NULL SETS FOR DOUBLING AND DYADIC DOUBLING MEASURES

Jang-Mei Wu

University of Illinois at Urbana-Champaign, Department of Mathematics 273 Altgeld Hall, MC-382, 1409 West Green Street, Urbana, IL 61801, U.S.A.

Abstract. In this note, we study sets on the real line which are null with respect to all doubling measures on \mathbf{R} , or with respect to all dyadic doubling measures on \mathbf{R} . We give some sufficient conditions for the former, a test for the latter, and some examples.

Our work is motivated by a characterization of dyadic doubling measures by Fefferman, Kenig and Pipher [5], and by a result of Martio [8] on porous sets and sets of total $\mathscr A$ -harmonic measure zero for certain class of nonlinear $\mathscr A$ -operators.

A measure μ on **R** is said to have the doubling property with constant λ if, whenever I and J are two neighboring intervals of same length then $\mu(I) \leq \lambda \mu(J)$; denote by $\mathscr{D}(\lambda)$ the collection of all doubling measures with constant λ , and $\mathscr{D} = \cup_{\lambda \geq 1} \mathscr{D}(\lambda)$. A measure μ on **R** has the dyadic doubling property with constant λ if $\mu(I) \leq \lambda \mu(J)$ whenever I and J are two dyadic neighboring intervals of same length and $I \cup J$ is also a dyadic interval; denote by $\mathscr{D}_d(\lambda)$ and \mathscr{D}_d the corresponding collections of dyadic doubling measures.

Given $\{a_n\}$, $0 < a_n < 1$, a set $E \subseteq \mathbb{R}$ is called $\{\alpha_n\}$ -porous if there exists a sequence of coverings $\mathscr{E}_n = \{E_{n,j}\}\$ of E, by intervals with mutually disjoint interiors, so that each $E_{n,j} \setminus E$ contains an interval $J_{n,j}$ of length $\geq \alpha_n |E_{n,j}|$, $\cup_{\mathscr{E}_{n+1}} E_{n+1,k}$ is contained in $\cup_{\mathscr{E}_n} (E_{n,j} \setminus J_{n,j})$ and $\sup |E_{n,j}| \to 0$ as $n \to \infty$. The Cantor ternary set is $\{\frac{1}{3}\}$ $\frac{1}{3}$ }-porous. The porous sets studied by Martio [8] are $\{\alpha\}$ -porous for some $\alpha > 0$.

Theorem 1. If $0 < \alpha_n < 1$, $\sum_{1}^{\infty} \alpha_n^K = \infty$ for all $K \ge 1$, and E is $\{\alpha_n\}$ -prorous, then E is null for all doubling measures on **R**.

Corollary. There exist sets of Hausdorff dimension one which are null for all doubling measures.

The condition given in Theorem 1 cannot be improved:

Theorem 2. If $0 < \alpha_n < \frac{1}{4}$ $\frac{1}{4}$ is a decreasing sequence satisfying $\sum_n \alpha_n^K < \infty$ for some $K \geq 1$, then there exists a perfect set which is $\{\alpha_n\}$ -porous, but carries a positive measure for some $\mu \in \mathscr{D}$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 28A12.

Research partially supported by the National Science Foundation.

Let E be a closed set in [0, 1] and $\lambda > 1$. In Theorem 3, we give a deterministic procedure of testing whether E is $\mathscr{D}_d(\lambda)$ -null. In this process, an optimal measure $\mu_{E,\lambda}$ among $\mathscr{D}_d(\lambda)$ is selected for E. The precise statement is given in Section 2.

Denote by $\mathscr N$ the collection of null sets for doubling measures $\{E : \mu(E) = 0\}$ for all $\mu \in \mathscr{D}$, and \mathscr{N}_d its dyadic counterpart $\{E : \mu(E) = 0 \text{ for all } \mu \in \mathscr{D}_d\}.$ Clearly $\mathcal{N}_d \subseteq \mathcal{N}$ and \mathcal{N} is translation invariant. The assertion that $\mathcal{N}_d \neq \mathcal{N}$ is not suprising, however it requires a lot of work.

Theorem 4. There exists a perfect set $S \subseteq [0,1]$ which is in $\mathcal{N} \setminus \mathcal{N}_d$. And corresponding to this S, there exists a set T of dimension one, so that $t + S \in \mathcal{N}_d$ for each $t \in T$.

It would be interesting to know whether a pair of sets S, T can be chosen to satisfy length $(T) > 0$ in addition to the properties in Theorem 4.

Theorem 5. Let t be any number whose binary expansion has infinitely many zeros and infinitely many ones. Then there exists a perfect set S_t so that $S_t \in \mathcal{N} \setminus \mathcal{N}_d$ but $t + S_t \in \mathcal{N}_d$.

Finally, in Section 4, we shall comment on relations betwen sets in $\mathscr N$ and null sets of the harmonic measures with respect to the p-Laplacians in the upper half plane.

The author would like to thank A. Hinkkanen for his joint contribution on Theorem 1, and R. Kaufman for many conversations.

1. Proofs of Theorems 1 and 2

We first state a useful lemma.

Lemma 1. Let μ be a dyadic doubling measure on [0,1] and I be any subinterval. Then there exists $K > 1$ depending on the dyadic doubling constant λ only, so that

$$
4|I|^{1/K} \mu([0,1]) \ge \mu(I) \ge \frac{1}{4}|I|^K \mu([0,1]).
$$

Proof. Let I_1 and I_2 be two adjacent dyadic closed intervals in [0, 1] such that $I \subseteq I_1 \cup I_2$ and $2|I| \geq |I_1| + |I_2|$. Then

$$
\mu(I) \leq \mu(I_1) + \mu(I_2) \n\leq \left(\left(\frac{\lambda}{1+\lambda} \right)^{-\log_2|I_1|} + \left(\frac{\lambda}{1+\lambda} \right)^{-\log_2|I_2|} \right) \mu([0,1]) \n\leq 2(2|I|)^{\log_2((1+\lambda)/\lambda)} \mu([0,1]) \leq 4|I|^{\log_2((1+\lambda)/\lambda)} \mu([0,1]).
$$

