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Abstract. Let ΦK,n be the distortion function for K -quasiconformal maps of Bn into Bn ,
n ≥ 2 . We describe the family Hn of all differentiable involutions h such that the functional
identity h◦ΦK,n = Φ1/K,n◦h holds for every K > 0 . An infinite sequence of elementary involutions
of H2 is explicitly constructed. A basic convergence theorem for ΦK,n , K > 0 , n = 2, 3, . . . ,
together with some other results for related functions are proved.

0. Introduction

The distortion function ΦK,n: [0; 1] → [0; 1] , in the n -dimensional (n ≥ 2)
quasiconformal version of the Schwarz lemma (see [MRV] and [V]), is defined for
K > 0, n = 2, 3, 4, . . ., by ΦK,n(0) = 0, ΦK,n(1) = 1, and

(0.1) ΦK,n(t) = M−1
n

( 1

Kn
Mn(t)

)

for 0 < t < 1, where Kn = K1/(n−1) and Mn is given by

(0.2) γn(1/t) = ω◦
n−1M

1−n
n (t).

Here, γn denotes the conformal capacity of the Grötzsch condenser in Rn , ω◦
n−1 =

(2/π)n−1ωn−1 , where ωn−1 is the (n − 1)-dimensional surface area of the unit
sphere Sn−1 in Rn . Introducing any positive constant multiplier to the for-
mula (0.2), defining Mn , we do not alter ΦK,n . Thus, for our convenience, we
normalize ωn−1 as above. For n = 2 the function M2 = µ , and

(0.3) µ(t) =
K (

√
1 − t2 )

K (t)
,

where

(0.4) K (t) =

∫ π/2

0

(1 − t2 sin2 u)−1/2 du
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is the complete elliptic integral of the first kind. From this several functional
identities follow (see [AVV1] and [V]).

For the higher-dimensional case n ≥ 3 neither such explicit expressions nor
functional identities were known.

The main purpose of this paper is to show how one can obtain: one parameter
family of identities satisfied by ΦK,n , K > 0, n = 2, 3, . . .; equivalent identities
for Mn , γn , τn and for K , when n = 2; and a basic convergence theorem for
ΦK,n , as an application. Our idea can be realized since we know that Mn is
differentiable in (0; 1) for n = 2, 3, . . ., (see [An2]).

The author wishes to thank M. Vuorinen for his assistance in preparing this
material, Ken-ichi Sakan for useful remarks, the referee for helpful comments and
suggestions, and to the Department of Mathematics of the University of Joensuu
for hospitality while working on this paper.

1. Conjugate distortion functions

In the theory of quasiconformal mappings in Rn , n = 2, 3, . . ., we are partic-
ularly interested in two rings having extremal properties. The first is the Grötzsch
ring RG,n(s) , s > 1, whose complementary components are the closed unit ballB

n

and the ray [se1,∞] , where e1 is the first unit vector of the rectangular coordinates
axes in Rn . The other is the Teichmüller ring RT,n(t) , t > 0, whose complemen-
tary components are the segment [−e1, 0] and the ray [te1,∞] . The conformal
capacities γn(s) and τn(t) of RG,n(s) and RT,n(t) , respectively, are decreasing
functions related by the following functional identity

(1.1) γn(s) = 2n−1τn(s2 − 1) for s > 1.

(see [G]).
Let H denote the family of all differentiable automorphisms of (0; 1), and

Hn , n = 2, 3, . . ., be the set of all involutions h ∈ H such that

(1.2) h ◦ ΦK,n = Φ1/K,n ◦ h

holds for each K > 0.
Moreover, let Q = (0; 1) × (0; 1). Then we prove

Theorem 1. Let n = 2, 3, . . ., be fixed. A function h ∈ Hn if and only if
there is L > 0 such that

(1.3) h(t) = M−1
n

(

Ln/Mn(t)
)

holds for 0 < t < 1 and Ln = L1/(n−1) . Moreover, if (ξ, η) ∈ Q is an arbitrary
point then there is Lξη

n such that h(ξ) = η .
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Proof. (⇒) Introducing M̃n = Mn ◦ h ◦ M−1
n , we see that (1.2) with (0.1)

may be written down as

(1.4) M̃n

( t

Kn

)

= KnM̃n(t)

for 0 < t < ∞ , Kn = K1/(n−1) , K > 0 and n = 2, 3, . . .. By the definition of
Hn , and the regularity of Mn (see [An2]), it follows that M̃n is differentiable in
0 < t < ∞ . Hence, the well-known Euler identity implies that all the solutions
of (1.4) can be written as

M̃n(t) =
Ln

t

for 0 < t < ∞ , Ln = L1/(n−1) , L > 0 and n = 2, 3, . . .. Thus

(1.5) h(t) = M−1
n

(

Ln/Mn(t)
)

.

