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Abstract. It is well known that a capacity C is countably subadditive, i.e.

C(E) ≤
∑

C(Ej), E = ∪Ej .

We shall prove that the reverse inequality, up to a multiplicative constant, holds for some decom-
position of E , provided there is a measure comparable to C . Such a property will be referred to
as quasiadditivity.

As an application, we shall show that the Green energy for a uniformly ∆-regular domain
is quasiadditive with respect to the Whitney decomposition of the domain. The Hardy inequality
due to Ancona [3, (1)] will be a main tool. We shall apply the quasiadditivity of the Green energy
to obtain a refined Wiener criterion for minimal thinness in an NTA domain.

1. Introduction

Let X be a locally compact Hausdorff space and let k be a nonnegative lower
semicontinuous function on X × X . We refer to k as a kernel and define the
capacity Ck by

Ck(E) = inf
{
‖µ‖ : k(·, µ) ≥ 1 on E

}
,

where k(·, µ) =
∫

X
k(·, y) dµ(y) . It is well known that Ck is countably subadditive,

i.e.
Ck(E) ≤

∑
Ck(Ej), E =

⋃
Ej .

In this article we shall show that the reverse inequality, up to a multiplicative
constant, holds for some decomposition of E .

Definition. Let {Qj} and {Q∗
j} be families of Borel subsets of X such that:

(i) Qj ⊂ Q∗
j ,

(ii) X = ∪Qj ,
(iii) Q∗

j do not overlap so often, i.e.,
∑
χQ∗

j
≤ N .

Then we say that {Qj , Q
∗
j} is a quasidisjoint decomposition of X . We sometimes

suppress Q∗
j and simply write {Qj} .

We write M for a positive constant whose value may change from one occur-
rence to the next. If M−1f ≤ g ≤Mf for two positive quantities f and g , then
we write f ≈ g . This constant is referred to as the constant of comparison.
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Definition. Let σ be a (Borel) measure on X . We say that σ is comparable
to Ck with respect to {Qj} if

σ(Qj) ≈ Ck(Qj) for every Qj ,(1)

σ(E) ≤MCk(E) for every Borel set E.(2)

Definition. We say that the kernel k has the Harnack property with respect
to {Qj, Q

∗
j} if

k(x, y) ≈ k(x′, y)

for x, x′ ∈ Qj and y ∈ X \ Q∗
j with the constant of comparison independent of

Qj .

Our main theorem is as follows.

Theorem 1. Let {Qj , Q
∗
j} be a quasidisjoint decomposition of X . Suppose

the kernel k has the Harnack property with respect to {Qj, Q
∗
j} . If there is a

measure σ comparable to Ck with respect to {Qj, Q
∗
j} , then for every E ⊂ X

(3) Ck(E) ≈
∑

Ck(E ∩Qj).

We shall say that Ck is quasiadditive with respect to {Qj, Q
∗
j} if (3) holds.

The proof of the theorem will be carried out in Section 2 in the same spirit as
in [2].

It is, in general, difficult to find a measure comparable to a given capacity.
In [2] we found such a measure for the Riesz capacity with the aid of a certain
weighted norm inequality. In this paper we shall employ a different device—
Hardy’s inequality—to obtain a measure comparable to a generalized Green energy.
The most general Hardy inequality is given for a uniformly ∆-regular domain by
Ancona [3]. By B(x, r) we denote the open ball with radius r and center at x .
We shall say that D ⊂ Rd is uniformly ∆-regular if there are constants r0 > 0
and ε1 , 0 < ε1 < 1, such that, for all x ∈ ∂D and all 0 < r < r0 ,

wx,r ≤ 1 − ε1 on B(x, r/2) ∩D,

where wx,r is the harmonic measure of ∂B(x, r) ∩ D in the region B(x, r) ∩ D
([3, Definition 2]). The following lemma is a consequence of [3, Theorem 1 and
Proposition 1].

Lemma A (Hardy’s inequality). Assume that D is uniformly ∆ -regular.

