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NON-UNIQUENESS OF GEODESICS IN INFINITE-
DIMENSIONAL TEICHMÜLLER SPACES (II)
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Peking University, Department of Mathematics
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Abstract. The non-uniqueness of geodesics joining two given points in universal Teichmüller
space is proved in the previous paper [7]. The purpose of the present paper is to discuss the non-
uniqueness of geodesics in any infinite-dimensional Teichmüller space. It is proved that if µ1

and µ2 are two extremal Beltrami differentials belonging to a point [µ] of a Teichmüller space
and µ1 − µ2 does not belong to N -class, the paths [tµ1] and [tµ2] (0 ≤ t ≤ 1) are different
geodesics joining [0] and [µ] . Making use of this theorem, the result of [7] is generalized to hold
for any infinite-dimensional Teichmüller space. This is a complete answer to a problem posed by
F.P. Gardiner [1].

1. Introduction

There are some essential differences in the geometry between the finite-di-
mensional Teichmüller spaces and the infinite-dimensional Teichmüller spaces. It
is well known that a finite-dimensional Teichmüller space is a straight geodesic
space in the sense of Buseman (S. Kravetz [4]), that is, for any pair of points in a
finite-dimensional Teichmüller space there is a unique geodesic line through them.
But we do not know whether or not the same is true for the infinite-dimensional
case. We further explain the question as follows.

Let T (S) be a Teichmüller space of a Riemann surface S . T (S) is defined
as a quotient space of the Beltrami differentials on S . If dimT (S) < ∞ , each
point [µ] ∈ T (S) contains a unique extremal Beltrami differential, say µ0 , and
the path [tµ0] (0 ≤ t ≤ 1) is the unique geodesic joining [0] and [µ] . But in the
infinite-dimensional case the situation is different. When dimT (S) = ∞ , a point
[µ] of T (S) may contain more than one extremal differential. The first example
of such a point in the universal Teichmüller space was given by K. Strebel, known
as the Strebel chimney (K. Strebel [11] or see O. Lehto [6]). Suppose the point [µ]
contains two extremal differentials µ1 and µ2 . The question is how to determine
whether [tµ1] is the same as [tµ2] (0 ≤ t ≤ 1). This question was proposed by
F.P. Gardiner [1].

In [7] the author answers this question by constructing two extremal differen-
tials µ1 and µ2 such that they are in the same point of the universal Teichmüller
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space but the geodesic paths [tµ1] and [tµ2] (0 ≤ t ≤ 1) are different. This
example shows that the geodesics joining two points in the universal Teichmüller
space are not unique and hence the universal Teichmüller space is not a straight
geodesic space.

After this result, a natural question that follows concerns the general infinite-
dimensional Teichmüller space except the universal Teichmüller space. The pur-
pose of this paper is to investigate the geodesic problem for any infinite-dimensional
Teichmüller space.

The main result is Theorem 3.1, which states that if a point [µ] ∈ T (S)
contains two extremal differentials µ1 and µ2 such that µ1 − µ2 does not belong
to the N -class of Ahlfors, then [tµ1] and [tµ2] (0 ≤ t ≤ 1) are different geodesics
joining [0] and [µ] .

As a consequence of this main result, we get a criterion for the non-uniqueness
of the geodesics in any infinite-dimensional Teichmüller space: If µ is an extremal
Beltrami differential on S and the set

{

p ∈ S
∣

∣

∣

∣µ(p)
∣

∣ < ‖µ‖∞ − ε
}

(ε > 0) has
an interior point, there are infinitely many geodesic lines through [0] and [µ] (see
Theorem 3.2).

As as application of Theorem 3.2, we shall construct in Section 4 a pair of
points in any infinite-dimensional Teichmüller space such that they have infinitely
many geodesics.

Acknowledgement. This study was carried out when the author was a vis-
iting research fellow of the United College of Chinese University of Hong Kong.
The author would like to thank Professor Y.C. Wong for his invitation and discus-
sions. The author also would like to thank Professor M.T. Cheng, Dr. G.Z. Cui
and Dr. Y.L. Shen for their reading the manuscript and their suggestions.