If

$$
|I| \ge 1 - 16^{-(\log_2((1+\lambda)/\lambda))^{-1}} \equiv A,
$$

then

$$
\mu([0,1]\setminus I) \leq 8(1-|I|)^{\log_2((1+\lambda)/\lambda)}\mu([0,1]) \leq \frac{1}{2}\mu([0,1]).
$$

Hence $\mu(I) \geq \frac{1}{2}$ $\frac{1}{2}\mu([0,1])$. If $|I| < A$, let J be the largest dyadic interval contained in *I*. Therefore $|J| \ge |I|/4$ and

$$
\mu(I) \ge \mu(J) \ge \left(\frac{1}{1+\lambda}\right)^{-\log_2|J|} \mu\big([0,1]\big) \ge (|I|/4)^{\log_2(1+\lambda)} \mu\big([0,1]\big)
$$

$$
\ge \mu\big([0,1]\big)|I|^{(\log_2(1+\lambda))(1-2(\log_2 A)^{-1})}.
$$

Proof of Theorem 1. Assume $E \subseteq [0,1]$, and let $\mathscr{E}_n = \{E_{n,j}\}\$ be the coverings of E and $\{J_{n,j}\}\)$ be the subintervals of $E_{n,j}\setminus E$ in defining $\{\alpha_n\}$ -porosity. Let $\mu \in \mathscr{D}$, it follows from Lemma 1 that $\mu(\tilde{J}_{n,j}) \geq \frac{1}{4}$ $\frac{1}{4}\alpha_n^K \mu(E_{n,j})$ for some $K \geq 1$ depending on μ only. Thus

$$
\mu(E_{n,j} \setminus J_{n,j}) \leq (1 - \frac{1}{4} \alpha_n^K) \mu(E_{n,j}).
$$

Summing over j , we obtain

$$
\sum_{k} \mu(E_{n+1,k}) \le (1 - \frac{1}{4} \alpha_n^K) \sum_{j} \mu(E_{n,j}).
$$

Therefore

$$
\mu(E) \le \prod_n (1 - \frac{1}{4} \alpha_n^K) \mu([0, 1]) = 0.
$$

Proof of Theorem 2. Let N_n be a rapidly increasing sequence of odd integers with $N_1 = 1, N_n \ge \alpha_{n-1}^{-1}$ $\frac{-1}{n-1}$ for $n \geq 2$. After replacing α_n by a number which is at most twice its size, we may assume that $\alpha_n = m_n N_{n+1}^{-1}$ for some odd integer m_n . The construction of E resembles that of the Cantor set. First we remove the open interval which constitutes the middle α_1 position of [0, 1], and subdivide the two remaining closed intervals into subintervals of equal length N_2^{-1} i_2^{-1} , call this collection of subintervals \mathscr{S}_1 . This subdivision is possible due to the modification on α_n 's. On each interval in \mathscr{S}_1 , remove the open interval which constitutes its middle α_2 portion, and subdivide the remaining intervals into subintervals of equal length $(N_2N_3)^{-1}$, call this new collection of subintervals \mathscr{S}_2 . Continue the process indefinitely and let

$$
E = \bigcap_n \Big(\bigcup_{I \in \mathscr{S}_n} I \Big).
$$

Clearly E is $\{\alpha_n\}$ -porous.

It remains to choose N_n so that $\mu(E) > 0$ for some $\mu \in \mathscr{D}$. Our idea comes from Ahlfors and Beurling $[2;$ Theorem 3. First, we construct a function h which plays the role of $1 + \lambda$ cosine in [2].

Lemma 2. Given $0 < \alpha < \frac{1}{4}$, $K > 2$, there exists a function h continuous on **R**, of period 1, monotonic in $[0, \frac{1}{2}]$ $\frac{1}{2}$] and in $\left[\frac{1}{2}\right]$ $\frac{1}{2}$, 1] respectively, which satisfies $\int_0^1 h(x) \, dx = 1,$

$$
h(x) = \begin{cases} \alpha^{K-1} & \text{on } [\frac{1}{2}(1-\alpha), \frac{1}{2}(1+\alpha)], \\ 1+\sqrt{\alpha} & \text{on } [0, \frac{1}{2}-\sqrt{\alpha}] \cup [\frac{1}{2}+\sqrt{\alpha}, 1], \end{cases}
$$

and $h(x) dx$ is in $\mathscr{D}(B^K)$ for some absolute constant $B > 2$.

As an example, we may choose

$$
h(x) = \alpha^{K-1} + \alpha^{-K} \left(x - \frac{1+\alpha}{2}\right)^{2K-1}
$$

on

$$
\left[\frac{1+\alpha}{2},\frac{1+\alpha}{2}+\frac{\alpha}{4}\frac{(2K-1)/(4(K-1))}{2}\right],
$$

piecewise linear on

$$
\left[\frac{1+\alpha}{2} + \frac{\alpha^{(2K-1)/(4(K-1))}}{4}, \frac{1}{2} + \sqrt{\alpha}\right]
$$

with derivatives between $1/4\sqrt{\alpha}$ and $4/\sqrt{\alpha}$, and $h(x) = h(1-x)$ for x in $\left[\frac{1}{2}\right]$ $\sqrt{\alpha}$, $\frac{1}{2}(1-\alpha)$, so that the continuity, monotonicity and $\int_0^1 h(x) dx = 1$ are satisfied. For this $h, h dx \in \mathcal{D}(B^k)$ for some absolute constant $B > 2$.

In the hypothesis $\sum \alpha_n^K < \infty$, we may assume $K > 2$. Corresponding to each pair (α_n, K) , we fix a function h_n which satisfies properties in Lemma 2 with $\alpha = \alpha_n$. Denote by

$$
A_n = \bigcup_{k=-\infty}^{\infty} \left([k, k + \frac{1}{2} - \frac{1}{2}\alpha_n] \right) \cup \left([k + \frac{1}{2} + \frac{1}{2}\alpha_n, k + 1] \right),
$$

$$
F_k = \bigcup_{I \in \mathcal{S}_k} I, \qquad M_n = \prod_{1}^{n} N_k, \quad \text{and} \quad f_n(x) = \prod_{1}^{n} h_k(M_k x).
$$

We shall choose N_n inductively so that $N_{n+1} \gg N_n$ and that $f_n(x)$ is "nearly" constant" on each interval of length M_{n+1}^{-1} .

