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Abstract. Let ®x , be the distortion function for K -quasiconformal maps of B™ into B™,
n > 2. We describe the family J¢, of all differentiable involutions h such that the functional
identity ho®k ,, = @1,k ,oh holds for every K > 0. An infinite sequence of elementary involutions
of J; is explicitly constructed. A basic convergence theorem for Sxn, K >0, n=23,...,
together with some other results for related functions are proved.

0. Introduction

The distortion function ®k ,: [0;1] — [0;1], in the n-dimensional (n > 2)
quasiconformal version of the Schwarz lemma (see [MRV] and [V]), is defined for
K>0,n=2,3,4,...,by ®x,(0) =0, ®x,(1) =1, and

(0.1) Bpen(t) = M (KinMn(t)>

for 0 <t < 1, where K, = K/(=1 and M,, is given by

(0.2) Y (1/t) = wp 1 M, 7" (1),

Here, ~,, denotes the conformal capacity of the Grotzsch condenser in R", w;, _; =

(2/m)" 1w, 1, where w,_; is the (n — 1)-dimensional surface area of the unit
sphere S™~! in R™. Introducing any positive constant multiplier to the for-
mula (0.2), defining M,,, we do not alter ®x,,. Thus, for our convenience, we
normalize w,_1 as above. For n = 2 the function M5 = pu, and

H(VI—12)

(0.3) H(t):%/—(t),
where
/2
= —t?sin®u) "% du
(0.4) (1) /0 (1—t ) od
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is the complete elliptic integral of the first kind. From this several functional
identities follow (see [AVV1] and [V]).

For the higher-dimensional case n > 3 neither such explicit expressions nor
functional identities were known.

The main purpose of this paper is to show how one can obtain: one parameter
family of identities satisfied by ®x,, K > 0, n = 2,3,...; equivalent identities
for M,,, vn, 7, and for 2, when n = 2; and a basic convergence theorem for
®k ., as an application. Our idea can be realized since we know that M, is
differentiable in (0;1) for n =2,3,..., (see [An2)).

The author wishes to thank M. Vuorinen for his assistance in preparing this
material, Ken-ichi Sakan for useful remarks, the referee for helpful comments and
suggestions, and to the Department of Mathematics of the University of Joensuu
for hospitality while working on this paper.

1. Conjugate distortion functions

In the theory of quasiconformal mappings in R™, n = 2,3,..., we are partic-
ularly interested in two rings having extremal properties. The first is the Grotzsch
ring Ra n(s), s > 1, whose complementary components are the closed unit ballB"
and the ray [sej, 00|, where e; is the first unit vector of the rectangular coordinates
axes in R™. The other is the Teichmiiller ring Ry ,(t), t > 0, whose complemen-
tary components are the segment [—ep,0] and the ray [te;,o0]. The conformal
capacities v,(s) and 7,(t) of Rg.n(s) and Rr.,(t), respectively, are decreasing
functions related by the following functional identity

(1.1) Yn(s) = 2" 17, (5% — 1) for s > 1.
(see [G]).

Let . denote the family of all differentiable automorphisms of (0;1), and
I, n=2,3,..., be the set of all involutions h € 5 such that

(1.2) ho®k,=®xkpoh

holds for each K > 0.

Moreover, let @ = (0;1) x (0;1). Then we prove

Theorem 1. Let n = 2,3,..., be fixed. A function h € ¢, if and only if
there is L > 0 such that
(1.3) h(t) = Myt (L /Mn(1))

holds for 0 < t < 1 and L, = L'=1_ Moreover, if (£,1) € Q is an arbitrary
point then there is LS" such that h(£) = 1.
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Proof. (=) Introducing M, = M, o ho M; !, we see that (1.2) with (0.1)
may be written down as

(1.4) Mn(Kin) — K, M, (1)

for 0 <t < oo, K, = K™D K >0 and n =2,3,.... By the definition of
H, , and the regularity of M, (see [An2]), it follows that M,, is differentiable in
0 <t < co. Hence, the well-known Euler identity implies that all the solutions
of (1.4) can be written as

for 0 <t <oo, L, =LY"1Y L>0and n=23,.... Thus
(1.5) h(t) = M, " (Lo /M, (2)).