Let (ξ, η) ∈ Q be an arbitrary point. Setting Lξη
n = Mn(ξ)Mn(η) we see that

M−1
n

(

Lξη
n /Mn(ξ)

)

= η , so the second part of our theorem follows.

In the case (⇐) it is evident that each function of the form (1.5) belongs to
Hn for n = 2, 3, . . ., which ends the proof.

Let

(1.6) H
∞ =

∞
⋃

n=2

Hn.

We may additionally assume that each function of H ∞ maps 0 and 1 onto 1
and 0, respectively. A function of H ∞ class is called a conjugate distortion
function. To justify the name let us consider the family of functions defined as

(1.7) ΨK,α,β[ν, t] = ν−1
(

Kανβ(t)
)

,

for α, β ∈ R , β 6= 0 and K > 0, where ν is a differentiable homeomorphism
mapping (0; 1) onto (0;∞) . The family of functions defined by (1.7) forms a
group of automorphisms of (0;1), under composition. With each automorphism
ΨK,α,β[ν, · ] we associate the automorphism

(1.8) Ψ∗
K,α,β[ν, · ] = ΨK,−α,−β[ν, · ].

The correspondence ΨK,α,β[ν, · ] → Ψ∗
K,α,β[ν, · ] we call a conjugation.

Setting ν = Mn , α = 1/(1 − n) and β = 1, into (1.7), we obtain ΦK,n ,
whereas

(1.9) Φ∗
K,n := Ψ∗

K,−1/(1−n),−1[Mn, · ]

is a conjugate distortion function.
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For each n = 2, 3, . . ., let

(1.10) Fn =
⋃

K>0

ΦK,n.

Then we have

Theorem 2. Let n = 2, 3, . . . be fixed. Then F ∗
n = Hn and Fn ∪ Hn is a

group with composition.

The basic properties of the conjugate distortion functions we state as

Theorem 3. For each K, L > 0 , n = 2, 3, . . ., we have:

(i) for every fixed L ∈ (0;∞) Φ∗
L,n is a decreasing automorphism of (0; 1) and

for each t ∈ (0; 1) Φ∗
L,n is a decreasing diffeomorphism of (0;∞) onto (0; 1) ;

(ii) Φ∗
L,n ◦ Φ∗

K,n = ΦK/L,n ;

(iii) Φ∗
L,n ◦ ΦK,n = Φ∗

LK,n ;

(iv) Φ∗
L,n = Φ1/L,n ◦ Φ∗

1,n ;

(v) Φ∗
L,n ◦ ΦK,n ◦ Φ∗

L,n = Φ1/K,n ;

(vi) Φ∗
1,2(t) =

√
1 − t2 , Φ∗

2,2(t) = (1 − t)/(1 + t) , Φ∗
4,2(t) = (1 −

√
t )/(1 +

√
t )2 ,

etc., 0 ≤ t ≤ 1 .

Proof. The properties (i), . . . , (v) follow from the definition of Φ∗
L,n and the

properties of ΦK,n . Since M2(
√

1 − t2 ) = µ(
√

1 − t2 ) = K (t)/K (
√

1 − t2 ) =
1/µ(t) then µ−1

(

1/µ(t)
)

=
√

1 − t2 . Making use of (iii) we obtain: Φ∗
2,2 ; Φ∗

4,2 ;
Φ∗

8,2 ; etc.