Remark. Having prepared this paper, the author received a preprint of a
paper [12] by Harumi Tanigawa, who shows a similar result to Theorem 3.2 of
this paper. Her result is as follows: If µ is an extremal Beltrami differential
which vanishes on a Jordan domain U and does not vanish identically on the
whole Riemann surface, there exists a family of geodesic discs through [0] and
[µ] with a complex analytic parameter. She constructs an extremal Beltrami
differential which satisfies the conditions in her theorem. The method of her proof
is completely different from ours.

From the proofs of Theorem 3.1 and 3.2 of this paper one may find that these
theorems still hold if the “geodesics” in the statements of Theorem 3.1 and 3.2 is
replaced by “geodesic discs”.

2. Preliminaries

Let S be a Riemann surface with a holomorphic universal covering map:
π: ∆ → S , where ∆ is the unit disc. Then S can be expressed as a quotient space
∆/Γ, where Γ is a Fuchsian group acting on ∆. Denote by Bel(S) the space
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of the Beltrami differentials on S with the supremum norm smaller than 1. For
each element µ ∈ Bel(S) there exists a Riemann surface Sµ and a quasiconformal
mapping fµ: S → Sµ such that the complex dilatation of fµ is µ . We denote
by f̃µ: ∆ → ∆ the lift of fµ with the points 1, i and −1 fixed. Then f̃µ is
uniquely determined by µ . An element µ1 ∈ Bel(S) is said to be equivalent to
µ2 ∈ Bel(S) if and only if f̃µ1 |∂∆= f̃µ2 |∂∆ . Then the Teichmüller space of
S , denoted by T (S) , can be defined as the quotient space of Bel(S) under the
equivalence relations. The Teichmüller metric between two points [µ] and [ν] is
defined as follows:

d
(

[µ], [ν]
)

= 1
2 inf

f
logK[f ],

where f runs through all quasiconforml mappings of Sµ onto Sν in the homotopy
class

[

fν ◦ (fµ)−1
]

and K[f ] is the maximal dilatation of f .
An element µ ∈ Bel(S) is said to be extremal if and only if its norm is

the smallest among the elements of [µ] . It is known that the extremal Beltrami
differential always exists for any point [µ] ∈ T (S) . Moreover, if µ is extremal,
then tµ is also extremal for t (0 ≤ t ≤ 1) and the path [tµ] is a geodesic (in
the Teichmüller metric) joining the points [0] and [µ] . If dimT (S) < +∞ , the
extremal differential of [µ] is unique for each point [µ] ∈ T (S) and must be of
the following form: kϕ/|ϕ| , where ϕ is a holomorphic quadratic differential with
finite norm and k is a constant non-negative and smaller than 1.

Let Q(S) be the space of quadratic differentials on S with L1 -norms finite.
The dimension of Q(S) is finite if and only if dimT (S) is finite.

An element µ ∈ Bel(S) is extremal if and only if

(2.1) sup
ϕ∈Q(S)
‖ϕ‖=1

{
∣

∣

∣

∣

∫∫

S

µϕdx dy

∣

∣

∣

∣

}

= ‖µ‖∞ .

This result is due to R.S. Hamilton [3] and S. Krushkal [5] (for necessity), and
E. Reich and K. Strebel [8] (for sufficiency). Condition (2.1) is called Hamilton–
Krushkal condition.