Then, there is a positive constant M depending only on D such that
∫

D

∣∣∣
ψ(x)

δ(x)

∣∣∣
2

dx ≤M

∫

D

∣∣∇ψ(x)
∣∣2dx for all ψ ∈W 1,2

0 (D),

where δ(x) = dist(x, ∂D) and W 1,2
0 (D) stands for the usual Sobolev space, namely

the completion of C∞
0 (D) with norm

(∫
D

(|ψ|2 + |∇ψ|2) dx
)1/2

.
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We let G(x, y) be the Green function normalized by

∆G(·, y) = −δy ,

where the left hand side denotes the distributional Laplacian of G(·, y) and δy the
point mass at y . Let u be a nonnegative superharmonic function on D . For a
compact subset K of D we let R̂K

u be the regularized reduced function of u with

respect to K . Observe that R̂K
u is a Green potential, G(·, λK

u ) . The energy

γu(K) =

∫∫
G(x, y) dλK

u (x) dλK
u (y)

is called the Green energy of K relative to u . For an open subset V we let

γu(V ) = sup
{
γu(K) : K is compact, K ⊂ V

}
,

and then for a general subset E

γu(E) = inf
{
γu(V ) : V is open, E ⊂ V

}
.

The quantity γu(E) is also called the Green energy relative to u . If u ≡ 1,
then γu is the usual Green capacity CG (see [15, p. 174–177]). If D =

{
x =

(x1, . . . , xd) : x1 > 0
}

and u(x) = x1 , then γu is the Green energy defined by

Essén and Jackson [11, Definition 2.2]. Let k(x, y) = G(x, y)/
(
u(x)u(y)

)
. Then it

is not so difficult to see that γu(E) = Ck(E) (see [12]). Thus Theorem 1 applies
to γu . Let δ(x) = dist(x, ∂D) . We define the measure σu on D by

σu(E) =

∫

E

(u(x)
δ(x)

)2

dx.

Theorem 2. Let D be a uniformly ∆ -regular domain and let {Qj} be

the Whitney decomposition of D . Suppose a positive superharmonic function u
satisfies

(4) sup
Qj

u ≤M0 inf
Qj

u

with M0 independent of Qj . Then σu is comparable to γu with respect to {Qj}
and γu is quasiadditive with respect to {Qj} , i.e. γu(E) ≈

∑
γu(E ∩Qj) .

For each Whitney cube Qj we let xj be the center of Qj , rj the diameter
of Qj and tj = dist(Qj , ∂D) . We put uj = u(xj) . By cap we denote the
Newton capacity if d ≥ 3; the logarithmic capacity if d = 2. If E ⊂ Qj , then
γu(E) ≈ u2

j cap(E) for d ≥ 3, and γu(E) ≈ u2
j/log

(
4rj/ cap(E)

)
for d = 2 (see

Lemma 1 below). Hence Theorem 2 shows that the Green energy γu is estimated
by the summation of the ordinary capacities of E ∩Qj .

Let h be a positive harmonic function. Then the Harnack principle shows
that u(x) = min

{
h(x)a, b

}
with 0 < a ≤ 1 and b > 0 satisfies (4). Hence we

have the following corollaries.
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Corollary 1. Let D and {Qj} be as in Theorem 2. Then the Green capacity

CG = γ1 is quasiadditive with respect to {Qj} , i.e.

CG(E) ≈
∑

CG(E ∩Qj) ≈





∑
cap(E ∩Qj) if d ≥ 3,

∑ 1

log
(
4rj/ cap(E ∩Qj)

) if d = 2.

Corollary 2. Let D and {Qj} be as in Theorem 2. Let x0 ∈ D and let

g(x) = min
{
G(x, x0), 1

}
. Then γg is quasiadditive with respect to {Qj} , i.e.

with gj = g(xj)

γg(E) ≈
∑

γg(E ∩Qj) ≈






∑
g2

j cap(E ∩Qj) if d ≥ 3,

∑ g2
j

log
(
4rj/ cap(E ∩Qj)

) if d = 2.