The functional identities (1.2) have a natural geometric interpretation. To
this let us consider the mapping

(1.11) Φ̃K,n(t, x) =
(

ΦK,n(t), Φ1/K,n(x)
)

that maps Q onto itself for each K > 0 and n = 2, 3, . . .. We have

(1.12)
Φ̃K,n

(

t, Φ∗
L,n(t)

)

=
(

ΦK,n(t), Φ1/K,n ◦ Φ∗
L,n(t)

)

=
(

ΦK,n(t), Φ∗
L,n

(

ΦK,n(t)
))

for each 0 ≤ t ≤ 1, K, L > 0, and n = 2, 3, . . .. Thus every curve

(1.13) ΓL,n =
{

(t, x) : x = Φ∗
L,n(t), 0 < t < 1

}

, L > 0

is the invariant curve under each mapping from Fn , for n = 2, 3, . . .. Moreover,
by Theorem 1, we have

(1.14) Q =
⋃

L>0

ΓL,n

for n = 2, 3, . . ..
As an immediate consequence of Theorem 1 we have
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Theorem 4. Let n = 2, 3, . . . be fixed. The following identities:

(i) Mn(t)Mn

(

Φ∗
L,n(t)

)

= Ln ;

(ii) γn(1/t)γn

(

1/Φ∗
L,n(t)

)

= (ω◦
n−1)2/L ;

(iii) τ
(

(1/t)2 − 1
)

τn

((

1/Φ∗
L,n(t)

)2 − 1
)

= π2(1−n)ω2
n−1/L

holds for 0 < t < 1 and each L > 0 . Moreover, these three identities and the
identity (1.2) are equivalent.

Proof. By (1.9), (0.1) and (1.2) we obtain (i). The identities (ii) and (iii)
follow from (0.2) and (1.1).

In the case of n = 2 we additionally have

Corollary 1. The identity

(1.15) µ = L
K ◦ Φ∗

L,2

K ◦ ΦL,2

holds for each L > 0 , where K is the elliptic integral.

This observation is an immediate consequence of (0.3) and the identity (i)
of Theorem 4. It is worth-while to note that (1.15) generalize the identities of
Landen (cf. [AVV2, p. 6]).

Corollary 2. By Theorem 3 we have: Φ∗
4,2(t) =

(

(1 −
√

t )/(1 +
√

t )
)2

,

Φ∗
8,2(t) =

(

(
√

1 + t− 4
√

t )/(
√

1 + t+ 4
√

t )
)2

, . . . and, generally, Φ∗
2n,2 = Φ∗

1,2◦Φn
2,2 ,

n = 1, 2, . . ., where Φ2,2(t) = 2
√

t/(1 + t) , (see [V, p. 68]).

Corollary 3. By Theorem 3 and Corollary 2 we have:

(i) setting n = 2 , then L = 1 or L = 2 into (1.2) we obtain the well-known
identities (3.4), (3.5), . . ., (3.9), presented in [AVV1];

(ii) setting n = 2 , then L = 4 with t = r2 into (1.2) we obtain (3.10) of [AVV1];

(iii) the identity (1.7) of [AVV1] follows from (v) of Theorem 3;

(iv) setting n = 2 , then L = 1 or L = 2 into (i) of Theorem 4 then, in view
of (0.2), we obtain the identities (5.57) of [V].

Corollary 4. For every K > 0 and 0 ≤ t ≤ 1 , we have

(i) Φ∗
K,2(t) =

√

1 − Φ2
K,2(t) ;

(ii) Φ∗
2K,2(t) =

(

1 − ΦK,2(t)
)

/
(

1 + ΦK,2(t)
)

;

(iii) Φ∗
4K,2(t) =

(

1 −
√

ΦK,2(t)
)2

/
(

1 +
√

ΦK,2(t)
)2

;

(iv) Φ∗
8K,2(t) =

(√

1 + ΦK,2(t) − 4
√

4ΦK,2(t)
)2

/
(√

1 + ΦK,2(t) + 4
√

4ΦK2(t)
)

;

etc.

Corollary 5. There exists no L > 0 such that Φ∗
L,2(t) = 1 − t .



98 J. Zaja̧c

We recall that an explicit estimate

(1.16) t1/Kn ≤ ΦK,n(t) ≤ λ1−1/Kn

n t1/Kn

holds for K ≥ 1, n = 2, 3, . . ., and 0 ≤ t ≤ 1, where Kn = K1/(n−1) . The
constant λn is known only when n = 2, in this case λ2 = 4 [LV, p. 62]. Generally,
2e0.76(n−1) ≤ λn ≤ 2en−1 , for n ≥ 3 (see [An1], [AF] and [V, p. 89]).