If µ is extremal and ϕn ∈ Q(S) such that ‖ϕn‖ = 1 and

(2.2) lim
n→∞

∣

∣

∣

∣

∫∫

S

µϕn dx dy

∣

∣

∣

∣

= ‖µ‖∞ ,

the sequence {ϕn} is called a Hamilton sequence.
Another known result we need is the main inequality of Reich and Strebel

(see [9]). If µ ∈ Bel(S) is equivalent to 0, i.e., f̃µ |∂∆= id, we have

(2.3) ‖ϕ‖ ≤

∫∫

S

|ϕ|

∣

∣1 − µϕ/|ϕ|
∣

∣

2

1 − |µ|2
dx dy
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for all ϕ ∈ Q(S) .
A Beltrami differential µ ∈ Bel(S) is said to be an element of N(S) , known

as the N -class of Beltrami differentials, if and only if

(2.4)

∫∫

S

µϕdx dy = 0, for all ϕ ∈ Q(S).

3. Main results

In this section we shall give some sufficient conditions of a point [µ] ∈ T (S)
having more than 1 geodesics joining [0] and [µ] .

Lemma 3.1. Let µ ∈ Bel(∆) and Ft: ∆ → ∆ be a quasiconformal mapping
of the unit disc ∆ onto itself with the points 1 , i and −1 fixed and with the
complex dilatation tµ (0 ≤ t ≤ 1). Then we have a sequence {tn} , 0 < tn < 1 ,
such that

(3.1) ∂zFtn
(z) → 1, as tn → 0,

almost everywhere in ∆ .

Proof. It is known that the Beltrami equation

∂z̄w = tµ∂zw (0 < t < 1)

has a solution of the following form:

wt(z) = z −
1

π

∫∫

∆

ωt(ζ)

ζ − z
dξ dη (ζ = ξ + iη),

where ωt is a solution of the equation

(3.2) ω − tµS(ω) = tµ,

with S a singular integration operator:

S(ω) = −
1

π

∫∫

∆

ω(ζ)

(ζ − z)2
dξ dη.

Let Λp be the norm of the operator S: Lp → Lp . Then Λ2 = 1 and Λp is a
continuous function of p > 1 (see [13]). Suppose

∣

∣µ(z)
∣

∣ ≤ k < 1, a.e. z ∈ ∆,
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where k is a constant. We choose p0 > 2 such that Λp0
k < 1. Then (3.2) has a

solution ωt ∈ Lp0
satisfying

‖ωt‖Lp0

≤ tk/(1 − Λp0
k).

Hence we get ‖ωt‖Lp0

→ 0 (as t→ 0) and

(3.3) wt(z) → z (uniformly for z ∈ ∆)

as t→ 0. On the other hand, we see

∂zwt = 1 + S(ωt).

It follows that

‖∂zwt − 1‖Lp0

≤ Λp0
‖ωt‖Lp0

→ 0 (as t→ 1),

which implies that there exists a sequence {tn} such that

(3.4) ∂zwtn
→ 1 (a.e.) as tn → 0.

By the assumption of the lemma, Ft can be expressed as ϕt(wt) , where ϕt

is a conformal mapping of wt(∆) onto ∆ with the following conditions:

ϕt

(

wt(1)
)

= 1, ϕt

(

wt(i)
)

, ϕt

(

wt(−1)
)

= −1.

By (3.3) and the Caratheodory theorem, it follows from the above conditions that
ϕ is locally uniformly convergent to z and hence ϕ′

t is locally convergent to 1 as
t→ 0. The lemma is proved by (3.4). QED.

Theorem 3.1. Let µ1 and µ2 be two extremal Beltrami differentials in
[µ] ∈ T (S) . If µ1 − µ2 does not belong to the N -class of Beltrami differentials
on S , then [tµ1] and [tµ2] (0 ≤ t ≤ 1) are two different geodesics joining [0] and
[µ] .

Proof. Suppose [tµ1] = [tµ2] for every t ∈ [0, 1] . The theorem will be proved
by obtaining a contradiction with the assumption that µ1 − µ2 /∈ N(S) .

