
Annales Academiæ Scientiarum Fennicæ
Series A. I. Mathematica
Volumen 18, 1993, 77–91

NULL SETS FOR DOUBLING AND

DYADIC DOUBLING MEASURES

Jang-Mei Wu

University of Illinois at Urbana-Champaign, Department of Mathematics

273 Altgeld Hall, MC-382, 1409 West Green Street, Urbana, IL 61801, U.S.A.

Abstract. In this note, we study sets on the real line which are null with respect to all
doubling measures on R , or with respect to all dyadic doubling measures on R . We give some
sufficient conditions for the former, a test for the latter, and some examples.

Our work is motivated by a characterization of dyadic doubling measures by
Fefferman, Kenig and Pipher [5], and by a result of Martio [8] on porous sets and
sets of total A -harmonic measure zero for certain class of nonlinear A -operators.

A measure µ on R is said to have the doubling property with constant λ if,
whenever I and J are two neighboring intervals of same length then µ(I) ≤ λµ(J) ;
denote by D(λ) the collection of all doubling measures with constant λ , and
D = ∪λ≥1D(λ) . A measure µ on R has the dyadic doubling property with
constant λ if µ(I) ≤ λµ(J) whenever I and J are two dyadic neighboring intervals
of same length and I ∪ J is also a dyadic interval; denote by Dd(λ) and Dd the
corresponding collections of dyadic doubling measures.

Given {an} , 0 < αn < 1, a set E ⊆ R is called {αn} -porous if there exists
a sequence of coverings En = {En,j} of E , by intervals with mutually disjoint
interiors, so that each En,j \ E contains an interval Jn,j of length ≥ αn|En,j| ,
∪En+1

En+1,k is contained in ∪En
(En,j \ Jn,j) and sup |En,j| → 0 as n → ∞ .

The Cantor ternary set is { 1
3} -porous. The porous sets studied by Martio [8] are

{α} -porous for some α > 0.

Theorem 1. If 0 < αn < 1 ,
∑∞

1 αK
n = ∞ for all K ≥ 1 , and E is

{αn} -prorous, then E is null for all doubling measures on R .

Corollary. There exist sets of Hausdorff dimension one which are null for all

doubling measures.

The condition given in Theorem 1 cannot be improved:

Theorem 2. If 0 < αn < 1
4 is a decreasing sequence satisfying

∑

n αK
n < ∞

for some K ≥ 1 , then there exists a perfect set which is {αn} -porous, but carries

a positive measure for some µ ∈ D .
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Let E be a closed set in [0, 1] and λ > 1. In Theorem 3, we give a determin-
istic procedure of testing whether E is Dd(λ)-null. In this process, an optimal
measure µE,λ among Dd(λ) is selected for E . The precise statement is given in
Section 2.

Denote by N the collection of null sets for doubling measures
{

E : µ(E) = 0

for all µ ∈ D
}

, and Nd its dyadic counterpart
{

E : µ(E) = 0 for all µ ∈ Dd

}

.
Clearly Nd ⊆ N and N is translation invariant. The assertion that Nd 6= N

is not suprising, however it requires a lot of work.

Theorem 4. There exists a perfect set S ⊆ [0, 1] which is in N \ Nd . And

corresponding to this S , there exists a set T of dimension one, so that t+S ∈ Nd

for each t ∈ T .

It would be interesting to know whether a pair of sets S , T can be chosen to
satisfy length (T ) > 0 in addition to the properties in Theorem 4.

Theorem 5. Let t be any number whose binary expansion has infinitely

many zeros and infinitely many ones. Then there exists a perfect set St so that

St ∈ N \ Nd but t + St ∈ Nd .

Finally, in Section 4, we shall comment on relations betwen sets in N and
null sets of the harmonic measures with respect to the p-Laplacians in the upper
half plane.

The author would like to thank A. Hinkkanen for his joint contribution on
Theorem 1, and R. Kaufman for many conversations.

1. Proofs of Theorems 1 and 2

We first state a useful lemma.

Lemma 1. Let µ be a dyadic doubling measure on [0, 1] and I be any

subinterval. Then there exists K > 1 depending on the dyadic doubling constant

λ only, so that

4|I|1/Kµ
(

[0, 1]
)

≥ µ(I) ≥ 1
4
|I|Kµ

(

[0, 1]
)

.