Now we prove

Theorem 5. For each L ≥ 1 , n = 2, 3, . . ., the following inequalities

(1.17)







λ1−Ln

n

(

Φ∗
1,n(t)

)Ln ≤ Φ∗
L,n(t) ≤

(

Φ∗
1,n(t)

)Ln

,
(

Φ∗
1,n(t)

)1/Ln ≤ Φ∗
1/L,n(t) ≤ λ1−1/Ln

n (Φ∗
1,n(t)

)1/Ln

holds for 0 ≤ t ≤ 1 , with Ln = L1/(n−1) .

Proof. Using (iv) of Theorem 3, with L = 1, then by the inequality (1.16) we
obtain the second row of (1.17). Since Φ1/K,n ◦ Φ∗

1,n = Φ∗
K,n , then the first row

of (1.17) follows, if we apply inequality (1.16) to Φ−1
K,n = Φ1/K,n .

In the particular case n = 2 we have

Corollary 6. By (vi) of Theorem 3 then by Theorem 5, we have

(1.17′)

{

41−L(1 − t2)L/2 ≤ Φ∗
L,2(t) ≤ (1 − t2)L/2,

(1 − t2)1/2L ≤ Φ∗
1/L,2(t) ≤ 41−1/L(1 − t2)1/2L,

for each 0 ≤ t ≤ 1 and L ≥ 1 .

2. Applications

From (v) of Theorem 3 and (1.16), applied to Φ1/K,n = Φ−1
K,n , we see that

(2.1) Φ∗
L,n

(

(

Φ∗
L,n(t)

)Kn

)

≤ ΦK,n(t) ≤ Φ∗
L,n

(

λ1−Kn

n

(

Φ∗
L,n(t)

)Kn

)

holds for every 0 ≤ t ≤ 1, n = 2, 3, . . ., K ≥ 1 and L > 0, where Kn = K1/(n−1) .
Let

(2.2) bn[K, L](t) = Φ∗
L,n

(

(

Φ∗
L,n(t)

)Kn

)

and

(2.3) Bn[K, L](t) = Φ∗
L,n

(

λ1−Kn

n

(

Φ∗
L,n(t)

)Kn

)
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for K ≥ 1, L > 0, 0 ≤ t ≤ 1, n = 2, 3, . . ., and Kn = K1/(n−1) . From the
properties of Φ∗

L,n and the inequality (1.16), it follows that

(2.4)

{

bn[K, L](t) ≤ ΦK,n(t) ≤ Bn[K, L](t),

Φ∗
1,n(Bn[K, L](t)) ≤ Φ∗

K,n(t) ≤ Φ∗
1,n(bn[K, L](t))

holds for all L > 0, 0 ≤ t ≤ 1, n = 2, 3, . . ., and K ≥ 1.
Setting n = 2 then L = 2 into the first row of (2.4), we immediately obtain

(vii) of [Z]. Setting n = 2 then L = 4, we see that
(2.5)

((1 +
√

t )K − (1 −
√

t )K

(1 +
√

t )K + (1 −
√

t )K

)2

≤ ΦK,2(t) ≤
((1 +

√
t )K − 21−K(1 −

√
t )K

(1 +
√

t )K + 21−K(1 −
√

t )K

)2

holds for 0 ≤ t ≤ 1 and K ≥ 1. The right-hand inequality is [AVV3, Theorem 5.7].
By Corollary 2 then (2.4), we can improve (2.5) when taking L = 2i , i ≥ 3.

It can be easily checked by computer, which is also useful to illustrate (2.2), (2.3)
and (2.4).

To explain the nature of (2.4) and the idea of the conjugate distortion func-
tions we prove first

Lemma. For each K > 0 and n = 2, 3, . . .,

(2.6) lim
L→∞

Φ∗
L,n ◦ ϕ ◦ Φ∗

L,n(t) = ΦK,n(t)

for 0 ≤ t ≤ 1 , where ϕ: [0; 1] → [0; 1] is any function such that

(2.7) lim
t→0+

log ϕ(t)

log t
= Kn.