Let S = ∆/Γ, where Γ is a Fuchsian group. For each t ∈ [0, 1] there are a
Riemann surface St and a quasiconformal mapping ft,j = f tµj : S → St (j = 1, 2)
such that ft,1 is homotopic to ft,2 modulo the boundary. Suppose Ft,j : ∆ → ∆
is the lift of ft,j with the points 1, i and −1 fixed (j = 1, 2). Then we have

Ft,1 |∂∆= Ft,2 |∂∆ .
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Let St = ∆/Γt , where Γt is a Fuchsian group. It is easy to see that we can assume
that

Γt =
{

Ft,j ◦ γ ◦ F−1
t,j | γ ∈ Γ

}

,

where j = 1 or 2.
Let ϕ be an arbitrary fixed element of Q(S) and ϕ̃(z) dz2 be the lift of ϕ .

Then ϕ̃ satisfies

ϕ̃
(

γ(z)
)[

γ′(z)
]2

= ϕ̃(z), z ∈ ∆.

There is a holomorphic function ψ(z) in ∆ with the condition
∫∫

∆

∣

∣ψ(z)
∣

∣ dx dy < +∞,

such that the Poincaré series of ψ (see [2, Chapter 4, Theorem 3]).

Θψ(z) =
∑

γ∈Γ

ψ
(

γ(z)
)[

γ′(z)
]2

is equal to ϕ̃ . Using this function ψ , we define

ϕ̃t(z) =
∑

γt∈Γt

ψ
(

γt(z)
)[

γ′t(z)
]2
.

Then we get

ϕ̃t

(

γt(z)
)[

γ′t(z)
]2

= ϕ̃t(z)

for z ∈ ∆ and γt ∈ Γt . This means that ϕ̃t(z) dz
2 is a lift of a holomorphic

quadratic differential ϕt on St with finite norm.
Let gt be the composition mapping of ft,1 and f−1

t,2 , i.e., gt = ft,1◦f
−1
t,2 : St →

St . Denote by σt the complex dilatation of gt . Then it follows from the assump-
tion that [tµ1] = [tµ2] , that σt is equivalent to 0. Hence by the main inequality
we have

‖ϕt‖ ≤

∫∫

St

|ϕt|

∣

∣1 − σtϕt/|ϕt|
∣

∣

2

1 − |σt|2
dξ dη,

which can be rewritten in the following form:

(3.5) Re

∫∫

St

σtϕt

1 − |σt|2
dξ dη ≤

∫∫

St

|σt|
2|ϕt|

1 − |σt|2
dξ dη.

Let Ω be a fundamental domain of S . Then Ωt = Ft,2(Ω) is a fundamental
domain of St . Let µ̃1 , µ̃2 and σ̃t be the lifts of µ1 , µ2 and σt , respectively.
Then we have

σ̃t(ζ) =
t(µ̃1 − µ̃2)

1 − t2µ̃1µ̃2

·
∂zFt,2

∂zFt,2

◦ F−1
t,2 (ζ).
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From inequality (3.5) it follows that

Re

∫∫

Ωt

σ̃tϕ̃t dξ dη ≤

∫∫

Ωt

|σ̃t|
2|ϕ̃t|

1 − |σ̃t|2
dξ dη +O(t2)

and hence

lim sup
t→0

Re

∫∫

Ωt

µ̃1 − µ̃2

1 − t2µ̃1µ̃2

·
∂zFt,2

∂zFt,2

◦ F−1
t,2 (ζ)ϕ̃t(ζ) dξ dη ≤ 0

or

lim sup
t→0

Re

∫∫

Ωt

µ̃1 − µ̃2

1 − t2µ̃1µ̃2

·
∂zFt,2

∂zFt,2

ϕ̃t(Ft,2) dx dy ≤ 0.

It is easy to see that ϕ̃t(z) → ϕ̃(z) . By Lemma 3.1 there is a sequence {tn}
(0 < tn < 1) such that ∂zFtn,2 → z as tn → 0. Then we have

Re

∫∫

Ω

(µ̃1 − µ̃2)ϕ̃ dx dy ≤ 0

or

Re

∫∫

S

(µ1 − µ2)ϕdx dy ≤ 0.