Proof. Let I1 and I2 be two adjacent dyadic closed intervals in [0, 1] such
that I ⊆ I1 ∪ I2 and 2|I| ≥ |I1| + |I2| . Then

µ(I) ≤ µ(I1) + µ(I2)

≤
(( λ

1 + λ

)− log2 |I1|

+
( λ

1 + λ

)− log2 |I2|)

µ
(

[0, 1]
)

≤ 2
(

2|I|
)log2((1+λ)/λ)

µ
(

[0, 1]
)

≤ 4|I|log2((1+λ)/λ)µ
(

[0, 1]
)

.

If
|I| ≥ 1 − 16−(log2((1+λ)/λ))−1 ≡ A,
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then
µ
(

[0, 1] \ I
)

≤ 8
(

1 − |I|
)log2((1+λ)/λ)

µ
(

[0, 1]
)

≤ 1
2
µ
(

[0, 1]
)

.

Hence µ(I) ≥ 1
2
µ
(

[0, 1]
)

. If |I| < A , let J be the largest dyadic interval contained
in I . Therefore |J | ≥ |I|/4 and

µ(I) ≥ µ(J) ≥
( 1

1 + λ

)− log2 |J|

µ
(

[0, 1]
)

≥
(

|I|/4
)log2(1+λ)

µ
(

[0, 1]
)

≥ µ
(

[0, 1]
)

|I|(log2(1+λ))(1−2(log2 A)−1).

Proof of Theorem 1. Assume E ⊆ [0, 1] , and let En = {En,j} be the coverings
of E and {Jn,j} be the subintervals of En,j \ E in defining {αn} -porosity. Let
µ ∈ D , it follows from Lemma 1 that µ(Jn,j) ≥ 1

4
αK

n µ(En,j) for some K ≥ 1
depending on µ only. Thus

µ(En,j \ Jn,j) ≤ (1 − 1
4αK

n )µ(En,j).

Summing over j , we obtain

∑

k

µ(En+1,k) ≤ (1 − 1
4αK

n )
∑

j

µ(En,j).

Therefore
µ(E) ≤

∏

n

(1 − 1
4αK

n )µ
(

[0, 1]
)

= 0.

Proof of Theorem 2. Let Nn be a rapidly increasing sequence of odd integers
with N1 = 1, Nn ≥ α−1

n−1 for n ≥ 2. After replacing αn by a number which is

at most twice its size, we may assume that αn = mnN−1
n+1 for some odd integer

mn . The construction of E resembles that of the Cantor set. First we remove
the open interval which constitutes the middle α1 position of [0, 1] , and subdivide
the two remaining closed intervals into subintervals of equal length N−1

2 , call this
collection of subintervals S1 . This subdivision is possible due to the modification
on αn ’s. On each interval in S1 , remove the open interval which constitutes
its middle α2 portion, and subdivide the remaining intervals into subintervals of
equal length (N2N3)

−1 , call this new collection of subintervals S2 . Continue the
process indefinitely and let

E =
⋂

n

(

⋃

I∈Sn

I
)

.

Clearly E is {αn} -porous.
It remains to choose Nn so that µ(E) > 0 for some µ ∈ D . Our idea comes

from Ahlfors and Beurling [2; Theorem 3]. First, we construct a function h which
plays the role of 1 + λcosine in [2].
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Lemma 2. Given 0 < α < 1
4 , K > 2 , there exists a function h continuous

on R , of period 1 , monotonic in [0, 1
2
] and in [ 1

2
, 1] respectively, which satisfies

∫ 1

0
h(x) dx = 1 ,

h(x) =

{

αK−1 on [ 1
2
(1 − α), 1

2
(1 + α)],

1 +
√

α on [0, 1
2 −√

α] ∪ [ 12 +
√

α, 1],

and h(x) dx is in D(BK) for some absolute constant B > 2 .

As an example, we may choose

h(x) = αK−1 + α−K
(

x − 1 + α

2

)2K−1

on
[1 + α

2
,
1 + α

2
+

α

4

(2K−1)/(4(K−1))]

,

piecewise linear on

[1 + α

2
+

α

4

(2K−1)/(4(K−1))
,
1

2
+

√
α
]

with derivatives between 1/4
√

α and 4/
√

α , and h(x) = h(1 − x) for x in

[ 1
2
− √

α, 1
2
(1 − α)] , so that the continuity, monotonicity and

∫ 1

0
h(x) dx = 1 are

satisfied. For this h , h dx ∈ D(Bk) for some absolute constant B > 2.

