <

4g

n
+ 2,
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the final inequality being true unless n ≥ 2g + 2; but in this case it follows
from the proof of Theorem 4 of [12] that ∆+ is a triangle group or has signature
(

0; +; [2, 2, m, m]{ }
)

with m odd. As ∆+ has at least one proper period, ∆ has
at most two even link periods so that t ≤ 2, by Theorem 2.

We can now assume that r = 0.

(b) α = 0. We first assume that ∆ has no link periods and so has signature
(

h;±; [ ]
{

( )k
})

with εh − 2 + k ≥ 1 as µ(∆) > 0. Then t = 2k by Theorem 2.

Also 2g−2 = 2n(εh−2+k) ≥ 2n giving n ≤ g−1. Hence 2g−2 ≥ 2n
(

(t/2)−2
)

giving

t ≤
2(g − 1)

n
+ 4 <

4g

n
+ 2

as n < g + 1.

If ∆ has link periods then they are all odd. If there are β0 odd link periods
then β0 ≥ 2 by (i) of Harvey’s theorem, and clearly β0 ≥ β . Also, by (iii)
of Harvey’s theorem h+ > 0 as m is odd and n is even. Therefore µ(∆+) ≥
2h+ − 2 + 2

3
β0 ≥ 4

3
. As 2g − 2 = nη(∆+) , n < 3

2
(g − 1). Now

2g − 2 = 2n

(

εh − 2 + k +
1

2

k
∑

i=1

si
∑

j=1

(

1 −
1

nij

)

)

≥ 2n
(

k − 2 +
2

3

)

= 2n
( t

2
−

4

3

)

.

Therefore t ≤
(

2(g − 1)/n
)

+ 8/3 < (4g/n) + 2 as n < 3
2 (g + 1).

Thus from now on we can assume that r = 0, α ≥ 1 and thus η ≥ 1.

(c) We now assume that h+ > 0. Then

2g − 2 ≥ 2n
(

εh + β + γ + η − 2 +
α

4

)

= 2n
(

εh +
t

4
+

β + γ

2
+ η − 2

)

.

If β = γ = 0, then h+ = εh+η−1 ≥ 1 so that 2g−2 ≥ 2nt/4 and t ≤ (4g−4)/n .
If β + γ > 0, then εh + η + (β + γ)/2 ≥ 3

2
, and 2g − 2 ≥ 2n

(

(t/4) − 1
2

)

giving

t ≤
4(g − 1)

n
+ 2 <

4g

n
+ 2.

(d) We now assume that h+ = 0 so that k = 1. If the unique period cycle is
odd or empty then t = 2 so that we can assume that it contains even link periods.
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Thus ∆+ has signature
(

0; +; [n1, . . . , nt, ν1, . . . , ντ ]
)

where the ni are even and
the νi are odd. Then

2g − 2

n
= −2 +

t
∑

i=1

(

1 −
1

ni

)

+

τ
∑

i=1

(

1 −
1

νi

)

≥ −2 +
t

2
+

τ
∑

i=1

(

1 −
1

νi

)

.

Now if τ > 0 then τ ≥ 2 by Harvey’s theorem, part (i). Therefore

2g − 2

n
≥ −2 +

t

2
+

4

3
and thus

t ≤
4g − 4

n
+

4

3
<

4g

n
+ 2.

Thus we can assume that τ = 0, i.e. that all the link periods in the period cycle
are even. We assume that u of them are equal to 2 and v are greater than 2. We
denote the latter by n1, . . . , nv . Then

2g − 2 = n

(

−2 +
u

2
+

v
∑

i=1

(

1 −
1

ni

)

)

≥ n
(

−2 +
u

2
+

3v

4

)

= n
(

−2 +
u + v

2
+

v

4

)

≥ n
(

−1 +
t

2

)

if v ≥ 4, by Theorem 2. Now t ≤
(

4(g − 1)/n
)

+ 2 < (4g/n) + 2. If v = 3, then
{n1, n2, n3} 6= {4, 4, 4} , {4, 4, 6} or {4, 6, 6} by conditions (i) and (iv) of Harvey’s

theorem and thus
∑3

1 1/ni ≤
1
2 , so that

2g − 2 = n

(

1 +
u

2
−

3
∑

1

1

ni

)

≥ n
(u + 1

2

)

.