Since ϕ is an arbitrary element of Q(S) , this inequality implies

∫∫

S

(µ1 − µ2)ϕdx dy = 0, for all ϕ ∈ Q(S),

which means µ1 − µ2 ∈ N(S) . This is a contradiction with the assumption of the
theorem. QED.

Theorem 3.1 gives a sufficient condition of the non-uniqueness of geodesics.
But the condition that µ1 − µ2 /∈ N(S) is not very explicit for practical use.
Below there follows a more explicit condition which can be regarded as a criterion
of the non-uniqueness of geodesics.

Theorem 3.2. Let µ be an extremal Beltrami differential on a Riemann
surface S . If the set

Aµ =
{

p ∈ S
∣

∣ |µ|(p) < ‖µ‖∞ − ε
}

(for some ε > 0)

has an interior point, there are infinitely many geodesics joining the points [0] and
[µ] in T (S) .
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Proof. Suppose p0 ∈ S is an interior point of Aµ and U ⊂ Aµ is a neigh-
bourhood of p0 . Without any loss of generality we assume that µ is C2 smooth
in U (otherwise one may make a small perturbation of µ|U such that the resulting
differential is C2 smooth and its absolute values are smaller than ‖µ‖∞ − ε′ for
another ε′ > 0).

Let ϕ ∈ Q(S) \ {0} and ϕ|p0
6= 0. We choose U so small that ϕ|p 6= 0 for

every p in U . Suppose z is a natural parameter of ϕ such that z(p0) = 0 and
ϕ|U = dz2 . Let fµ: S → Sµ be a quasiconformal mapping of S onto another
Riemann surface Sµ with the Beltrami differential µ . Let ζ be a local parameter
of a neighbourhood V of q0 = fµ(p0) with ζ(q0) = 0. Suppose fµ(V ) ⊂ U and
the local expression of fµ|U is ζ = f(z) , the complex dilatation of which is µ(z) .
Without any loss of generality we assume

(3.6) ∂ζ

[

∂zf
(

f−1(ζ)
)]

6≡ 0 in V.

(Otherwise one can change the parameter ζ or take a small perturbation of f |U ).
We look at a disc ∆r =

{

ζ
∣

∣ |ζ| < r
}

, where r > 0 is sufficiently small to allow
∆r ⊂ V . Define a mapping of ∆r onto itself:

hα(ζ) = ζ + αη(ζ),

where α is a complex parameter and η ∈ C∞ has a compact supporting set in ∆.
Then we have

(3.7) hα(ζ) ≡ ζ, for all ζ ∈ ∂∆r.

Let να = ∂ζ̄hα/∂ζhα . It is easy to see that ‖να‖∞ is less than 1 when |α|
is sufficiently small. By the argument principle for quasiregular functions and
condition (3.7), hα is an 1 − 1 mapping and hence a quasiconformal mapping of
∆r onto itself.

Let us look at the composed mapping gα = hα ◦ f . It is easy to see that the
complex dilatation of gα is

(3.8) σα =
µ(z) + να(ζ)θ(z)

1 + µ(z)να(ζ)θ(z)
,

where ζ = f(z) and θ(z) = ∂zf/∂zf .
Let α1 and α2 be two sufficiently small parameters and α1 6= α2 . Then we

have

σα1
(z) − σα2

(z) =

[

να1
(ζ) − να2

(ζ)
]

θ(z)
[

1 −
∣

∣µ(z)
∣

∣

2]

[

1 + µ̄(z)να1
(ζ)θ(z)

][

1 + µ̄(z)να2
(ζ)θ(z)

] .
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Noting the fact that να(ζ) = O
(

|α|
)

, we get

σα1
(z) − σα2

(z) =
[

να1
(ζ) − να2

(ζ)
]

θ(z)
[

1 −
∣

∣µ(z)
∣

∣

2]

·
[

1 +O
(

|α1| + |α2|
)]

, ζ = f(z).