In the hypothesis
∑

αK
n < ∞ , we may assume K > 2. Corresponding to

each pair (αn, K) , we fix a function hn which satisfies properties in Lemma 2
with α = αn . Denote by

An =
∞
⋃

k=−∞

(

[k, k + 1
2
− 1

2
αn]

)

∪
(

[k + 1
2

+ 1
2
αn, k + 1]

)

,

Fk =
⋃

I∈Sk

I, Mn =

n
∏

1

Nk, and fn(x) =

n
∏

1

hk(Mkx).

We shall choose Nn inductively so that Nn+1 ≫ Nn and that fn(x) is “nearly
constant” on each interval of length M−1

n+1 .
Recall that N1 = 1 and assume that odd integers N2, N3, . . . , Nn have been

chosen so that

(1.1)

∫

Fk

fk(x) dx ≥
k

∏

j=1

(1 − 2αK
j ) (1 ≤ k ≤ n),
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and whenever |x − x′| ≤ M−1
k , (2 ≤ k ≤ n),

(1.2)
k − 1

k
< hk−1(Mk−1x)/hk−1(Mk−1x

′) <
k + 1

k
,

and

(1.3)
k − 1

k
< fk−1(x)/fk−1(x

′) <
k + 1

k
.

Note that
∫ 1

0
hk(x) dx = 1,

∫

[0,1]∩Ak
hk(x) dx = 1 − αK

k and that fk(x) is

uniformly continuous on R for each k ≥ 1. Let F ⊆ [0, 1] be any measurable set.
Then χF fn is the pointwise a.e. and L1 limit of an increasing sequence of simple
functions, each of which has the form

∑

ajχIj
, where {aj} are constants and

{Ij} are finitely many mutually disjoint open intervals with rational end points.
Therefore,

∫ 1

0

χF (x)fn(x)χAn+1
(Mx)hn+1(Mx) dx → (1 − αK

n+1)

∫

F

fn(x) dx

as M → ∞ . Thus a large odd integer Nn+1 can be found so that Nn+1 > α−1
n ,

and (1.1), (1.2) and (1.3) hold with k = n + 1. Here we have used the fact that
Fn+1 = {x ∈ Fn : Mn+1x ∈ An+1} .

Let µ be a weak limit point of fn(x) dx . Then µ(E) > 0 in view of (1.1) and
∑

αK
n < ∞ . To verify that µ is a doubling measure we consider two neighboring

intervals I and I ′ satisfying

M−1
n+1 ≤ |I| = |I ′| ≤ M−1

n .

In view of (1.3)
(n − 1

n

)2

≤ fn−1(x)

fn−1(x′)
≤

(n + 1

n

)2

whenever x ∈ I and x′ ∈ I ′ . We note that fm(x)/fn(x) has period M−1
n+1 if

m ≥ n + 1, and that
n

n + 1
<

hn(Mnx)

hn(Mnx′)
<

n + 2

n + 1

whenever |x − x′| ≤ M−1
n+1 . Writing

fm(x) = fn−1(x)hn(Mnx)
fm(x)

fn(x)
, for m ≥ n + 1,

we deduce from the fact hn(Mnx) dx ∈ D(BK) that

(CBK)−1 ≤
∫

I

fm(x) dx
/

∫

I′

fm(x) dx ≤ CBK

for every m ≥ n + 1. Therefore µ ∈ D .
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2. A test for Dd(λ)-null sets

Given a closed set E in [0, 1] , we shall develop a procedure to test whether
E is in Dd(λ) for some λ > 1.

Let In,j , 1 ≤ j ≤ 2n , be the dyadic closed intervals in [0, 1] of length 2−n ,
Ir
n,j be the closed interval which forms the right half of In,j and let I l

n,j = In,j \
Ir
n,j . Let

hn,j(x) =







1 on Ir
n,j

−1 on I l
n,j

0 on R \ In,j.

For a fixed integer n ≥ 2, define

f (n)
n ≡

2n

∏

j=1

(

1 + δ(n, j)τhn,j

)

,

and dν
(n)
n ≡ f

(n)
n dx , where τ = (λ − 1)/(λ + 1) and

δ(n, j) =

{

1, E ∩ Ir
n,j 6= ∅,

−1, E ∩ Ir
n,j = ∅.