Let (£,m) € Q be an arbitrary point. Setting L57 = M,,(¢§)M,(n) we see that
M (L8 /M, (€)) = n, so the second part of our theorem follows.

In the case (<) it is evident that each function of the form (1.5) belongs to
A, for n = 2,3, ..., which ends the proof.

Let

(1.6) A = G S,
n=2

We may additionally assume that each function of 77> maps 0 and 1 onto 1
and 0, respectively. A function of 7% class is called a conjugate distortion
function. To justify the name let us consider the family of functions defined as

(1.7) Uk aplv,t]= 1 (Ko‘yﬁ(t)),

for a, 6 € R, f # 0 and K > 0, where v is a differentiable homeomorphism
mapping (0;1) onto (0;00). The family of functions defined by (1.7) forms a
group of automorphisms of (0;1), under composition. With each automorphism
Uk o8]V, -] we associate the automorphism

(1.8) Vi aplvs ] = VK —a,-plv:- ]

The correspondence Wk o glv, -] — Wi , 5[, -] we call a conjugation.
Setting v = M,,, « = 1/(1 —n) and § = 1, into (1.7), we obtain P,
whereas

(1.9) (I);(,n = @?(,—1/(1—71),—1[an ‘]

is a conjugate distortion function.
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For each n =2,3,..., let

(1.10) Fn=|J Pk

Then we have

Theorem 2. Let n = 2,3,... be fixed. Then %) = 7, and %, U J, is a
group with composition.

The basic properties of the conjugate distortion functions we state as

Theorem 3. For each K,L >0, n=2,3,..., we have:
(i) for every fixed L € (0;00) @7, is a decreasing automorphism of (0;1) and
for each t € (0;1) ®7 ,, is a decreasing diffeomorphism of (0;00) onto (0;1);
) ¢>2,n © (b;(,n =Pr/rn;
) Q7,0 Prn = CIDEK’TL;
(iv) Q7 =P1Lno®i,;
) 7 0Pk no®] =Pk n;
) Pio(t) = V112, @5,(t) = (1—t)/(1+1), ®f,(t) = (1 - Vt)/(1+ V1),

etc., 0 <t <1.
Proof. The properties (i), ..., (v) follow from the definition of ®7 , and the

properties of ®g ,,. Since Ma(vV1—12) = pu(V1—1t2) = Z(t)/# (V1 —12) =
1/p(t) then p~'(1/u(t)) = V1 —t2. Making use of (iii) we obtain: ®3,; ®},;
g o5 ete.

The functional identities (1.2) have a natural geometric interpretation. To
this let us consider the mapping

(111) &)K,n(twr) = (q)K,n<t)7q)1/K,n<x))
that maps Q onto itself for each K >0 and n =2,3,.... We have
Crn (8, DL (1) = (Pron(t), P1yicin © L (1))

(1.12) i

= (Pxn(t), @10 (Pron(t)))
foreach 0 <t <1, K,L >0, and n=2,3,.... Thus every curve
(1.13) Tpn={(txz):z=20],0(),0<t<1}, L>0
is the invariant curve under each mapping from .%, , for n = 2,3,.... Moreover,
by Theorem 1, we have
(1.14) Q= U I

L>0

for n=2,3,....

As an immediate consequence of Theorem 1 we have
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Theorem 4. Let n = 2,3,... be fixed. The following identities:
(1) Mn<t)Mn (q)z’n(t)) = Ln;
(i) ¥ (1/)7n (1/ @7, (1) = (wi—1)?/L;
(i) T((1/6)2 = )7, ((1/®5 ()7 — 1) = 720=mw2_ /L
holds for 0 <t < 1 and each L > 0. Moreover, these three identities and the
identity (1.2) are equivalent.
Proof. By (1.9), (0.1) and (1.2) we obtain (i). The identities (ii) and (iii)
follow from (0.2) and (1.1).