It follows from the definition of να that

να1
(ζ) − να2

(ζ) = (α1 − α2)∂ζ̄η
[

1 +O
(

|α1| + |α2|
)]

,

and hence

(3.9)
σα1

(z) − σα2
(z) = (α1 − α2)∂ζ̄η(ζ)θ(z)

[

1 −
∣

∣µ(z)
∣

∣

2]

·
[

1 +O
(

|α1| + |α2|
)]

.

We are now going to show that

(3.10)

∫∫

Dr

[

σα1
(z) − σα2

(z)
]

dx dy 6= 0

for sufficiently small α1 and α2 (α1 6= α2 ), where Dr = f−1(∆r) . By (3.9) it is
easy to see that, to show (3.10), it is sufficient to prove

∫∫

Dr

∂ζ̄η
(

f(z)
)

θ(z)
[

1 −
∣

∣µ(z)
∣

∣

2]
dx dy 6= 0

or

(3.11)

∫∫

∆r

∂ζ̄η(ζ)/
[

∂zf
(

f−1(ζ)
)]2

dξ dη 6= 0.

There exists a function η ∈ C∞
0 (∆r) such that (3.11) holds; otherwise we have

∫∫

∆r

∂ζ̄η(ζ)/
[

∂zf
(

f−1(ζ)
)]2

dξ dη = 0,

for all η ∈ C∞
0 (∆r) , which implies

∂ζ̄

(

1/
[

∂zf
(

f−1(ζ)
)]2

)

≡ 0 (in ∆r)

or
∂ζ

[

∂zf
(

f−1(ζ)
)]

≡ 0 (in ∆r)
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being a contradiction with (3.6). From now on we assume η to be chosen such
that (3.11) holds and hence (3.10) holds.

We identify the points in U with their parameters. Then Dr are identified
with the domain of S which Dr represent. Now we define a Beltrami differential
on S :

σ∗
α =

{

µ, in S \Dr;
σα, in Dr.

Obviously, σ∗
α ∈ [µ] and σ∗

α is extremal when |α| is sufficiently small. By the
definition we have

∫∫

S

(σ∗
α1

− σ∗
α2

)ϕdx dy =

∫∫

Dr

(σα1
− σα2

)ϕdx dy,

where ϕ is the holomorphic quadratic differential on S which is given at the
beginning of the proof. Recalling the fact that the local expression of ϕ|U is dz2 ,
we get

∫∫

S

(σ∗
α1

− σ∗
α2

)ϕdx dy =

∫∫

Dr

(σα1
− σα2

) dx dy.

It follows from (3.10) that

∫∫

S

(σ∗
α1

− σ∗
α2

)ϕdx dy 6= 0,

which implies that (σ∗
α1

− σ∗
α2

) does not belong to the N -class. By Theorem 3.1
we see that [tσ∗

α1
] and [tσ∗

α2
] (0 ≤ t ≤ 1) are different geodesics joining [0] and

[µ] , provided α1 6= α2 and both are sufficiently small. QED.

Remark. It is easy to prove that the mapping t 7→
[

tµ/ ‖µ‖∞
]

(µ is ex-

tremal) is a holomorphic isometry of ∆ =
{

t : |t| < 1
}

into T (S) with the
Poincaré metric and Teichmüller metric. So one can replace the geodesic lines in
Theorem 3.2 with the geodesic discs [12].

In her paper [12], H. Tanigawa investigates the boundary behaviour of a holo-
morphic mapping of ∆ into T (S) and gives a sufficient condition for holomorphic
mappings into T (S) to be rigid.

4. Existence

Now we want to construct an extremal Beltrami differential which satisfies the
conditions in Theorem 3.2. The main point is to construct an extremal Beltrami
differential which is not of the Teichmüller form or the Teichmüller form while the
associated quadratic differential has infinite norm.
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In [12], H. Tanigawa gives a construction of such an extremal Beltrami differ-
ential. Here we shall give another construction.

Let T (S) be an arbitrary infinite dimensional Teichmüller space of a Riemann
surface S . Suppose that S = ∆/Γ, where Γ is a Fuchsian group acting on ∆.
Then Γ is of the second kind or of the first kind with infinite generators.