In [14] Jerison and Kenig introduced the notion of NTA domains. A bounded
domain D is called NTA when there exist positive constants M and r1 such that

(a) Corkscrew condition. For any z ∈ ∂D , r < r1 there exists a point Ar(z) ∈ D
such that M−1r <

∣∣Ar(z) − z
∣∣ < r and δ

(
Ar(z)

)
> M−1r .

(b) The complement of D satisfies the corkscrew condition.
(c) Harnack chain condition. If ε > 0 and x1 and x2 belong to to D , δ(xj) > ε

and |x1−x2| < Cε , then there exists a Harnack chain from x1 and x2 whose
length depends on C , but not ε .

In view of (b) we see that an NTA domain D is uniformly ∆-regular. It is known
that the Martin boundary of D is homeomorphic to the Euclidean boundary
∂D and every boundary point is minimal ([14]). We shall apply Corollary 2 to
a characterization of minimally thin sets in an NTA domain. For details see
Section 4.

Acknowledgement. I would like to thank Professor Stephen Gardiner for
bringing Ancona’s paper [4] to my attention. I would like to thank Professor
Alano Ancona for the comments on Section 4.

2. Proof of Theorem 1

Proof of Theorem 1. Let E ⊂ X . We may assume that Ck(E) < ∞ . By
definition we can find a measure µ such that k(·, µ) ≥ 1 on E and ‖µ‖ ≤ 2Ck(E) .
For each Qj we let

µj = µ|Q∗

j
, µ′

j = µ|X\Q∗

j
.

We have the following two cases:

(a) k(x, µj) ≥
1
2 for all x ∈ E ∩Qj .

(b) k(x, µ′
j) ≥

1
2

for some x ∈ E ∩Qj .
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If (a) holds, then Ck(E ∩Qj) ≤ 2‖µj‖ by definition. Since Q∗
j do not overlap so

often, we obtain

(5)
∑′

Ck(E ∩Qj) ≤ 2
∑′

‖µj‖ ≤M‖µ‖ ≤MCk(E),

where
∑′

denotes the summation over all Qj for which (a) holds. If (b) holds,
then the Harnack property of k yields that k(·, µ) ≥ k(·, µ′

j) ≥M on Qj , so that

k(·, µ) ≥M on ∪
′′

Qj ,

where ∪
′′

denotes the union over all Qj for which (b) holds. Hence

Ck(∪
′′

Qj) ≤M‖µ‖.

Since σ is comparable to Ck , it follows from (1), (2) and the countable additivity
of σ that

∑′′

Ck(E ∩Qj) ≤
∑′′

Ck(Qj) ≤M
∑′′

σ(Qj)

≤Mσ(∪
′′

Qj) ≤MCk(∪
′′

Qj) ≤M‖µ‖ ≤MCk(E).

This, together with (5), completes the proof.

Corollary 3. Let k , {Qj , Q
∗
j} and σ be as in Theorem 1. If E is a union

of Qj , then Ck(E) ≈ σ(E) .

Remark. It is not so difficult to give an Lp capacity version of Theorem 1.
For 1 < p <∞ and a fixed measure ν on X we let

Ck,p(E) = inf
{∫

X

fpdν : k(·, fν) ≥ 1 on E, f ≥ 0
}
.

Then the same argument yields that if k has the Harnack property with respect to
{Qj , Q

∗
j} and there is a measure σ comparable to Cp with respect to {Qj, Q

∗
j} ,

then

Ck,p(E) ≈
∑

Ck,p(E ∩Qj).