Recall that $N_1 = 1$ and assume that odd integers N_2, N_3, \ldots, N_n have been chosen so that

(1.1)
$$
\int_{F_k} f_k(x) dx \ge \prod_{j=1}^k (1 - 2\alpha_j^K) \qquad (1 \le k \le n),
$$

and whenever $|x - x'| \le M_k^{-1}$, $(2 \le k \le n)$,

(1.2)
$$
\frac{k-1}{k} < h_{k-1}(M_{k-1}x)/h_{k-1}(M_{k-1}x') < \frac{k+1}{k}
$$

and

(1.3)
$$
\frac{k-1}{k} < f_{k-1}(x) / f_{k-1}(x') < \frac{k+1}{k}.
$$

Note that $\int_0^1 h_k(x) dx = 1$, $\int_{[0,1] \cap A_k} h_k(x) dx = 1 - \alpha_k^K$ and that $f_k(x)$ is uniformly continuous on **R** for each $k \geq 1$. Let $F \subseteq [0, 1]$ be any measurable set. Then $\chi_F f_n$ is the pointwise a.e. and L^1 limit of an increasing sequence of simple functions, each of which has the form $\sum a_j \chi_{I_j}$, where $\{a_j\}$ are constants and ${I_i}$ are finitely many mutually disjoint open intervals with rational end points. Therefore,

$$
\int_0^1 \chi_F(x) f_n(x) \chi_{A_{n+1}}(Mx) h_{n+1}(Mx) dx \to (1 - \alpha_{n+1}^K) \int_F f_n(x) dx
$$

as $M \to \infty$. Thus a large odd integer N_{n+1} can be found so that $N_{n+1} > \alpha_n^{-1}$, and (1.1), (1.2) and (1.3) hold with $k = n + 1$. Here we have used the fact that $F_{n+1} = \{x \in F_n : M_{n+1}x \in A_{n+1}\}.$

 $\sum \alpha_n^K < \infty$. To verify that μ is a doubling measure we consider two neighboring Let μ be a weak limit point of $f_n(x) dx$. Then $\mu(E) > 0$ in view of (1.1) and intervals I and I' satisfying

$$
M_{n+1}^{-1} \le |I| = |I'| \le M_n^{-1}.
$$

In view of (1.3)

$$
\left(\frac{n-1}{n}\right)^2 \le \frac{f_{n-1}(x)}{f_{n-1}(x')} \le \left(\frac{n+1}{n}\right)^2
$$

whenever $x \in I$ and $x' \in I'$. We note that $f_m(x)/f_n(x)$ has period M_{n+1}^{-1} if $m \geq n+1$, and that

$$
\frac{n}{n+1} < \frac{h_n(M_n x)}{h_n(M_n x')} < \frac{n+2}{n+1}
$$

whenever $|x - x'| \leq M_{n+1}^{-1}$. Writing

$$
f_m(x) = f_{n-1}(x)h_n(M_n x) \frac{f_m(x)}{f_n(x)},
$$
 for $m \ge n + 1$,

we deduce from the fact $h_n(M_nx) dx \in \mathcal{D}(B^K)$ that

$$
(CB^K)^{-1} \le \int_I f_m(x) dx \Big/ \int_{I'} f_m(x) dx \le CB^K
$$

for every $m \geq n+1$. Therefore $\mu \in \mathscr{D}$.

,

2. A test for $\mathscr{D}_d(\lambda)$ -null sets

Given a closed set E in $[0, 1]$, we shall develop a procedure to test whether E is in $\mathscr{D}_d(\lambda)$ for some $\lambda > 1$.

Let $I_{n,j}$, $1 \leq j \leq 2^n$, be the dyadic closed intervals in [0, 1] of length 2^{-n} , $I_{n,j}^r$ be the closed interval which forms the right half of $I_{n,j}$ and let $I_{n,j}^l = I_{n,j} \setminus I_{n,j}$ $I_{n,j}^{r}$. Let

$$
h_{n,j}(x) = \begin{cases} 1 & \text{on } I_{n,j}^r \\ -1 & \text{on } I_{n,j}^l \\ 0 & \text{on } \mathbf{R} \setminus I_{n,j}. \end{cases}
$$

For a fixed integer $n \geq 2$, define

$$
f_n^{(n)} \equiv \prod_{j=1}^{2^n} (1 + \delta(n, j) \tau h_{n,j}),
$$

and $d\nu_n^{(n)} \equiv f_n^{(n)} dx$, where $\tau = (\lambda - 1)/(\lambda + 1)$ and

$$
\delta(n,j) = \begin{cases} 1, & E \cap I_{n,j}^r \neq \emptyset, \\ -1, & E \cap I_{n,j}^r = \emptyset. \end{cases}
$$

Denote by $E_n = \bigcup \{ I_{n+1,j} : I_{n+1,j} \cap E \neq \emptyset, 1 \leq j \leq 2^{n+1} \}$. Let

$$
f_{n-1}^{(n)} \equiv \prod_{j=1}^{2^{n-1}} (1 + \delta(n-1,j)\tau h_{n-1,j}),
$$

and $d\nu_{n-1}^{(n)} \equiv f_{n-1}^{(n)}$ $\sum_{n=1}^{(n)} d\nu_n^{(n)}$, where

$$
\delta(n-1,j) = \begin{cases} 1, & \nu_n^{(n)}(I_{n-1}^r \cap E_n) \ge \nu_n^{(n)}(I_{n-1}^l \cap E_n), \\ -1, & \text{otherwise.} \end{cases}
$$