In the case of n = 2 we additionally have

Corollary 1. The identity

H o 7 5

1.15 — L= —*2
(1.15) Y

holds for each L > 0, where % is the elliptic integral.

This observation is an immediate consequence of (0.3) and the identity (i)
of Theorem 4. It is worth-while to note that (1.15) generalize the identities of
Landen (cf. [AVV2, p. 6]).

Corollary 2. By Theorem 3 we have: &} ,(t) = ((1 - V) /(1 + \/_))2

DF (1) = ((\/ﬁ_%)/<\/1—“+%))27 ... and, generally, ®3, 5 = @] 05 5,

n=1,2,..., where ®95(t) =2vt/(1+1), (see [V, p. 68]).
Corollary 3. By Theorem 3 and Corollary 2 we have:

(i) setting n = 2, then L = 1 or L = 2 into (1.2) we obtain the well-known
identities (3.4), (3.5), ..., (3.9), presented in [AVV1];

(ii) setting n =2, then L =4 with t = r? into (1.2) we obtain (3.10) of [AVV1];

(iii) the identity (1.7) of [AVV1] follows from (v) of Theorem 3;

(iv) setting n = 2, then L = 1 or L = 2 into (i) of Theorem 4 then, in view
of (0.2), we obtain the identities (5.57) of [V].

Corollary 4. For every K >0 and 0 <t <1, we have
) Pio(t) = /1= Q% ,(1);

(ii) @31{2 (1_(I)K2 )/(1+@K2 )
)‘PZKzt ( (I)KQ(t>) (1+VCI>K2 )
) = (

VI Ora(t) — /2x2(8) )/ (VT + Pra(t) + /4D s(t) ) ;

ik o(t)
etc.

Corollary 5. There exists no L > 0 such that ®7 ,(t) =1—t.
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We recall that an explicit estimate
(1.16) Y < B (1) < AL/ Ko/ K

holds for K > 1, n = 2,3,...,and 0 < t < 1, where K,, = K™D The
constant A, is known only when n = 2, in this case Ay = 4 [LV, p. 62]. Generally,
2e0-76(n=1) < )\ < 2e" 1, for n >3 (see [Anl], [AF] and [V, p. 89]).

Now we prove

Theorem 5. For each L > 1, n = 2,3,..., the following inequalities

ALEn (@7 () < @5 (1) < (P1..(0)"",

1.17
( ) (@in(t)) 1/ Ln < q)l/L ()S)\l 1/L, ((an(t))l/Ln

holds for 0 <t <1, with L, = LY/ (1),

Proof. Using (iv) of Theorem 3, with L = 1, then by the inequality (1.16) we
obtain the second row of (1.17). Since @1/, 0 @7, = ®7% ,,» then the first row

of (1.17) follows, if we apply inequality (1.16) to @;(?n =@y /km-

In the particular case n = 2 we have

Corollary 6. By (vi) of Theorem 3 then by Theorem 5, we have

1—Lq _ 42\L/2 * 2L/2
(1.17) {4 (L—=25)"7 < @ () < (1—17)

(1—=)Ph < @f ) o(t) <4 — )2,
foreach 0 <t<1and L>1.