Denote by En = ∪
{

In+1,j : In+1,j ∩ E 6= ∅, 1 ≤ j ≤ 2n+1
}

. Let

f
(n)
n−1 ≡

2n−1

∏

j=1

(

1 + δ(n − 1, j)τhn−1,j

)

,

and dν
(n)
n−1 ≡ f

(n)
n−1dν

(n)
n , where

δ(n − 1, j) =

{

1, ν
(n)
n (Ir

n−1 ∩ En) ≥ ν
(n)
n (I l

n−1 ∩ En),
−1, otherwise.

After defining f
(n)
k and dν

(n)
k , we let

f
(n)
k−1 ≡

2k−1

∏

j=1

(

1 + δ(k − 1, j)τhk−1,j

)

,

and dν
(n)
k−1 ≡ f

(n)
k−1dν

(n)
k , where

δ(k − 1, j) =

{

1, ν
(n)
k (Ir

k−1,j ∩ En) ≥ ν
(n)
k (I l

k−1,j ∩ En),
−1, otherwise.
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Continue this process until we arrive at ν
(n)
1 . Define µn ≡ ν

(n)
1 .

Notice that

(2.1) ν
(n)
k (Ik,j) = 2−k (1 ≤ k ≤ n)

with the understanding that I0,j ≡ I0,1 ≡ [0, 1] ; and that from dν
(n)
k to dν

(n)
k−1 ,

total measure in each Ik−1,i is kept unchanged, but the total measures of Ir
k−1,i

and I l
k−1,i are redistributed in the most advantageous way.

Repeat for each n ≥ 2, to obtain a sequence of measures {µn} . Let µE,λ be
a weak limit point of {µn} , extended to R with period 1.

Theorem 3. Among all the measures in Dd(λ) which have mass one on

[0, 1] , µE,λ has the maximum measure on E . In particular, E is Dd(λ) -null if

and only if µE,λ(E) = 0 .

Proof. It is clear that µE,λ

(

[0, 1]) = 1 and µE,λ ∈ Dd(λ) .

Let ω be any measure in Dd(λ) with ω
(

[0, 1]
)

= 1. We claim, in fact, that

(2.2) ω(En) ≤ µn(En).

Let m be the largest integer in [1, n] , if it exists, such that there exists at least
one interval Im,j on which

(2.3)
ω(Ir

m,j)

ω(I l
m,j)

6=
µn(Ir

m,j)

µn(I l
m,j)

.

(If such m does not exist, then ω(En) = µn(En) .) We shall redistribute the
measure ω on these Im,j ’s and keep ω unchanged elsewhere. Denote by Im =
{Im,j : (2.3) holds on Im,j} ; and let ωm = ω on [0, 1] \ ∪Im

Im,j , and

(2.4) dωm =



















ω(Im,j)µn(Ir
m,j)

ω(Ir
m,j)µn(Im,j)

dω on Ir
m,j,

ω(Im,j)µn(I l
m,j)

ω(I l
m,j)µn(Im,j)

dω on I l
m,j,

for each Im,j ∈ Im . Clearly, if Im,j ∈ Im , then

ωm(Ir
m,j)

ωm(I l
m,j)

=
µn(Ir

m,j)

µn(I l
m,j)

,

and ωm is dyadic on Im,j with constant ≤ λ . Actually, ωm is in Dd(λ) by the
following lemma.
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Lemma 3. Let I be a dyadic subinterval of [0, 1] , and µ and ν be dyadic

doubling measures on [0, 1] and I respectively, satisfying µ(I) = ν(I) . Then the

new measure ω defined by ω ≡ ν on I , ≡ µ on [0, 1] \ I is dyadic doubling on

[0, 1] with constant bounded by the maximum of those of µ and ν .

First, we shall verify that ω(En) ≤ ωm(En) . To show this, it is enough to
prove

(2.5) ω(En ∩ Im,j) ≤ ωm(En ∩ Im,j)

for each Im,j ∈ Im .
Fix Im,j ∈ Im , clearly (2.5) holds when m = n . Thus we assume m < n

and note from the definition of m that

ω(Ir
k,i)

ω(Ik,i)
=

µn(Ir
k,i)

µn(Ik,i)
, and

ω(I l
k,i)

ω(Ik,i)
=

µn(I l
k,i)

µn(Ik,i)

for m + 1 ≤ k ≤ n . Therefore

ω(Ir
m,j ∩ En)

ω(Ir
m,j)

=
µn(Ir

m,j ∩ En)

µn(Ir
m,j)

and
ω(I l

m,j ∩ En)

ω(I l
m,j)

=
µn(I l

m,j ∩ En)

µn(I l
m,j)

.