See [2, Theorem 1].
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3. Proof of Theorem 2

In this section we let D be a uniformly ∆-regular domain. Let {Qj} be the
Whitney decomposition of D and let Q∗

j be the double of Qj (see [20, Chapter
VI]). Then {Qj, Q

∗
j} is a quasidisjoint decomposition of D . Throughout this

section we suppose that a positive superharmonic function u satisfies (4).
We shall show that σu is comparable to γu with respect to {Qj} . We can

easily verify the first condition (1) by recalling the identity γu(E) = Ck(E) , where
k(x, y) = G(x, y)/

(
u(x)u(y)

)
.

Lemma 1. Let Qj be a Whitney cube and let rj and uj be as in the

introduction. If E ⊂ Qj , then

γu(E) ≈





u2
j cap(E) if d ≥ 3,

u2
j

log
(
4rj/ cap(E)

) if d = 2.

In particular, γu(Qj) ≈ σu(Qj) ≈ u2
jr

d−2
j .

Proof. From (4), we deduce the estimate

k(x, y) ≈





u−2
j |x− y|2−d if d ≥ 3,

u−2
j log

4rj
|x− y|

if d = 2,

for x, y ∈ Qj , which proves the lemma.

Let K be a compact subset of D . Then (4) yields that u is bounded on K .

Hence R̂K
u is a bounded Green potential of a measure supported on K . By the

next lemma we can apply Lemma A to R̂K
u .

Lemma 2. Let K be a compact subset of D . Suppose that µ is a measure

on K and that v = G(·, µ) is a bounded Green potential. Then v ∈W 1,2
0 (D) and

∫∫
G(x, y) dµ(x) dµ(y) =

∫

D

|∇v|2dx.

In fact, Lemma 2 can be extended to more general situations (see e.g. [7,
Satz 7.2]); but the above form is sufficient for our purpose. Let us now prove (2).

Lemma 3. Let E be a Borel subset of D . Then

σu(E) ≤Mγu(E).

Proof. Let K be a compact subset of E and write vK = R̂K
u = G(·, λK

u ) .
Then

γu(K) =

∫∫
G(x, y) dλK

u (x) dλK
u (y) =

∫

D

|∇vK |2dx
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by Lemma 2. Since vK = u q.e. on K and hence a.e. on K , it follows from
Lemmas A and 2 that

γu(E) ≥ γu(K) =

∫

D

|∇vK |2dx ≥M

∫

D

(vK

δ

)2

dx ≥M

∫

K

(u
δ

)2

dx = Mσu(K).

Since K ⊂ E is an arbitrary compact set, we have the required inequality.

Proof of Theorem 2. We have seen in Lemmas 1 and 3 that the measure σu

is comparable to γu with respect to {Qj} . Suppose y ∈ D \Q∗
j . Then G(·, y) is

a positive harmonic function in the interior of Q∗
j . Hence the Harnack principle

yields that, for x, x′ ∈ Qj , G(x, y) ≈ G(x′, y) , so that k(x, y) ≈ k(x′, y) by (4).
Thus the kernel k has the Harnack property with respect to {Qj, Q

∗
j} . Therefore,

the quasiadditivity of the Green energy γu follows from Theorem 1.

Remark. If D is a Liapunov domain, then g(x) ≈ δ(x) and Corollary 2
follows from the weak L1 estimate of Näım’s Θ kernel (cf. [2], [18], [19] and
[21]). For a general uniformly ∆-regular domain, however, the Θ kernel is not
necessarily weak (1, 1); it may not be even a standard kernel.

4. Minimally thin sets in an NTA domain

In this section we let D be an NTA domain in Rd . Let D1 =
{
x ∈ D :

G(x, x0) > 1
}

. By definition g(x) = G(x, x0) for x ∈ D \ D1 . Since the Mar-
tin boundary of D is homeomorphic to the Euclidean boundary ∂D and every
boundary point is minimal, it follows that the ratio

K(x, y) =
G(x, y)

g(y)

becomes continuous in the extended sense on D × D . By the same symbol we
denote the continuous extension on D ×D . Sometimes we write Ky for K(·, y) .
By definition Ky(x0) = 1 for y ∈ D \ D1 . If y ∈ ∂D , then Ky is a minimal
harmonic function on D . Let E ⊂ D and let y ∈ ∂D . We say that E is
minimally thin at y if the regularized reduced function R̂E

Ky
is a Green potential,

or equivalently there is a finite measure µ on D such that µ
(
{y}

)
= 0 and

(6) Ky ≤ K(·, µ) on E.