After defining $f_k^{(n)}$ $\mathcal{L}_k^{(n)}$ and $d\nu_k^{(n)}$, we let

$$
f_{k-1}^{(n)} \equiv \prod_{j=1}^{2^{k-1}} (1 + \delta(k-1,j)\tau h_{k-1,j}),
$$

and $d\nu_{k-1}^{(n)} \equiv f_{k-1}^{(n)}$ $\int_{k-1}^{(n)} d\nu_k^{(n)}$, where

$$
\delta(k-1,j) = \begin{cases} 1, & \nu_k^{(n)}(I_{k-1,j}^r \cap E_n) \ge \nu_k^{(n)}(I_{k-1,j}^l \cap E_n), \\ -1, & \text{otherwise.} \end{cases}
$$

Continue this process until we arrive at $\nu_1^{(n)}$ $\mu_n^{(n)}$. Define $\mu_n \equiv \nu_1^{(n)}$ $\mathbb{I}^{(n)}$. Notice that

(2.1)
$$
\nu_k^{(n)}(I_{k,j}) = 2^{-k} \qquad (1 \le k \le n)
$$

with the understanding that $I_{0,j} \equiv I_{0,1} \equiv [0,1]$; and that from $d\nu_k^{(n)}$ to $d\nu_{k-1}^{(n)}$, total measure in each $I_{k-1,i}$ is kept unchanged, but the total measures of $I_{k-1,i}^r$ and $I_{k-1,i}^l$ are redistributed in the most advantageous way.

Repeat for each $n \geq 2$, to obtain a sequence of measures $\{\mu_n\}$. Let $\mu_{E,\lambda}$ be a weak limit point of $\{\mu_n\}$, extended to **R** with period 1.

Theorem 3. Among all the measures in $\mathscr{D}_d(\lambda)$ which have mass one on $[0, 1], \mu_{E,\lambda}$ has the maximum measure on E. In particular, E is $\mathscr{D}_d(\lambda)$ -null if and only if $\mu_{E,\lambda}(E) = 0$.

Proof. It is clear that $\mu_{E,\lambda}([0,1]) = 1$ and $\mu_{E,\lambda} \in \mathscr{D}_d(\lambda)$. Let ω be any measure in $\mathscr{D}_d(\lambda)$ with $\omega([0,1]) = 1$. We claim, in fact, that

$$
(2.2) \t\t \t\t \omega(E_n) \leq \mu_n(E_n).
$$

Let m be the largest integer in $[1, n]$, if it exists, such that there exists at least one interval $I_{m,j}$ on which

(2.3)
$$
\frac{\omega(I_{m,j}^r)}{\omega(I_{m,j}^l)} \neq \frac{\mu_n(I_{m,j}^r)}{\mu_n(I_{m,j}^l)}.
$$

(If such m does not exist, then $\omega(E_n) = \mu_n(E_n)$.) We shall redistribute the measure ω on these $I_{m,j}$'s and keep ω unchanged elsewhere. Denote by \mathscr{I}_m = $\{I_{m,j} : (2.3) \text{ holds on } I_{m,j}\}\;$ and let $\omega_m = \omega$ on $[0,1] \setminus \cup_{\mathscr{I}_m} I_{m,j}\;$, and

(2.4)
$$
d\omega_m = \begin{cases} \frac{\omega(I_{m,j})\mu_n(I_{m,j}^r)}{\omega(I_{m,j}^r)\mu_n(I_{m,j})}d\omega & \text{on } I_{m,j}^r, \\ \frac{\omega(I_{m,j})\mu_n(I_{m,j}^l)}{\omega(I_{m,j}^l)\mu_n(I_{m,j})}d\omega & \text{on } I_{m,j}^l, \end{cases}
$$

for each $I_{m,j} \in \mathscr{I}_m$. Clearly, if $I_{m,j} \in \mathscr{I}_m$, then

$$
\frac{\omega_m(I^r_{m,j})}{\omega_m(I^l_{m,j})} = \frac{\mu_n(I^r_{m,j})}{\mu_n(I^l_{m,j})},
$$

and ω_m is dyadic on $I_{m,j}$ with constant $\leq \lambda$. Actually, ω_m is in $\mathscr{D}_d(\lambda)$ by the following lemma.

Lemma 3. Let I be a dyadic subinterval of $[0, 1]$, and μ and ν be dyadic doubling measures on [0, 1] and I respectively, satisfying $\mu(I) = \nu(I)$. Then the new measure ω defined by $\omega \equiv \nu$ on I , $\equiv \mu$ on $[0,1] \setminus I$ is dyadic doubling on [0, 1] with constant bounded by the maximum of those of μ and ν .

First, we shall verify that $\omega(E_n) \leq \omega_m(E_n)$. To show this, it is enough to prove

(2.5)
$$
\omega(E_n \cap I_{m,j}) \leq \omega_m(E_n \cap I_{m,j})
$$

for each $I_{m,j} \in \mathscr{I}_m$.

Fix $I_{m,j} \in \mathscr{I}_m$, clearly (2.5) holds when $m = n$. Thus we assume $m < n$ and note from the definition of m that

$$
\frac{\omega(I_{k,i}^r)}{\omega(I_{k,i})} = \frac{\mu_n(I_{k,i}^r)}{\mu_n(I_{k,i})}, \quad \text{and} \quad \frac{\omega(I_{k,i}^l)}{\omega(I_{k,i})} = \frac{\mu_n(I_{k,i}^l)}{\mu_n(I_{k,i})}
$$

for $m + 1 \leq k \leq n$. Therefore

$$
\frac{\omega(I_{m,j}^r \cap E_n)}{\omega(I_{m,j}^r)} = \frac{\mu_n(I_{m,j}^r \cap E_n)}{\mu_n(I_{m,j}^r)}
$$

and

$$
\frac{\omega(I_{m,j}^l \cap E_n)}{\omega(I_{m,j}^l)} = \frac{\mu_n(I_{m,j}^l \cap E_n)}{\mu_n(I_{m,j}^l)}.
$$

Moreover, from the construction of μ_n ,

(2.6)
$$
\frac{\mu_n(I_{n+1,l})}{\mu_n(I_{k,i})} = \frac{\nu_k^{(n)}(I_{n+1,l})}{\nu_k^{(n)}(I_{k,i})},
$$

if $1 \leq k \leq n$ and $I_{n+1,l} \subseteq I_{k,i}$. Thus by (2.1) and the above identities,