Moreover, from the construction of µn ,

(2.6)
µn(In+1,l)

µn(Ik,i)
=

ν
(n)
k (In+1,l)

ν
(n)
k (Ik,i)

,

if 1 ≤ k ≤ n and In+1,l ⊆ Ik,i . Thus by (2.1) and the above identities,

(2.7)
ω(Ir

m,j) ∩ En

ω(Ir
m,j)

= ν
(n)
m+1(I

r
m,j ∩ En)2m+1

and

(2.8)
ω(I l

m,j) ∩ En

ω(I l
m,j)

= ν
(n)
m+1(I

l
m,j ∩ En)2m+1.

Writing I in place of Im,j for the rest of this paragraph, we obtain

ω(En ∩ I) =
[ω(En ∩ Ir)

ω(Ir)

ω(Ir)

ω(I)
+

ω(En ∩ I l)

ω(I l)

ω(I l)

ω(I)

]

ω(I)

= 2m+1ω(I)
[

ν
(n)
m+1(En ∩ Ir)

ω(Ir)

ω(I)
+ ν

(n)
m+1(En ∩ I l)

ω(I l)

ω(I)

]

≤ 2m+1ω(I)
(

ν
(n)
m+1(En ∩ Ir)A + ν

(n)
m+1(En ∩ I l)(1 − A)

)
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where A = 1
2
(1+τ) if ν

(n)
m+1(En∩Ir) ≥ ν

(n)
m+1(En∩I l) , and A = 1

2
(1−τ) otherwise.

From the definition of ν
(n)
m , (2.6), (2.7), and (2.8), it follows that

ω(En ∩ I) ≤ 2m+1ω(I)
[

ν
(n)
m+1(En ∩ Ir)

ν
(n)
m (Ir)

ν
(n)
m (I)

+ ν
(n)
m+1(En ∩ I l)

ν
(n)
m (I l)

ν
(n)
m (I)

]

= ω(I)
[ω(En ∩ Ir)

ω(Ir)

µn(Ir)

µn(I)
+

ω(En ∩ I l)

ω(I l)

µn(I l)

µn(I)

]

= ωm(En ∩ I).

This proves (2.5) and hence ω(En) ≤ ωm(En) .

We proceed to make modifications of ωm on each dyadic interval Im−1,i of
size 2−m+1 on which (2.3) holds with m , j , ω replaced by m − 1, i and ωm

respectively, according to the rule (2.4) adapted for m − 1, i and ωm ; call this
new measure ωm−1 . Continue to modify ωm−1 on dyadic intervals of size 2−m+2

if necessary to obtain ωm−2, . . .. Finally we arrive at a measure ω1 , and obtain

ω(En) ≤ ωm(En) ≤ ωm−1(En) ≤ · · · ≤ ω1(En)

and
ω1(I

r
m,j)

ω1(I
l
m,j)

=
µn(Ir

m,j)

µn(I l
m,j)

,

for all 1 ≤ m ≤ n , 1 ≤ j ≤ 2m . Therefore ω1(En) = µn(En) and (2.2) is proved.
We note that E = ∩mEm . Therefore for any ε > 0 and sufficiently large m

and n with m > m(ε) and n > n(ε, m) , we have

µE,λ(E) ≥ µE,λ(Em) − ε ≥ µn(Em) − 2ε ≥ µn(En) − 2ε

≥ ω(En) − 2ε ≥ ω(E)− 2ε.

This shows that ω(E) ≤ µE,λ(E) .

3. Proofs of Theorems 4 and 5

Given a , ε , δ ∈ (0, 1), εa < δ < ε , we choose a sequence of integers {nk}
satisfying nk ≥ 4 and

(3.1) nn+1 > nk + [ε log2 k].