2. Applications
From (v) of Theorem 3 and (1.16), applied to @,k ,, = @;(?n, we see that

@10 @, ((05.0) ) £ Pt < 05, (N (27,,0) )

holds for every 0 <t <1,n=2,3,..., K >1and L >0, where K,, = K/(»~1)
Let

(2.2) bn[Ka L] (t) - (pz,n (((pz,n(t>)Kn)
and

0.9 BuK. LI(t) = @, (AL (@,,(0)"")
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for K >1, L >0,0<t<1,n=23,...,and K, = K" From the
properties of ®7  and the inequality (1.16), it follows that

24 ba[K, L](1) < q)K,n<t) < ByK, L](t),
24) &5 (BalK, LI(1)) < Bl (1) < 81, (bu[K, LI(1))

holds forall L >0, 0<t<1,n=2,3,...,and K > 1.
Setting n = 2 then L = 2 into the first row of (2.4), we immediately obtain
(vii) of [Z]. Setting n =2 then L =4, we see that

(2.5)

((1+\/E)K—(1—\/E)K (1+\/E)K—21_K(1—\/E)K)2
(L+VEOE +(1-Vt)K (1+VE)E +21-K(1 — 1)K
holds for 0 <t <1 and K > 1. The right-hand inequality is [AVV3, Theorem 5.7].

By Corollary 2 then (2.4), we can improve (2.5) when taking L = 2%, i > 3.
It can be easily checked by computer, which is also useful to illustrate (2.2), (2.3)
and (2.4).

To explain the nature of (2.4) and the idea of the conjugate distortion func-
tions we prove first

)2 < Ppea(t) < (

Lemma. For each K >0 and n=2,3,...,

(2.6) Jlim @7, 0opo®p ,(f) = Pk n(t)
for 0 <t <1, where ¢: [0;1] — [0;1] is any function such that

/
(2.7) lim 2890 _ e
t—ot logt

Proof. Let K > 0, n = 2,3,... be arbitrary. It follows from (2.7) and [P,
Theorem 3.1] that for 0 <¢ <1,

Llim @Lm oo (PL,n(t) - q)l/K,n(t>'

Hence, and by Theorem 3, we get

Py op0®y (1) =27, 0(Prnopo®ry)o®] ,(t)
— @] 0@y /g, 0 q)in(t) = g (1) as L — oo

for 0 <t <1, which ends the proof.

Now we can prove
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Theorem 6. Foreach K > 1, n=2,3,... and 0 <t <1,

)8 My — o b [ K, L] (t) = imp oo Bu|K, L](t) = @ (),
B8\ i @, (0K, LI(1)) = limy e @, (BA[K, L](1) = @, (1),

Moreover, b, is an increasing function of L whereas B, is a decreasing function
of L € (0,00).

Proof. Setting 1 (t) = t5 and a(t) = ML "EntEn | we have

o logwi(t) o logea(t)

= =K, K, = KY(=1,
t—0+ logt t—0+ logt ’

This, in view of the Lemma and (iii) of Theorem 3 then by (2.2) and (2.3), gives
(2.8). The second statement is derived from parallel properties of the distortion
function ®x .

By Theorem 3 and Theorem 6 it follows that the sequences bo[K,2¢] and
Bs[K,2Y, i=1,2,..., of elementary functions converge to ®x o uniformly. This
gives a new, pure numerical, method to estimate ®x > and any functional of it.

It seems worth-while to note that the basic approximation Theorem 6 was
previously a conjecture, cf. [Z]. By a significant result obtained by D. Partyka [P,
Theorem 3.1], relevant to this matter, it was possible to prove (2.8).

Forevery 0<t<1,n=2,3,...,and K,L >0, set

(2.9) MK, L](t) = 2;’7"((2.

It satisfies the following functional identities

(2.10) An K, L) (@ar, () = M [KM, LM](t)
and
(2.11) Al L] (B3, (1)) = 1/A[M/L, M/K](2).

