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DEGENERATION OF QUASICIRCLES:

INNER AND OUTER RADII OF

TEICHMÜLLER SPACES

John A. Velling

Brooklyn College, Department of Mathematics
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Abstract. A univalent function f : D → Ĉ with Schwarzian derivative having sup norm 2
can always be normalized to be arbitrarily close to log(1 + z)/(1 − z) on a given compact subset
of D . Using this, necessary and sufficient conditions for the Bers embedding of a Teichmüller
space (centered at a given surface) to have minimum possible inner radius are established in terms
of hyperbolic geometry of the given surface. These conditions are the existence of points with
arbitrarily large injectivity radius or simple closed geodesics with arbitrarily wide geodesic annular
neighborhoods.

1. Statements of the main results

Let Ω denote a domain in the complex plane. If f : Ω → Ĉ is a nonconstant
meromorphic function we let

(1.1) Sf (z) =
f ′′′

f ′
−

3

2

(f ′′

f ′

)2

denote the Schwarzian derivative of f . This is analytic on Ω if and only if f is
locally univalent. It satisfies the transformation law

(1.2) Sφ◦f◦ψ(z) = Sf

(

ψ(z)
)

· ψ′(z)2 + Sψ(z)

for φ ∈ Möb, the group of orientation preserving Möbius transformations of Ĉ .
Furthermore, Sf ≡ 0 if and only if f ∈ Möb.

Now let D denote the unit disk in C . Nehari [19] showed that if f : D → Ĉ

satisfies

(1.3) ‖Sf‖∞ = sup
z∈D

(1 − |z|2)2

4

∣

∣Sf (z)
∣

∣ ≤
1

2
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then f is univalent. We let Möb(D) denote the subgroup of Möb preserving D ,
and observe, from (1.2), that if ψ ∈ Möb(D) , then ‖Sf◦ψ‖∞ = ‖Sf‖∞ . Also
note from (1.2) that with respect to the Möb(D) changes of coordinates on D , Sf

is a quadratic differential on D . We denote by Q∞(D) the space of holomorphic
quadratic differentials on D which are bounded in the sense of (1.3). This is an
infinite dimensional complex Banach space.

Ahlfors and Weill [2] strengthened Nehari’s result by showing that if ‖Sf‖∞ <
1

2
then f(D) is a quasidisk, i.e. f extends continuously to S1 = ∂D , and f(S1)

is a quasicircle. In [6], Gehring and Pommerenke showed that if ‖Sf‖∞ = 1

2
then

f extends continuously to S1 and either f(D) is a Jordan domain (f(S1) is a

Jordan curve) or else f(D) is a region in Ĉ bounded between two circles tangent
at a point. Herein the first order of business is to identify the complete obstruction
to f(S1) being a quasicircle under the hypothesis that ‖Sf‖∞ = 1

2
.

If z ∈ C , let Re (z) and Im (z) denote the real and imaginary parts of z .
The univalent function

(1.4) f∗(z) = log
1 + z

1 − z
= 2 tanh−1 z (z ∈ D)

satisfies (1 − z2)2Sf∗(z) ≡ 2 and maps D onto the parallel strip

(1.5) T =
{

t : −
π

2
< Im (t) <

π

2

}

.

Any region between two circles tangent at a point can be mapped by a Möbius
transformation to T . If f : D → Ĉ has ‖Sf‖∞ = 1

2
we will show that this map

f∗ embodies the complete obstruction to f(S1) being a quasicircle.

Theorem 1. If f : D → Ĉ has ‖Sf‖∞ = 1

2
and f(S1) is not a quasicircle,

then there exist sequences of Möbius transformations {ψn ∈ Möb(D)}∞n=1 and
{φn ∈ Möb}∞n=1 such that the maps

(1.6) fn = φn ◦ f ◦ ψn: D → Ĉ

converge to f∗ uniformly on compacta.