For k ≥ 2 + [21/δ] and 0 ≤ j ≤ 2nk − 1, denote by

Lk,j =
[ j

2nk
,
j + 1

2nk

]

,

Ik,j =
[ j

2nk
,

j

2nk
+

1

2nk k̇δ

]

,



86 Jang-Mei Wu

and

Jk,j =
[j + 1

2nk
− 1

2nk k̇ε
,
j + 1

2nk

]

,

where k̇δ = 2[δ log2 k] , k̇ε = 2[ε log2 k] and [ ] is the greatest integer function. Note
that intervals L ’s, I ’s and J ’s are dyadic,

(3.2) |Jk,j |/|Ik,j′ | = O(kδ−ε) = o(1) as k → ∞,

and

(3.3) |Jk,j|/|Lk+1,j′ | = 2nk+1−nk−[ε log2 k] > 2.

The construction of a set S ∈ N \Nd is similar to the Cantor set; collections
of nested intervals from {Jk,j} are used. The measure µ in Dd to be produced
with µ(S) > 0 will satisfy

µ(Jk,j)

µ(Lk,j)
=

( |Jk,j |
|Lk,j|

)a

on infinitely many Jk,j ’s.
Let {Ki} be an increasing sequence of integers with K0 ≡ 2+[21/δ] and some

other properties to be specified later. Let S0 = [0, 1] , C I
1+K0

be the collection of

all I1+K0,j ⊆ S0 and C J
1+K0

be the collection of all J1+K0,j ⊆ S0 . After C I
k and

C J
k have been defined for some k , 1 + K0 ≤ k ≤ K1 − 1, we let

C
I
k+1 = C

I
k ∪

{

Ik+1,j ⊆ S0 : Ik+1,j is not contained in any interval in C
I
k ∪ C

J
k

}

,

C
J
k+1 = C

J
k ∪

{

Jk+1,j ⊆ S0 : Jk+1,j is not contained in any interval in C
I
k ∪ C

J
k

}

;

and let
SI

1 = union of all intervals in C
I
K1

,

S1 = union of all intervals in C
J
K1

.

Next let C I
1+K1

be the collection of all I1+K1,j ⊆ S1 and C J
1+K1

be the
collection of all J1+K1,j ⊆ S1 . And define for each k , 1 + K1 ≤ k ≤ K2 − 1,

C
I
K+1 = C

I
k ∪

{

Ik+1,j ⊆ S1 : Ik+1,j is not contained in any interval in C
I
k ∪ C

J
k

}

,

C
J
K+1 = C

J
k ∪

{

Jk+1,j ⊆ S1 : Jk+1,j is not contained in any interval in C
I
k ∪ C

J
k

}

,

SI
2 = union of all intervals in C

I
K2

,

and
S2 = union of all intervals in C

J
K2

.

Clearly SI
2 ⊆ S1 and S2 ⊆ S1 .

Continue this procedure to obtain C I
K3

, C J
K3

, SI
3 and S3 , . . ., and so on, and

let

S =
∞
⋂

1

Sm.

To construct µ ∈ Dd with µ(S) > 0, we shall use scale invariant versions of
Lemma 3 and the following lemma repeatedly.
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Lemma 4. Given a , α , β ∈ (0, 1) with αa + β < 1/16 and c1, c2 ∈ ( 1
2 , 2) ,

there exists a measure µ ∈ Dd(101/a) , which satisfies µ
(

[0, 1]
)

= 1 , µ
(

[0, α]
)

=

c1α
a , and µ

(

[1 − β, 1]
)

= c2β .

As an example, we may choose

µ
(

[0, t]
)

=







c1t
a, 0 ≤ t ≤ t0 ≡

(

1
8

)1/a
,

1
8c1 +

(

1 − 1
8(c1 + c2)

)

(t − t0)/( 7
8 − t0), t0 ≤ t ≤ 7

8 ,
c2t + 1 − c2,

7
8 ≤ t ≤ 1.

Then extend µ periodically to R with period 1.
All measures µk defined below are periodic with period 1. Choose µ1+K0

∈
Dd(101/a) so that

µ1+K0
(L1+K0,j) = |L1+K0,j |,

µ1+K0
(I1+K0,j) = |L1+K0,j |(1 + K0)

−δ,

µ1+K0
(J1+K0,j) = |L1+K0,j |(1 + K0)

−εa

for each 0 ≤ j ≤ 21+K0 − 1. After µk is selected for some k , 1 + K0 ≤ k ≤ K1 ,
we choose µk+1 ∈ Dd(101/a) , so that µk+1 = µk on each interval in C I

k ∪ C J
k ,

and µk+1 is a redistribution of µk on each Lk+1,j which is not contained in any
interval in C I

k ∪ C J
k :

(3.4) µk+1(Lk+1,j) = µk(Lk+1,j),

(3.5) µk+1(Ik+1,j) = (1 + k)−δµk+1(Lk+1,j),

(3.6) µk+1(Jk+1,j) = (1 + k)−εaµk+1(Lk+1,j).