Thus

t = u + 3 ≤
4(g − 1)

n
+ 2 <

4g

n
+ 2.

If v = 2 then by the lcm condition ∆+ has signature
(

0; +; [2, 2, . . . , n, n]; { }
)

and as n is even t = (4g/n)+ 2. We cannot have v = 1 by the lcm condition and
if v = 0 then n = 2 and t = 2g + 2 = (4g/2) + 2.

(ii) This is much easier! We have

2g − 2 ≥ 2n(−2 + k) = 2n(−2 + β + γ) = 2n
( t

2
− 2

)

by Theorem 2. Thus t ≤
(

2(g − 1)/n
)

+ 4.

Notes. The bound in Theorem 3 (i) is only obtained if and only if ∆ has
signature

(

0; +; [ ]; {2, . . . , 2, n, n}
)

with n even. A similar bound, but with topo-
logical hypotheses, has been found by Natanzon in [9].
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7. Attainment of the bounds

We show that the bounds in Theorem 3 are attained and then study some
of the Riemann surfaces which attain these bounds. First we prove the following
lemma which is of independent interest.

Lemma 2. Let Λ be a Fuchsian group of signature
(

0; +; [m1, . . . , mr]; { }
)

and suppose that there exists a homomorphism ϕ: Λ → Cn . If Λ∗ is an NEC

group of signature
(

0; +; [ ]
{

(m1, . . . , mr);
})

with (Λ∗)+ = Λ then ϕ extends to

a homomorphism ϕ∗: Λ∗ → Dn . This extension is essentially unique.

Proof. Suppose that Λ has presentation
〈

x1, . . . , xr | x
m1

1 = · · · = xmr
r =

x1x2 · · ·xr = 1
〉

and suppose that Cn is generated by q and that ϕ(xi) = qσi .
Then n |

∑r
i=1 σi . Let

Dn =
〈

y, q | y2 = qn = (yq)2 = 1
〉

and

Λ∗ =
〈

c1, . . . , cr | c
2
1 = · · · = c2

r = (c1c2)
m1 = · · · = (cr−1cr)

mr−1 = (crc1)
mr = 1

〉

,

with cici+1 = xi .
If we let ϕ∗(c1) = y then we must have ϕ∗(c2) = yqσ1 , ϕ∗(c3) = yqσ1+σ2 ,

. . ., ϕ∗(cr) = yqσ1+···+σr−1 . ϕ∗: Λ∗ → Dn is a homomorphism that extends ϕ ,
and it is unique once the image of c1 is known. As the image of c1 must be a
reflection any two extensions differ by an automorphism of Dn .

Theorem 4. (i) The bound in Theorem 3 (i) is attained for every even n
and every g > 1 such that n|4g .

(ii) The bound in Theorem 3 (ii) is attained for every odd n and every g > 1
such that n|g − 1 .

Proof. (i) Let ∆ be an NEC group of signature
(

0; +; [ ]
{

(2(4g/n), n, n);
})

(4g/n periods equal to 2). Then ∆+ has signature
(

0; +; [2(4g/n), n, n]; { }
)

and
as n is even there is a homomorphism θ: ∆+ → Cn = 〈Q〉 . This takes the
involution generators of ∆+ to Qn/2 and the generators of order n to Q and
Q−1 . By Lemma 2, θ extends to a homomorphism θ∗: ∆ → Dn . If Γ is the
kernel of θ∗ then X = H/Γ is the surface we require.

(ii) We let ∆1 have signature
(

0; +; [ ]
{

( )
(

(g − 1)/n
)

+ 2
})

. There is clearly
a smooth homomorphism θ1: ∆1 → Dn and if Γ1 is the kernel of θ1 then X1 =
H/Γ1 as the required surface.