First, we assume that Γ is a Fuchsian group of the second kind (finitely or
infinitely generated). Let z0 ∈ ∂∆ be a point of ∂∆ \ ∧(Γ), where ∧(Γ) is the
limit set of Γ. Then z0 is a point on a free side of a fundamental polygon G of Γ.
Take a function ϕ which is holomorphic on C \ {z0} and has a pole of the second
order at the point z0 . We look at its Poincaré series

ψ̃ = Θϕ =
∑

γ∈Γ

ϕ
(

γ(z)
)

γ′(z)2.

It is easy to see that z0 is a pole of ψ̃ of the second order and

∫∫

G

|ψ̃| dx dy = ∞.

Obviously, ψ̃ induces a holomorphic quadratic differential on S , which is
denoted by ψ . Then we have

∫∫

S

|ψ| dx dy = ∞.

Define a Beltrami differential on S :

µ = kψ̃/|ψ|,

where k ∈ (0, 1) is a constant. Since ψ̃ has a pole of the second order on the

boundary of ∆, the Beltrami differential µ̃ = kψ̃/|ψ̃| with respect to Γ is ex-
tremal ([10]). Hence µ is an extremal Beltrami differential on S . By the Hamilton
theorem there is a sequence of quadratic differentials, {ψn} , such that ‖ψn‖ = 1
and

lim
n→∞

∣

∣

∣

∣

∫∫

S

µψn dx dy

∣

∣

∣

∣

= k.

It is easy to see that there is a subsequence of {ψn} which is uniformly convergent
to a holomorphic quadratic differential ψ0 in any compact set of S . Without any
loss of generality we may assume that the subsequence is the sequence {ψn} itself.
Then we have

‖ψn − ψ0‖ 6→ 0 (n→ ∞).
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Otherwise, ‖ψn − ψ0‖ → 0 (n→ ∞) implies ‖ψ0‖ = 1 and

∣

∣

∣

∣

∫∫

S

µψ0 dx dy

∣

∣

∣

∣

= k,

which means µ = eiθkψ̄0/|ψ0| . This is a contradiction with the definition of µ .
Without loss of generality we assume that ‖ψn − ψ0‖ 6= 0 for every integer n .

Define ηn = (ψn−ψ0)/ ‖ψn − ψ0‖ . Then ηn has norm 1 and {ηn} is a degenerate
Hamilton sequence of µ , namely,

lim
n→∞

∣

∣

∣

∣

∫∫

S

µηn dx dy

∣

∣

∣

∣

= k

and ηn locally tends to zero.
Now we get the desired Beltrami differential as follows. We define

µ∗ =

{

µ, in S \ U ;
k′, in U ,

where k′ ∈ (0, 1) is a constant smaller than k and U is a small compact neigh-
bourhood of a point. Obviously, µ∗ is also an extremal Beltrami differential and
{ηn} is also a Hamilton sequence of µ∗ . µ∗ satisfies the conditions in Theorem 3.2.

Now we look at the case where Γ is infinitely generated and of the first kind,
namely, the fundamental polygon of Γ has infinitely many of the vertexes and has
no free side. In this case, we take the point z0 as a limit point of the vertexes of
a fundamental polygon of Γ. We define the quadratic differentials ψ̃ and ψ as
above. By a result in [10], we see that the Beltrami differential kψ̄/|ψ| is extremal
and ‖ψ‖ = ∞ . All of the above arguments hold.

We have proved

Theorem 4.1. In any infinite dimensional Teichmüller space T (S) , there
is a pair of points such that there exist infinitely many of geodesic lines through
them.

5. Problems.

The following problems seem naturally to present themselves:

(i) Does the uniqueness of the extremal differentials in a point [µ] always imply
the uniqueness of the geodesics joining [0] and [µ]?

(ii) Does the uniqueness of the geodesics joining [0] and [µ] always imply the
uniqueness of the extremal differentials in [µ]?
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