(2.7)
$$
\frac{\omega(I_{m,j}^r) \cap E_n}{\omega(I_{m,j}^r)} = \nu_{m+1}^{(n)}(I_{m,j}^r \cap E_n)2^{m+1}
$$

and

(2.8)
$$
\frac{\omega(I_{m,j}^l) \cap E_n}{\omega(I_{m,j}^l)} = \nu_{m+1}^{(n)}(I_{m,j}^l \cap E_n) 2^{m+1}.
$$

Writing I in place of $I_{m,j}$ for the rest of this paragraph, we obtain

$$
\omega(E_n \cap I) = \left[\frac{\omega(E_n \cap I^r)}{\omega(I^r)} \frac{\omega(I^r)}{\omega(I)} + \frac{\omega(E_n \cap I^l)}{\omega(I^l)} \frac{\omega(I^l)}{\omega(I)} \right] \omega(I)
$$

$$
= 2^{m+1} \omega(I) \left[\nu_{m+1}^{(n)}(E_n \cap I^r) \frac{\omega(I^r)}{\omega(I)} + \nu_{m+1}^{(n)}(E_n \cap I^l) \frac{\omega(I^l)}{\omega(I)} \right]
$$

$$
\leq 2^{m+1} \omega(I) \left(\nu_{m+1}^{(n)}(E_n \cap I^r) A + \nu_{m+1}^{(n)}(E_n \cap I^l) (1 - A) \right)
$$

where $A=\frac{1}{2}$ $\frac{1}{2}(1+\tau)$ if $\nu_{m+1}^{(n)}(E_n \cap I^r) \ge \nu_{m+1}^{(n)}(E_n \cap I^l)$, and $A = \frac{1}{2}$ $\frac{1}{2}(1-\tau)$ otherwise. From the definition of $\nu_m^{(n)}$, (2.6), (2.7), and (2.8), it follows that

$$
\omega(E_n \cap I) \le 2^{m+1} \omega(I) \Big[\nu_{m+1}^{(n)}(E_n \cap I^r) \frac{\nu_m^{(n)}(I^r)}{\nu_m^{(n)}(I)} + \nu_{m+1}^{(n)}(E_n \cap I^l) \frac{\nu_m^{(n)}(I^l)}{\nu_m^{(n)}(I)} \Big]
$$

=
$$
\omega(I) \Big[\frac{\omega(E_n \cap I^r)}{\omega(I^r)} \frac{\mu_n(I^r)}{\mu_n(I)} + \frac{\omega(E_n \cap I^l)}{\omega(I^l)} \frac{\mu_n(I^l)}{\mu_n(I)} \Big] = \omega_m(E_n \cap I).
$$

This proves (2.5) and hence $\omega(E_n) \leq \omega_m(E_n)$.

We proceed to make modifications of ω_m on each dyadic interval $I_{m-1,i}$ of size 2^{-m+1} on which (2.3) holds with m, j, ω replaced by $m-1$, i and ω_m respectively, according to the rule (2.4) adapted for $m-1$, i and ω_m ; call this new measure ω_{m-1} . Continue to modify ω_{m-1} on dyadic intervals of size 2^{-m+2} if necessary to obtain ω_{m-2}, \ldots Finally we arrive at a measure ω_1 , and obtain

$$
\omega(E_n) \le \omega_m(E_n) \le \omega_{m-1}(E_n) \le \cdots \le \omega_1(E_n)
$$

and

$$
\frac{\omega_1(I_{m,j}^r)}{\omega_1(I_{m,j}^l)} = \frac{\mu_n(I_{m,j}^r)}{\mu_n(I_{m,j}^l)},
$$

for all $1 \leq m \leq n$, $1 \leq j \leq 2^m$. Therefore $\omega_1(E_n) = \mu_n(E_n)$ and (2.2) is proved.

We note that $E = \cap_m E_m$. Therefore for any $\varepsilon > 0$ and sufficiently large m and *n* with $m > m(\varepsilon)$ and $n > n(\varepsilon, m)$, we have

$$
\mu_{E,\lambda}(E) \ge \mu_{E,\lambda}(E_m) - \varepsilon \ge \mu_n(E_m) - 2\varepsilon \ge \mu_n(E_n) - 2\varepsilon
$$

$$
\ge \omega(E_n) - 2\varepsilon \ge \omega(E) - 2\varepsilon.
$$

This shows that $\omega(E) \leq \mu_{E,\lambda}(E)$.

3. Proofs of Theorems 4 and 5

Given $a, \varepsilon, \delta \in (0,1), \varepsilon a < \delta < \varepsilon$, we choose a sequence of integers $\{n_k\}$ satisfying $n_k \geq 4$ and

$$
(3.1) \t\t\t n_{n+1} > n_k + [\varepsilon \log_2 k].
$$

For $k \ge 2 + [2^{1/\delta}]$ and $0 \le j \le 2^{n_k} - 1$, denote by

$$
L_{k,j} = \left[\frac{j}{2^{n_k}}, \frac{j+1}{2^{n_k}}\right],
$$

$$
I_{k,j} = \left[\frac{j}{2^{n_k}}, \frac{j}{2^{n_k}} + \frac{1}{2^{n_k}k^{\delta}}\right],
$$

and

$$
J_{k,j} = \Big[\frac{j+1}{2^{n_k}} - \frac{1}{2^{n_k}k^{\varepsilon}}, \frac{j+1}{2^{n_k}}\Big],
$$

where $\dot{k}^{\delta} = 2^{[\delta \log_2 k]}$, $\dot{k}^{\varepsilon} = 2^{[\varepsilon \log_2 k]}$ and [] is the greatest integer function. Note that intervals L 's, I 's and J 's are dyadic,

(3.2)
$$
|J_{k,j}|/|I_{k,j'}| = O(k^{\delta-\varepsilon}) = o(1) \quad \text{as } k \to \infty,
$$

and

(3.3)
$$
|J_{k,j}|/|L_{k+1,j'}| = 2^{n_{k+1}-n_k - [\varepsilon \log_2 k]} > 2.
$$

The construction of a set $S \in \mathcal{N} \setminus \mathcal{N}_d$ is similar to the Cantor set; collections of nested intervals from $\{J_{k,j}\}\$ are used. The measure μ in \mathscr{D}_d to be produced with $\mu(S) > 0$ will satisfy

$$
\frac{\mu(J_{k,j})}{\mu(L_{k,j})} = \left(\frac{|J_{k,j}|}{|L_{k,j}|}\right)^a
$$

on infinitely many $\mathcal{J}_{k,j}$'s.