By the definition of Green energy we have

(7) R̂E
g (x0) = γg(E)

for any set E . This, together with Corollary 2, yields a refined Wiener criterion
for minimal thinness in terms of usual capacity. For each Whitney cube Qj we
let we put Rj(y) = |xj − y| and Aj(y) = ARj(y)(y) , where we recall xj is the
center of Qj and that Ar(y) is the point appearing in the corkscrew condition for
y ∈ ∂D .
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Theorem 3. Suppose y ∈ ∂D and E ⊂ D . Then E is minimally thin at y
if and only if

∑( gj

g(Aj(y))

)2

Rj(y)
2−d cap(E ∩Qj) <∞ if d ≥ 3,

∑( gj

g(Aj(y))

)2 1

log
(
4rj/ cap(E ∩Qj)

) <∞ if d = 2.

Corollary 4. Let y ∈ ∂D . If a measurable set E is minimally thin at y ,

then

(8)

∫

E

( g(x)

g
(
A|x−y|(y)

)
)2 |x− y|2−d

δ(x)2
dx <∞.

Remark. For a half space Essén [9] has first introduced the refined Wiener
criterion. (See also [2].) He used the weak L1 estimate due to Sjögren [19]. As
remarked before, the weak L1 estimate needs not hold for an NTA domain.

Definition. Suppose y ∈ ∂D and E ⊂ D . We say that E is minimally thin
at y for harmonic functions if there is a finite measure µ concentrated on ∂D
such that µ({y}) = 0 and (6) holds.

Theorem 4. Suppose y ∈ ∂D and E ⊂ D . Then E is minimally thin at y
for harmonic functions if and only if

∑

E∩Qj 6=∅

( gj

g(Aj(y))

)2( rj
Rj(y)

)d−2

<∞.

Corollary 5. Let y ∈ ∂D and let 0 < ̺ < 1 . If E is minimally thin

at y for harmonic functions, then E̺ = ∪x∈EB
(
x, ̺δ(x)

)
satisfies (8) with E̺

replacing E .

Remark. A set E is said to determine the point measure at y ∈ ∂D if,
for every finite measure µ concentrated on ∂D , (6) implies that µ({y}) > 0 ([6],
[8], [17] and [19]). We note that E is minimally thin at y for harmonic functions
if and only if E does not determine the point measure at y . Obviously if E is
minimally thin at y for harmonic functions, then it is minimally thin; but the
converse is not necessarily true.

Let us remark that Hayman [13, p. 481 and Theorem 7.37] defined sets “rar-
efied for harmonic functions”. We note that the term “rarefied sets” was in-
troduced by Essén and Jackson [11]. A set is “rarefied” in the terminology of
Lelong-Ferrand [16] if and only if it is “semirarefied” in the terminology of Essén
and Jackson. A set rarefied for harmonic functions corresponds to a rarefied set
defined by Essén and Jackson. See [10] for further information.
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Remark. A sequence {zi} ⊂ D is said to be separated if |zi − zi′ | ≥Mδ(zi)
for i 6= i′ with some positive constant M . It is easy to see that {zi} is separated
if and only if the number of points zi included in a Whitney cube Qj is bounded
by a positive constant independent of Qj . Thus Theorem 4 implies Ancona’s
criterion for a set to determine the point measure [4, Theorem 7.4]. Ancona first
indicated that the Hardy inequality can be used. His short description of the proof
was stated only for Lipschitz domains, but it seems to work for NTA domains. He
also gave further discussions for hyperbolic graphs [4] and Denjoy domains [5].