The measure µK1
so chosen has the properties that

µK1
(SI

1 ∪ S1) = 1 −
K1
∏

1+K0

(1 − k−εa − k−δ)

and

µK1
(S1) ≥ µK1

(SI
1 ∪ S1) inf

1+K0≤k≤K1

k−εa

k−εa + k−δ

≥
(

1 −
K1
∏

1+K0

(1 − k−εa)
)

(1 − Kεa−δ
0 ),

because εa < δ .
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Next choose µ1+K1
∈ Dd(101/a) so that µ1+K1

= µK1
on S0 \ S1 , and on

each L1+K1,j ⊆ S1 it is a redistribution of µK1
satisfying (3.4), (3.5) and (3.6)

with k = K1 . After µk is constructed for some k , 1 + K1 ≤ k < K2 , build µk+1

from µk following the same steps as in the case 1 + K0 ≤ k ≤ K1 . The dyadic
doubling measure µK2

so obtained belongs to Dd(101/a) , moreover

µK2
(SI

2 ∩ S2) =
(

1 −
K2
∏

1+K1

(1 − k−εa − k−δ)
)

µK1
(S1),

and

µK2
(S2) ≥ µK2

(SI
2 ∪ S2) inf

1+K1≤k≤K2

k−εa

k−εa + k−δ

≥ µK2
(SI

2 ∪ S2)(1 − Kεa−δ
1 )

≥
(

1 −
K1
∏

1+K0

(1 − k−εa)
)(

1 −
K2
∏

1+K1

(1 − k−εa)
)

(1 − Kεa−δ
0 )(1 − Kεa−δ

1 ).

Whenever µKm
is constructed, keep µ1+Km

= µKm
on S0 \ Sm , redistribute

the mass on each L1+Km,j ⊆ Sm according to (3.4), (3.5) and (3.6) with k =
Km , and keep the dyadic doubling constant bounded by 101/a . Continue this
indefinitely. Thus, we obtain a sequence of measures µKm

∈ Dd(101/a) , with
µKm

(

[0, 1]
)

= 1 and

µKm
(Sm) ≥

m−1
∏

i=0

(

(1 − Kεa
i − δ)(1 − Ai)

)

where Ai =
∏K1+i

1+Ki
(1 − k−εa) . Let µ be a weak limit point of {µKm

} . Clearly

µ ∈ Dd(101/a) .
Since εa < 1, it is possible to choose {Ki} so that

(3.7)
∞
∑

i=1

Kεa−δ
i +

∞
∑

i=1

Ai < +∞.

With respect to this choice of {Ki} , we have µ(S) > 0, hence µ 6∈ Nd .
It remains to show that S ∈ N . Let ν ∈ D . Recall that Jk,j and Ik,j+1

have the common boundary point (j + 1)/(2nk) ; by the doubling property

ν(Jk,j ∪ Ik,j+1) ≥ A(ε−δ) log2 k−5ν(Jk,j)

for some A > 1 depending only on the doubling constant of ν . For m ≥ 2,
intervals in C J

Km
∪ {Ik,j+1 : Jk,j ∈ C J

Km
} ( 6= C J

Km
∪ C I

Km
) may meet in their
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interiors; however, because of (3.3), every point in [0, 1] is covered by at most
three such intervals. Therefore

3ν
(

[0, 1]
)

≥
∑

Jk,j∈C J
Km

ν(Jk,j ∪ Ik,j+1) ≥ A(ε−δ) log2 Km−1−5ν(Sm)

≥ A(ε−δ) log2 Km−1−5ν(S).

Hence ν(S) = 0. Therefore S ∈ N \ Nd .
Let

T =
{

t =
∞
∑

n=1

tn2−n, where tn = 0 or 1,

but tnk+[δ log2 k]+1 = 1 and tnk+[δ log2 k]+2 = 0

for each integer k > K0

}

.

In view of (3.1), it has Hausdorff dimension 1.
Fix t ∈ T and ν ∈ Dd and let Jk,j be any interval in C J

Km
. We note that

p + 1
2

2nk k̇δ
< t +

j + 1

2nk
<

p + 3
4

2nk k̇δ

for some integer p , because

q + 1
2

< t2nk k̇δ < q + 3
4

for some integer q .
Therefore t + Jk,j is contained in the middle half of some dyadic interval

Mk,j =
[ p

2nk k̇δ
,

p + 1

2nk k̇δ

]

.