Theorem 5. Let X be a Riemann surface for which the bound of Theo-

rem 3 (i) is attained. Then X is hyperelliptic with (S1S2)
n/2 being the hyperel-

liptic involution.
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Proof. The proof of Theorem 3 (i) shows that if X = H/Γ is a surface for
which the bound is attained then Γ must be a normal subgroup of an NEC group
∆ of signature

{

0; +; [ ]
{

(2(4g/n)n, n)
}}

and Theorem 4 shows that Γ must be

the kernel of θ+: ∆+ → Cn . By [10] we calculate that (θ+)−1
(〈

(S1S2)
n/2

〉)

has

signature
(

0; +; [2(2g+2)]; { }
)

so by [7], (S1S2)
n/2 is the hyperelliptic involution.

Finally, we investigate the number of mirrors of each class of symmetries of
the surfaces for which the bound of Theorem 3 (i) is attained. If ∆, ∆+ are as
in the proof of Theorem 4 (i), then with the notation of the proof of Lemma 2,
the homomorphism θ+: ∆+ → Cn is given by x1 → Qn/2, . . . , x4g/n → Qn/2 ,
x(4g/n)+1 → Q , x(4g/n)+2 → Q−1 , (this is unique up to automorphisms of Cn )
and then the homomorphism θ: ∆ → Dn is given, in the case 4g/n even, by
c1 → S1 , c2 → S1Q

n/2 , c3 → S1 , . . ., c4g/n → S1/Qn/2 , c(4g/n)+1 → S1 ,
c(4g/n)+2 → S1Q and in the case 4g/n odd by

c1 → S1, c2 → S1Q
n/2, . . . , c4g/n → S1,

c(4g/n)+1 → S1Q
n/2, c(4g/n)+2 → S1Q

n/2+1.

As there are no odd link periods, the graphs of Section 5 contain no black edges
and the number of fixed curves of S1 is the number of black vertices, i.e. the
number of even exponents of Q . We immediately obtain

Theorem 6. If 4|n then the surfaces X for which the bounds of Theo-

rem 3 (i) are attained admit two classes of symmetries, one with (4g/n)+1 mirrors

and the other with 1 mirror. If n ≡ 2 mod4 then both classes of symmetries have

(2g/n) + 1 mirrors.

We consider some corollaries concerning “M -symmetries” [8]. These are sym-
metries with g + 1 mirrors, the maximum possible number by Harnack’s bound,
and they are the symmetries to which most attention has been paid in the litera-
ture. From Theorems 3 (i) and 5 we obtain Natanzon’s theorem [8].

Corollary 1. If a Riemann surface X admits two M -symmetries S1 , S2

then S1S2 has order 2 . Also, X is hyperelliptic and S1S2 is the hyperelliptic

involution.

Also from Theorem 3 we deduce

Corollary 2. If X admits an M -symmetry S1 and another symmetry S2

then S1S2 has order 2 or 4 .

Corollary 3. If S1 and S2 do not commute then |S1| + |S2| ≤ g + 2 and

this bound is attained for every g ≥ 2 .
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Proof. The order of S1S2 is not equal to 2. We see from Theorem 3 that
|S1| + |S2| ≤ g + 2 if n is even and, by Theorem 4, this bound is attained for
every g with n = 4. If n is odd then |S1| + |S2| ≤

2
3 (g − 1) + 4 and this bound

is attained only if 3|g − 1. Thus for n odd, |S1|+ |S2| ≤ g + 2 with equality only
for g = 4, n = 3.

Another important question about a symmetry S of a Riemann surface X
is to decide whether its mirrors separate X , (e.g. see [1]). This is equivalent to
whether X/〈S〉 is orientable or not, or the NEC group Λ of (5) has orientable
quotient space or not. The techniques of [4] allow us to do this. We note that
the mirrors of an M -symmetry always separate. We do not go into the details
here but it can be shown that in Theorem 6 that when n > 4, the mirrors of all
symmetries do not separate. If n = 4, then one class of symmetries consists of
M -symmetries and by the above remark the mirrors of each such symmetry do
separate. The other class of symmetries have only one mirror which can be shown
to be non-separating.
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