Remark. If D is a Liapunov domain, then g(x) ≈ δ(x) ([21]), so that
Theorems 3, 4 and their Corollaries are generalization of the results of Beurling
[6], Maz’ya [17], Dahlberg [8], Sjögren [19] and Essén [10, Section 2].

5. Proofs of Theorems 3 and 4

In this section let D be an NTA domain. Let Θ(x, y) = G(x, y)/
(
g(x)g(y)

)
.

It is known that Θ(x, y) has a continuous extension on D × D . By the same
symbol we denote the continuous extension. The kernel Θ is referred to as the
Näım’s Θ kernel for D ([18]). By definition Θ is symmetric.

Lemma 4. For 0 < R < r1 and y ∈ ∂D we let θy(R) = Θ
(
AR(y), y

)
with

AR(y) appearing in the corkscrew condition. Then

(9) θy(R) ≈ R2−dg
(
AR(y)

)−2
.

If x ∈ D and |x − y| = R , then Θ(x, y) ≈ θy(R) . Moreover, if r ≈ R , then

θy(r) ≈ θy(R) .

Proof. This is essentially proved in [1, Lemma 3.3]; but for the sake of conve-
nience we give a proof. We shall use the same notation as in [14]; ∆(y, r) stands for
the surface ball B(y, r)∩∂D and ωx(·) for the harmonic measure of D evaluated
at x . If x = x0 , then we write simply ω(·) for ωx0(·) .

It is well known that

K(x, y) = lim
r→0

ωx
(
∆(y, r)

)

ω
(
∆(y, r)

)

(cf. [14, Theorem 5.5]). If we carefully consider the above convergence, then we
have, for 0 < r ≤ R ,

K(AR(y), y) ≈
ωAR(y)

(
∆(y, r)

)

ω
(
∆(y, r)

) .

On the other hand, if r ≈ R , then ωAR(y)(∆(y, r)) ≈ 1. Therefore, letting
1
2R ≤ r ≤ R , we obtain from [14, Lemma 4.8] and the Harnack principle that

K
(
AR(y), y

)
≈

1

ω
(
∆(y, r)

) ≈
1

rd−2g
(
Ar(y)

) ≈ R2−dg
(
AR(y)

)−1
.
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By definition (9) follows. Moreover the boundary Harnack principle (cf. [14,
Lemma 4.10]) says that if x ∈ D and |x− y| = R , then

K(x, y)

K
(
AR(y), y

) ≈
g(x)

g
(
AR(y)

) ,

which implies that Θ(x, y) ≈ Θ
(
AR(y), y

)
= θy(R) . The last assertion follows

from the Harnack principle. The lemma is proved.

Proof of Theorem 3. In the same way as in [1] we can show that E is minimally
thin at y if and only if ∑

i

R̂Ei

Ky
(x0) <∞,

where Ei =
{
x ∈ E : 2−i ≤ |x − y| < 21−i

}
. By Lemma 4 we see that Ky ≈

θy(2−i)g on
{
x ∈ D : 2−i ≤ |x − y| < 21−i

}
. Hence it follows from (7) that the

above condition is equivalent to

∑

i

θy(2−i)γg(Ei) <∞.

Invoking Corollary 2, we can rewrite the above condition as

(10)
∑

j

θy

(
Rj(y)

)
γg(E ∩Qj) <∞,

where we recall Rj(y) = |xj − y| and xj is the center of Qj . Hence Lemmas 1
and 4 assert that (10) leads to the condition of Theorem 3. Thus the theorem is
proved.

Proof of Corollary 4. In view of Lemmas 3 and 4, we see that (10) implies
that

∑
Rj(y)

2−dg
(
ARj(y)(y)

)−2 g
2
j

t2j

∫

E∩Qj

dx <∞,

which is equivalent to (8).

Proof of Theorem 4. It is not so difficult to see that E is minimally thin at
y for harmonic functions if and only if Ẽ = ∪E∩Qj 6=∅Qj is minimally thin at y
([10]). Hence Lemma 1 and Theorem 3 readily imply the theorem.
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