Recall that the interval Ik,j+1 shares an end point (j + 1)/2nk with Jk,j and has

length 1/2nk k̇δ . Therefore

∣

∣(t + Ik,j+1) ∩ Mj,k

∣

∣ > 1
4

1

2nk k̇δ
.

The dyadic doubling property of ν , (3.2) and Lemma 1,

ν
(

t + (Jk,j ∪ Ik,j+1) ∩ Mk,j

)

≥ c(k, ν)ν(t + Jk,j)

with c(k, ν) → ∞ as k → ∞ . Summing over all Jk,j in C J
Km

and reasoning as
before, we obtain

3ν
(

[0, 1]
)

≥ c(Km−1, ν)ν(t + Sm) ≥ c(Km−1, ν)ν(t + S).

Letting m → ∞ , we have ν(t + S) = 0. This completes the proof of Theorem 4.

It would be interesting to characterize those t ’s so that t + S is in Nd .
However this seems difficult.



90 Jang-Mei Wu

To prove Theorem 5, we note that in the binary expansion of t , the event
that a digit 1 is followed immediately by a digit 0 occurs infinitely often. Choose
ε , δ and a as in Theorem 4, and {nk} depending on t , so that (3.1),

tnk+[δ log2 k]+1 = 1 and tnk+[δ log2 k]+2 = 0

hold for each k > k0 . Let St ≡ S in Theorem 4 associated with this sequence
{nk} . Then St ∈ N \ Nd . The proof of t + St ∈ Nd is similar to that in
Theorem 4.

4. Null sets for p-harmonic measures

Consider the p-Laplace equation (1 < p < ∞)

div
(

|∇u|p−2∇u
)

= 0

in the half plane Ω ≡ {x ∈ R2 : x2 > 0} . For the definition and properties of
p-harmonic measure (the harmonic measure for p-Laplacian) see [6; Chapter 10].

Let E be a compact set on ∂Ω which has positive p-harmonic measure for
some p . Then there exists a nonconstant solution u (0 ≤ u ≤ 1) of the p-
Laplacian in Ω, with continuous boundary value 0 on ∂Ω \ E .

Following [1], we may apply a linearization technique in [7] or an approxima-
tion technique in [4], and Theorem 4.5 in [3], to write

u(x) =

∫

∂Ω

K(x, y)f(y) dω(y),

where K is a limit of kernel functions and ω is a weak limit of harmonic measures
at a fixed point, corresponding to a sequence of uniformly elliptic operators of
nondivergence form in Ω, with ellipticity constants depending only on p . Moreover
ω has the doubling property and u has nontangential limit on ∂Ω ω -a.e.

Because u has zero boundary value on ∂Ω \ E , f(y) dω(y) is supported in
E . This implies that ω(E) > 0. Therefore, we have

Theorem 6. Compact sets in N are null sets for any p-harmonic measure

with respect to the half plane {x ∈ R2 : x2 > 0} .

Remark. Martio has defined a version of porosity and proved that a porous
set on {x2 = 0} has zero A -harmonic measure with respect to all those nonlinear
operators A on {x2 > 0} considered in [8]; p-Laplacians are examples of such
operators. We do not know whether Theorem 6 can be extended to all such
A -operators. However a compact set E on {x2 = 0} is A -harmonic measure
null for all such A if it satisfies a stronger {an} -porous condition for some {an}
(
∑

αK
n = ∞ for all K > 1), namely, in defining {an} -porosity, E ∩ En,j is

required to lie in the middle 1 − 2αn portion of En,j for each n and j . Proof
follows by combining the original proof of Martio and that of Theorem 1.
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[6] Heinonen, J., J. Kilpeläinen, and O. Martio: Nonlinear potential theory of solutions
of degenerate elliptic equations. - Oxford University Press (to appear).

[7] Manfredi, J., and A. Weitsman: On the Fatou-theorem for p -harmonic functions. -
Comm. Partial Differential Equations 13:6, 1988, 651–688.

[8] Martio, O.: Harmonic measures for second order nonlinear partial differential equations.
- In: Function spaces, differential operators and nonlinear analysis, L. Päivärinta
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