By Theorem 3, Corollary 6 and Corollary 4, the following inequalities

W[ M0 e BulK M)

(2.12) N ONTATIIT) = @7, (Ba[L, M](1))

hold for every 0 <t <1, K,L >1 and each M > 0.
In connection with study of quasisymmetric functions of the real line [LV] and
the unit circle [K] the distortion function A\(K') introduced by Lehto, Virtanen and
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Viiséld (see [LV, (6.4), p. 81]), has found applications. A generalization of this,
introduced by Agard [Ag], namely A(K,t), has been studied by Vamanamurthy
and Vuorinen [VV].
We have )
(alK, K)(1))° = A(K, 1)
and ,
(el K)(1/v3))* = A(K).
Setting in (2.12) M =4 and L = K, we get

1/ =) (1 + V5K — (1 - vD)K]*
8[(1+ VE)2K + (1 — Vit )?K]

U0 ) [0 D) 2K R
=l VR AR VIR

By (2.12) and Theorem 6 we see that As[K, L](t) can be approximated by elemen-
tary functions.

Other functionals of ® g , and ®7 , , with applications, will be considered in
an additional paper. 7

A sharp estimation for maxp<¢<1 [q)Kg(t) — t] , K > 1, has been obtained by
the author [Z, Theorem 2|. It says that for each K >1,

< MK, 1)
(2.13)

1 41—K
1— JFT 1< K < K,
(2.14) Orgagcl [@K’g(t) — t} < | gk
irar ek

where K| satisfies the equation (1 4 417)2 = K42-K 2481 < K < 2.482.
Taking advantage of (2.4) we improve (2.14) obtaining

Theorem 7. For each K > 1,

(215) orgfgl [@K’Q(t) - t} S BQ[K, 4] (t()) — to

where tq is such that Bj[K,4](ty) = 1.

Proof. At first we show that Bs[K,4] is concave. To this end let us differen-
tiate Bo[K,4](t) with respect to ¢, 0 <t < 1, we obtain

(1—¢)ft
[(1 + \/%)K + 21—K(1 _ \/E)K]
112K - vB/ 0+ VD))"

X_

VEL 421K (1= Vi) /(1 + VD)™

BYK, 4](t) = K237F X

2
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Introducing o = (1 — v/)/(1+ V/t), and considering

14z 120 KK

= 1. 112 KK O0<z<l1

/()

we can see that

[In f(z)]" =

2 1-K _K—1 2
1—x2_K2 x 1—41_K3U2KZO

forO<xz<1land K>1.
We shall prove that

(2.16) 1 — 477 Fg2K > gl 7K K1 —2?)  for0<a2<1 and K >1.

Note, that for K = 1 the inequality attains the equality sign. Because

0 1-K, 2K T2 €z
— — < < >
(91— K<1 4 x )— 8(2) 11’12 >O fOI'O X 1, K 1
and
0 1-K, K-—1 2 L ! 2 T
= — — g — j— — <

holds for 0 < x < 2/e and K > 1, then (2.16) remains true for 0 < x < 2/e and
K >1.
Let 2/e <2 <1 and 1< K <3/2. Hence

T\ 2K 8 o\ K1 8 ,sx\K-1
3(3) zanl(z) zas(3)

(5" (-5)=()" a-

v

and

(2.17) —lng>1+Klng = (K+1)lng<—1.

Thus 9 — 92 >0 for 2/e <2 <1 and 1 < K < 3/2. By this we see that (2.16)
holds for 2/e <z <1 and 1 < K <3/2.
Suppose now that K > 3/2 and 0 < x < 1. Then

T 1 1
(2.18) 1+Kln§§1+Kln§§1+ln23T<0

and thus 0y < 0 for K > 3/2. In [Z, p. 7] it is proved that the first ratio
of BY[K,4](t) is decreasing. This fact, with our considerations on f, shows that
Bs[K, 4] is concave, and our proof is complete.
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The theory of the conjugate distortion functions presented in this paper afford
us to state the following;:

(i) b,[K, L] and B,[K, L] are concave as functions of variable ¢t € [0;1] for every
K>1,L>0and n=2,3,...;

(ii) b,[K, L] is increasing whereas B, [K, L] is decreasing as functions L, L > 0
for every K > 1 and n=2,3,....

The convexity and concavity of the conjugate distortion functions seems to
be an interesting topic for investigation on special functions.
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