Let ${K_i}$ be an increasing sequence of integers with $K_0 = 2 + [2^{1/\delta}]$ and some other properties to be specified later. Let $S_0 = [0,1], \mathcal{C}_{1+K_0}^I$ be the collection of all $I_{1+K_0,j} \subseteq S_0$ and $\mathscr{C}_{1+K_0}^J$ be the collection of all $J_{1+K_0,j} \subseteq S_0$. After \mathscr{C}_k^I and \mathscr{C}_k^J have been defined for some k , $1 + K_0 \le k \le K_1 - 1$, we let

 $\mathscr{C}_{k+1}^I = \mathscr{C}_k^I \cup \{I_{k+1,j} \subseteq S_0 : I_{k+1,j} \text{ is not contained in any interval in } \mathscr{C}_k^I \cup \mathscr{C}_k^J\},\$ $\mathscr{C}^J_{k+1} = \mathscr{C}^J_k \cup \{J_{k+1,j} \subseteq S_0 : J_{k+1,j} \text{ is not contained in any interval in } \mathscr{C}^I_k \cup \mathscr{C}^J_k\};$ and let

> S_1^I = union of all intervals in $\mathscr{C}_{K_1}^I$, $S_1 =$ union of all intervals in $\mathscr{C}_{K_1}^J$.

Next let $\mathscr{C}_{1+K_1}^I$ be the collection of all $I_{1+K_1,j} \subseteq S_1$ and $\mathscr{C}_{1+K_1}^J$ be the collection of all $J_{1+K_1,j} \subseteq S_1$. And define for each $k, 1+K_1 \leq k \leq K_2-1$, $\mathscr{C}_{K+1}^I = \mathscr{C}_k^I \cup \{I_{k+1,j} \subseteq S_1 : I_{k+1,j} \text{ is not contained in any interval in } \mathscr{C}_k^I \cup \mathscr{C}_k^J\},\$ $\mathscr{C}_{K+1}^J = \mathscr{C}_{k}^J \cup \{J_{k+1,j} \subseteq S_1 : J_{k+1,j} \text{ is not contained in any interval in } \mathscr{C}_{k}^I \cup \mathscr{C}_{k}^J\},\$ S_2^I = union of all intervals in $\mathscr{C}_{K_2}^I$,

and

 $S_2 =$ union of all intervals in $\mathscr{C}_{K_2}^J$.

Clearly $S_2^I \subseteq S_1$ and $S_2 \subseteq S_1$.

Continue this procedure to obtain $\mathscr{C}_{K_3}^I$, $\mathscr{C}_{K_3}^J$, S_3^I and S_3 , ..., and so on, and let

$$
S=\bigcap_{1}^{\infty}S_m.
$$

To construct $\mu \in \mathcal{D}_d$ with $\mu(S) > 0$, we shall use scale invariant versions of Lemma 3 and the following lemma repeatedly.

Lemma 4. Given $a, \alpha, \beta \in (0, 1)$ with $\alpha^a + \beta < 1/16$ and $c_1, c_2 \in (\frac{1}{2})$ $(\frac{1}{2}, 2)$, there exists a measure $\mu \in \mathscr{D}_d(10^{1/a})$, which satisfies $\mu([0,1]) = 1$, $\mu([0,\alpha]) =$ $c_1 \alpha^a$, and $\mu([1 - \beta, 1]) = c_2 \beta$.

As an example, we may choose

$$
\mu([0,t]) = \begin{cases} c_1 t^a, & 0 \le t \le t_0 \equiv \left(\frac{1}{8}\right)^{1/a}, \\ \frac{1}{8}c_1 + \left(1 - \frac{1}{8}(c_1 + c_2)\right)(t - t_0)/(\frac{7}{8} - t_0), & t_0 \le t \le \frac{7}{8}, \\ c_2 t + 1 - c_2, & \frac{7}{8} \le t \le 1. \end{cases}
$$

Then extend μ periodically to **R** with period 1.

All measures μ_k defined below are periodic with period 1. Choose $\mu_{1+K_0} \in$ $\mathscr{D}_d(10^{1/a})$ so that

$$
\mu_{1+K_0}(L_{1+K_0,j}) = |L_{1+K_0,j}|,
$$

\n
$$
\mu_{1+K_0}(I_{1+K_0,j}) = |L_{1+K_0,j}|(1+K_0)^{-\delta},
$$

\n
$$
\mu_{1+K_0}(J_{1+K_0,j}) = |L_{1+K_0,j}|(1+K_0)^{-\varepsilon a}
$$

for each $0 \leq j \leq 2^{1+K_0} - 1$. After μ_k is selected for some $k, 1 + K_0 \leq k \leq K_1$, we choose $\mu_{k+1} \in \mathscr{D}_d(10^{1/a})$, so that $\mu_{k+1} = \mu_k$ on each interval in $\mathscr{C}_k^I \cup \mathscr{C}_k^J$, and μ_{k+1} is a redistribution of μ_k on each $L_{k+1,j}$ which is not contained in any interval in $\mathscr{C}_k^I \cup \mathscr{C}_k^J$:

(3.4)
$$
\mu_{k+1}(L_{k+1,j}) = \mu_k(L_{k+1,j}),
$$

(3.5)
$$
\mu_{k+1}(I_{k+1,j}) = (1+k)^{-\delta} \mu_{k+1}(L_{k+1,j}),
$$

(3.6)
$$
\mu_{k+1}(J_{k+1,j}) = (1+k)^{-\varepsilon a} \mu_{k+1}(L_{k+1,j}).
$$

The measure μ_{K_1} so chosen has the properties that

$$
\mu_{K_1}(S_1^I \cup S_1) = 1 - \prod_{1+K_0}^{K_1} (1 - k^{-\varepsilon a} - k^{-\delta})
$$

and

$$
\mu_{K_1}(S_1) \ge \mu_{K_1}(S_1^I \cup S_1) \inf_{1 + K_0 \le k \le K_1} \frac{k^{-\varepsilon a}}{k^{-\varepsilon a} + k^{-\delta}}
$$

$$
\ge \left(1 - \prod_{1 + K_0}^{K_1} (1 - k^{-\varepsilon a})\right) (1 - K_0^{\varepsilon a - \delta}),
$$

because $\varepsilon a < \delta$.