Proof. Let K > 0, n = 2, 3, . . . be arbitrary. It follows from (2.7) and [P,
Theorem 3.1] that for 0 ≤ t ≤ 1,

lim
L→∞

ΦL,n ◦ ϕ ◦ ΦL,n(t) = Φ1/K,n(t).

Hence, and by Theorem 3, we get

Φ∗
L,n ◦ ϕ ◦ Φ∗

L,n(t) = Φ∗
1,n ◦ (ΦL,n ◦ ϕ ◦ ΦL,n) ◦ Φ∗

1,n(t)

→ Φ∗
1,n ◦ Φ1/K,n ◦ Φ∗

1,n(t) = ΦK,n(t) as L → ∞

for 0 ≤ t ≤ 1, which ends the proof.

Now we can prove
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Theorem 6. For each K ≥ 1 , n = 2, 3, . . . and 0 ≤ t ≤ 1 ,

(2.8)

{

limL→∞ bn[K, L](t) = limL→∞ Bn[K, L](t) = ΦK,n(t),
limL→∞ Φ∗

1,n(bn[K, L](t)) = limL→∞ Φ∗
1,n(Bn[K, L](t)) = Φ∗

K,n(t).

Moreover, bn is an increasing function of L whereas Bn is a decreasing function
of L ∈ (0,∞) .

Proof. Setting ϕ1(t) = tKn and ϕ2(t) = λ1−Kn

n tKn , we have

lim
t→0+

log ϕ1(t)

log t
= lim

t→0+

log ϕ2(t)

log t
= Kn, Kn = K1/(n−1).

This, in view of the Lemma and (iii) of Theorem 3 then by (2.2) and (2.3), gives
(2.8). The second statement is derived from parallel properties of the distortion
function ΦK,n .

By Theorem 3 and Theorem 6 it follows that the sequences b2[K, 2i] and
B2[K, 2i] , i = 1, 2, . . ., of elementary functions converge to ΦK,2 uniformly. This
gives a new, pure numerical, method to estimate ΦK,2 and any functional of it.

It seems worth-while to note that the basic approximation Theorem 6 was
previously a conjecture, cf. [Z]. By a significant result obtained by D. Partyka [P,
Theorem 3.1], relevant to this matter, it was possible to prove (2.8).

For every 0 ≤ t < 1, n = 2, 3, . . ., and K, L > 0, set

(2.9) λn[K, L](t) =
ΦK,n(t)

Φ∗
L,n(t)

.

It satisfies the following functional identities

(2.10) λn[K, L]
(

ΦM,n(t)
)

= λn[KM, LM ](t)

and

(2.11) λn[K, L]
(

Φ∗
M,n(t)

)

= 1/λn[M/L, M/K](t).

By Theorem 3, Corollary 6 and Corollary 4, the following inequalities

(2.12)
bn[K, M ](t)

Φ∗
1,n

(

bn[L, M ](t)
) ≤ λn[K, L](t) ≤ Bn[K, M ](t)

Φ∗
1,n

(

Bn[L, M ](t)
)

hold for every 0 ≤ t < 1, K, L ≥ 1 and each M > 0.
In connection with study of quasisymmetric functions of the real line [LV] and

the unit circle [K] the distortion function λ(K) introduced by Lehto, Virtanen and
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Väisälä (see [LV, (6.4), p. 81]), has found applications. A generalization of this,
introduced by Agard [Ag], namely λ(K, t) , has been studied by Vamanamurthy
and Vuorinen [VV].

We have
(

λ2[K, K](t)
)2

= λ(K, t)

and
(

λ2[K, K](1/
√

2 )
)2

= λ(K).

Setting in (2.12) M = 4 and L = K , we get

(2.13)

(

1/(1 − t)
)K[

(1 +
√

t )K − (1 −
√

t )K
]4

8
[

(1 +
√

t )2K + (1 −
√

t )2K
] ≤ λ(K, t)

≤
(

2/(1 − t)
)K[

(1 +
√

t )K − 21−K(1 −
√

t )K
]4

16
[

(1 +
√

t )2K + 41−K(1 −
√

t )2K
] .

By (2.12) and Theorem 6 we see that λ2[K, L](t) can be approximated by elemen-
tary functions.