Next choose $\mu_{1+K_1} \in \mathscr{D}_d(10^{1/a})$ so that $\mu_{1+K_1} = \mu_{K_1}$ on $S_0 \setminus S_1$, and on each $L_{1+K_{1},j} \subseteq S_1$ it is a redistribution of μ_{K_1} satisfying (3.4), (3.5) and (3.6) with $k = K_1$. After μ_k is constructed for some $k, 1 + K_1 \leq k < K_2$, build μ_{k+1} from μ_k following the same steps as in the case $1 + K_0 \leq k \leq K_1$. The dyadic doubling measure μ_{K_2} so obtained belongs to $\mathscr{D}_d(10^{1/a})$, moreover

$$
\mu_{K_2}(S_2^I \cap S_2) = \left(1 - \prod_{1+K_1}^{K_2} (1 - k^{-\varepsilon a} - k^{-\delta})\right) \mu_{K_1}(S_1),
$$

and

$$
\mu_{K_2}(S_2) \ge \mu_{K_2}(S_2^I \cup S_2) \inf_{1+K_1 \le k \le K_2} \frac{k^{-\varepsilon a}}{k^{-\varepsilon a} + k^{-\delta}}
$$

\n
$$
\ge \mu_{K_2}(S_2^I \cup S_2)(1 - K_1^{\varepsilon a - \delta})
$$

\n
$$
\ge \left(1 - \prod_{1+K_0}^{K_1} (1 - k^{-\varepsilon a})\right) \left(1 - \prod_{1+K_1}^{K_2} (1 - k^{-\varepsilon a})\right) (1 - K_0^{\varepsilon a - \delta})(1 - K_1^{\varepsilon a - \delta}).
$$

Whenever μ_{K_m} is constructed, keep $\mu_{1+K_m} = \mu_{K_m}$ on $S_0 \setminus S_m$, redistribute the mass on each $L_{1+K_m,j} \subseteq S_m$ according to (3.4), (3.5) and (3.6) with $k =$ K_m , and keep the dyadic doubling constant bounded by $10^{1/a}$. Continue this indefinitely. Thus, we obtain a sequence of measures $\mu_{K_m} \in \mathscr{D}_d(10^{1/a})$, with $\mu_{K_m}([0,1]) = 1$ and

$$
\mu_{K_m}(S_m) \ge \prod_{i=0}^{m-1} ((1 - K_i^{\varepsilon a} - \delta)(1 - A_i))
$$

where $A_i = \prod_{1+K_i}^{K_{1+i}} (1 - k^{-\varepsilon a})$. Let μ be a weak limit point of $\{\mu_{K_m}\}\$. Clearly $\mu \in \mathscr{D}_d(10^{1/a})$.

Since $\varepsilon a < 1$, it is possible to choose $\{K_i\}$ so that

(3.7)
$$
\sum_{i=1}^{\infty} K_i^{\varepsilon a - \delta} + \sum_{i=1}^{\infty} A_i < +\infty.
$$

With respect to this choice of $\{K_i\}$, we have $\mu(S) > 0$, hence $\mu \notin \mathcal{M}_d$.

It remains to show that $S \in \mathcal{N}$. Let $\nu \in \mathcal{D}$. Recall that $J_{k,j}$ and $I_{k,j+1}$ have the common boundary point $(j+1)/(2^{n_k})$; by the doubling property

$$
\nu(J_{k,j} \cup I_{k,j+1}) \ge A^{(\varepsilon - \delta) \log_2 k - 5} \nu(J_{k,j})
$$

for some $A > 1$ depending only on the doubling constant of ν . For $m \geq 2$, intervals in $\mathscr{C}_{K_m}^J \cup \{I_{k,j+1} : J_{k,j} \in \mathscr{C}_{K_m}^J\}$ ($\neq \mathscr{C}_{K_m}^J \cup \mathscr{C}_{K_m}^I$) may meet in their interiors; however, because of (3.3) , every point in $[0, 1]$ is covered by at most three such intervals. Therefore

$$
3\nu([0,1]) \ge \sum_{J_{k,j}\in\mathscr{C}_{K_m}^J} \nu(J_{k,j}\cup I_{k,j+1}) \ge A^{(\varepsilon-\delta)\log_2 K_{m-1}-5} \nu(S_m)
$$

$$
\ge A^{(\varepsilon-\delta)\log_2 K_{m-1}-5} \nu(S).
$$

Hence $\nu(S) = 0$. Therefore $S \in \mathcal{N} \setminus \mathcal{N}_d$. Let

$$
T = \left\{ t = \sum_{n=1}^{\infty} t_n 2^{-n}, \text{ where } t_n = 0 \text{ or } 1,
$$

but $t_{n_k + [\delta \log_2 k] + 1} = 1$ and $t_{n_k + [\delta \log_2 k] + 2} = 0$
for each integer $k > K_0$.

In view of (3.1), it has Hausdorff dimension 1.

Fix $t \in T$ and $\nu \in \mathscr{D}_d$ and let $J_{k,j}$ be any interval in $\mathscr{C}_{K_m}^J$. We note that

$$
\frac{p+\frac{1}{2}}{2^{n_k} \dot{k}^{\delta}} < t + \frac{j+1}{2^{n_k}} < \frac{p+\frac{3}{4}}{2^{n_k} \dot{k}^{\delta}}
$$

for some integer p , because

$$
q+\tfrac{1}{2}
$$

for some integer q .

Therefore $t + J_{k,j}$ is contained in the middle half of some dyadic interval

$$
M_{k,j} = \left[\frac{p}{2^{n_k} \dot{k}^\delta}, \frac{p+1}{2^{n_k} \dot{k}^\delta}\right].
$$

Recall that the interval $I_{k,j+1}$ shares an end point $(j+1)/2^{n_k}$ with $J_{k,j}$ and has length $1/2^{n_k} \dot{k}^{\delta}$. Therefore

$$
\left| (t+I_{k,j+1}) \cap M_{j,k} \right| > \frac{1}{4} \frac{1}{2^{n_k} \dot{k}^{\delta}}.
$$

The dyadic doubling property of ν , (3.2) and Lemma 1,

$$
\nu(t + (J_{k,j} \cup I_{k,j+1}) \cap M_{k,j}) \ge c(k,\nu)\nu(t + J_{k,j})
$$

with $c(k,\nu) \to \infty$ as $k \to \infty$. Summing over all $J_{k,j}$ in $\mathscr{C}_{K_m}^J$ and reasoning as before, we obtain

$$
3\nu([0,1]) \ge c(K_{m-1},\nu)\nu(t+S_m) \ge c(K_{m-1},\nu)\nu(t+S).
$$

Letting $m \to \infty$, we have $\nu(t + S) = 0$. This completes the proof of Theorem 4.

It would be interesting to characterize those t's so that $t + S$ is in \mathcal{N}_d . However this seems difficult.

To prove Theorem 5, we note that in the binary expansion of t , the event that a digit 1 is followed immediately by a digit 0 occurs infinitely often. Choose ε , δ and a as in Theorem 4, and $\{n_k\}$ depending on t, so that (3.1),

$$
t_{n_k + [\delta \log_2 k] + 1} = 1
$$
 and $t_{n_k + [\delta \log_2 k] + 2} = 0$

hold for each $k > k_0$. Let $S_t \equiv S$ in Theorem 4 associated with this sequence ${n_k}$. Then $S_t \in \mathcal{N} \setminus \mathcal{N}_d$. The proof of $t + S_t \in \mathcal{N}_d$ is similar to that in Theorem 4.

4. Null sets for p-harmonic measures

Consider the *p*-Laplace equation $(1 < p < \infty)$

$$
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) = 0
$$

in the half plane $\Omega \equiv \{x \in \mathbb{R}^2 : x_2 > 0\}$. For the definition and properties of p-harmonic measure (the harmonic measure for p -Laplacian) see [6; Chapter 10].

Let E be a compact set on $\partial\Omega$ which has positive p-harmonic measure for some p. Then there exists a nonconstant solution u $(0 \le u \le 1)$ of the p-Laplacian in Ω , with continuous boundary value 0 on $\partial\Omega \setminus E$.

Following [1], we may apply a linearization technique in [7] or an approximation technique in [4], and Theorem 4.5 in [3], to write

$$
u(x) = \int_{\partial \Omega} K(x, y) f(y) d\omega(y),
$$

where K is a limit of kernel functions and ω is a weak limit of harmonic measures at a fixed point, corresponding to a sequence of uniformly elliptic operators of nondivergence form in Ω , with ellipticity constants depending only on p. Moreover $ω$ has the doubling property and u has nontangential limit on $\partial Ω$ $ω$ -a.e.

Because u has zero boundary value on $\partial\Omega \setminus E$, $f(y) d\omega(y)$ is supported in E. This implies that $\omega(E) > 0$. Therefore, we have

Theorem 6. Compact sets in $\mathcal N$ are null sets for any p-harmonic measure with respect to the half plane $\{x \in \mathbb{R}^2 : x_2 > 0\}$.

Remark. Martio has defined a version of porosity and proved that a porous set on $\{x_2 = 0\}$ has zero $\mathscr A$ -harmonic measure with respect to all those nonlinear operators $\mathscr A$ on $\{x_2 > 0\}$ considered in [8]; p-Laplacians are examples of such operators. We do not know whether Theorem 6 can be extended to all such $\mathscr A$ -operators. However a compact set E on $\{x_2 = 0\}$ is $\mathscr A$ -harmonic measure null for all such $\mathscr A$ if it satisfies a stronger $\{a_n\}$ -porous condition for some $\{a_n\}$ $(\sum \alpha_n^K = \infty$ for all $K > 1$, namely, in defining $\{a_n\}$ -porosity, $E \cap E_{n,j}$ is required to lie in the middle $1 - 2\alpha_n$ portion of $E_{n,j}$ for each n and j. Proof follows by combining the original proof of Martio and that of Theorem 1.

References

- [1] Avil´es, P., and J. Manfredi: On null sets of p-harmonic measures. Preprint.
- [2] Beurling, A., and L. Ahlfors: The boundary correspondence under quasiconformal mappings. - Acta Math. 96, 1956, 125–142.
- [3] CARFFARELLI, L., E. FABES, S. MORTOLA, and S. SALSA: Boundary behavior on nongative solutions of elliptic operators in divergence form. - Indiana Univ. Math. J. 30, 1981, 621–640.
- [4] FABES, E., N. GAROFALO, S. MARÍN-MALAVE, and S. SALSA: Potential theory and Fatou theorems for some nonlinear elliptic operators. - Rev. Mat. Iberoamericana 4, 1988, 227–252.
- [5] Fefferman, R.A., C.E. Kenig, and J. Pipher: The theory of weights and the Dirichlet problem for elliptic equations. - Ann. Math. 134, 1991, 65–124.
- [6] HEINONEN, J., J. KILPELÄINEN, AND O. MARTIO: Nonlinear potential theory of solutions of degenerate elliptic equations. - Oxford University Press (to appear).
- [7] MANFREDI, J., and A. WEITSMAN: On the Fatou-theorem for p -harmonic functions. -Comm. Partial Differential Equations 13:6, 1988, 651–688.
- [8] Martio, O.: Harmonic measures for second order nonlinear partial differential equations. - In: Function spaces, differential operators and nonlinear analysis, L. Päivärinta (editor), Longman Scientific and Technical Publishers, 1989.

Received 17 December 1991