Other functionals of ΦK,n and Φ∗
L,n , with applications, will be considered in

an additional paper.
A sharp estimation for max0≤t≤1

[

ΦK,2(t)− t
]

, K ≥ 1, has been obtained by
the author [Z, Theorem 2]. It says that for each K ≥ 1,

(2.14) max
0≤t≤1

[

ΦK,2(t) − t
]

≤















1 − 1 + 41−K

2K
, 1 ≤ K ≤ K0,

1 − 41−K

1 + 41−K
, K > K0,

where K0 satisfies the equation (1 + 41−K)2 = K42−K , 2.481 < K0 < 2.482.
Taking advantage of (2.4) we improve (2.14) obtaining

Theorem 7. For each K ≥ 1 ,

(2.15) max
0≤t≤1

[

ΦK,2(t) − t
]

≤ B2[K, 4](t0) − t0

where t0 is such that B′
2[K, 4](t0) = 1 .

Proof. At first we show that B2[K, 4] is concave. To this end let us differen-
tiate B2[K, 4](t) with respect to t , 0 < t < 1, we obtain

B′
2[K, 4](t) = K23−K (1 − t)K−1

[

(1 +
√

t )K + 21−K(1 −
√

t )K
]2×

× 1√
t

1 − 21−K
(

(1 −
√

t)/(1 +
√

t)
)K

1 + 21−K
(

(1 −
√

t)/(1 +
√

t)
)K

.
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Introducing x = (1 −
√

t )/(1 +
√

t ) , and considering

f(x) =
1 + x

1 − x

1 − 21−KxK

1 + 21−KxK
, 0 < x < 1

we can see that

[

ln f(x)
]′

=
2

1 − x2
− K21−KxK−1 2

1 − 41−Kx2K
≥ 0

for 0 < x < 1 and K ≥ 1.
We shall prove that

(2.16) 1 − 41−Kx2K ≥ K21−KxK−1(1 − x2) for 0 ≤ x ≤ 1 and K ≥ 1.

Note, that for K = 1 the inequality attains the equality sign. Because

∂1 =
∂

∂K
(1 − 41−Kx2K) = −8

(x

2

)2K

ln
x

2
> 0 for 0 ≤ x ≤ 1, K ≥ 1

and

∂2 =
∂

∂K

(

K21−KxK−1(1 − x2)
)

=
(x

2

)K−1

(1 − x2)
(

1 + K ln
x

2

)

≤ 0

holds for 0 < x < 2/e and K ≥ 1, then (2.16) remains true for 0 ≤ x ≤ 2/e and
K ≥ 1.

Let 2/e ≤ x ≤ 1 and 1 ≤ K ≤ 3/2. Hence

8
(x

2

)2K

≥ 8

eK+1

(x

2

)K−1

≥ 8

e5/2

(x

2

)K−1

≥
(x

2

)K−1(

1 − 4

e2

)

≥
(x

2

)K−1

(1 − x2)

and

(2.17) − ln
x

2
> 1 + K ln

x

2
⇔ (K + 1) ln

x

2
< −1.

Thus ∂1 − ∂2 ≥ 0 for 2/e ≤ x ≤ 1 and 1 ≤ K ≤ 3/2. By this we see that (2.16)
holds for 2/e ≤ x ≤ 1 and 1 ≤ K ≤ 3/2.

Suppose now that K > 3/2 and 0 ≤ x ≤ 1. Then

(2.18) 1 + K ln
x

2
≤ 1 + K ln

1

2
≤ 1 + ln

1

23/2
< 0

and thus ∂2 < 0 for K ≥ 3/2. In [Z, p. 7] it is proved that the first ratio
of B′

2[K, 4](t) is decreasing. This fact, with our considerations on f , shows that
B2[K, 4] is concave, and our proof is complete.
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The theory of the conjugate distortion functions presented in this paper afford
us to state the following:

(i) bn[K, L] and Bn[K, L] are concave as functions of variable t ∈ [0; 1] for every
K > 1, L > 0 and n = 2, 3, . . .;

(ii) bn[K, L] is increasing whereas Bn[K, L] is decreasing as functions L , L > 0
for every K > 1 and n = 2, 3, . . ..

The convexity and concavity of the conjugate distortion functions seems to
be an interesting topic for investigation on special functions.
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