This is proved in Section 2. In a similar vein we establish in Section 3

Theorem 2. If {fn: D → Ĉ}∞n=1 is a sequence of locally univalent functions
such that no fn is univalent, ‖Sfn

‖∞ < ∞ , and ‖Sfn
‖∞ ց 1

2
as n → ∞ ,

then there exist sequences of Möbius transformations,
{

ψn ∈ Möb(D)
}∞

n=1
and

{φn ∈ Möb}∞n=1 , and a sequence
{

rn ∈ (0, 1)
}∞

n=1
with rn → 1 as n → ∞ , such

that the maps given by

(1.7) gn(z) = φn ◦ fn
(

rnψn(z)
)

converge to f∗ uniformly on compacta.
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The author does not know whether the rn are actually needed in this theorem.
We apply Theorem 1 to a study of Teichmüller spaces to obtain several rather

immediate results. Theorems 3 and 4 below are essentially corollaries of Theorem 1
and known results. As such they are presented without formal proof.

Let R be a hyperbolic Riemann orbifold, i.e. if H2 denotes two dimensional
hyperbolic space with curvature ≡ −1 then R = H2/Γ where Γ is a discrete
group of isometries of H2 . Giving D the metric ds = 2 |dz|/

(

1−|z|2
)

makes D a
conformal model of H2 . In this case the group of orientation perserving isometries
of H2 is precisely Möb(D) . Discrete subgroups of Möb(D) are called Fuchsian
groups. Let Q∞(D; Γ) denote the subspace of Q∞(D) which is Γ-invariant, i.e.
A ∈ Q∞(D; Γ) if and only if A ∈ Q∞(D) and

(1.8) A
(

γ(z)
)(

γ′(z)
)2

= A(z) for all z ∈ D, γ ∈ Γ.

We will need the following equivalence, established but not stated in this form by
Nakanishi and Yamamoto in [18].

Theorem. [18] Let {Γn}
∞

n=1 be a sequence of Fuchsian groups. Then
for some α ∈ C (and hence for any α ∈ C) there exists a sequence

{

Sn ∈

Q∞(D; Γn)
}∞

n=1
converging uniformly to αdz2/(1 − z2)2 on compacta in D if

and only if the sequence of Riemann surfaces {Rn = D/Γn}
∞

n=1 has the prop-
erty that, for given r > 0 , eventually any Rn contains either an isometrically
embedded geodesic ball of radius r or a collar of width r about a simple closed
geodesic.

In this case we say that the Rn have either larger and larger balls or longer
and longer tubes.

Let Q∞(R) denote the complex Banach space of bounded quadratic differ-
entials on R . If R = D/Γ then this is canonically isomorphic to Q∞(D; Γ).
The Bers embedding BR: T(R) → Q∞(R) maps the Teichmüller space T(R)
of equivalence classes of marked Riemann surfaces quasiconformally equivalent to
R into Q∞(R) . This is an injection, realizing T(R) as a bounded domain in
Q∞(R) . For background on Bers’ embeddings of Teichmüller spaces, the reader
is referred to [3], a beautiful expository paper on this and related topics.

The inner radius i
(

T(R)
)

of T(R) is the supremum of radii of balls in

Q∞(R) centered at the origin which are contained in BR

(

T(R)
)

. A consequence
of the Ahlfors–Weill paper, [2], is that if R carries a hyperbolic metric of curvature
≡ −1 then

(1.9) i
(

T(R)
)

≥
1

2
whenever BR(T(R)) 6= {0}.

Throughout the paper we will assume this curvature condition.
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If Γ is an elementary group then we have equality in (1.9), [8]. On the other
hand it can be shown, following Gehring and Pommerenke [6], that the inequality
in (1.9) is strict for cofinite Γ ([12], [15]). A rather direct consequence of Theorem 1
and the result of [18] above is

Theorem 3. Let R be a hyperbolic surface such that i
(

T(R)
)

= 1

2
. Then

one of the following two conditions holds:

(O1) for any r > 0 , a hyperbolic geodesic ball of radius r embeds isometrically in
R , or

(O2) for any r > 0 , a collar of width r exists about some simple closed geodesic of
R .

If R satisfies either (O1 ) or (O2 ) of Theorem 3, we will say that R has either
big balls—(O1 )—or long tubes—(O2 ). Now if Γ is dissipative on S1 , R has
big balls. The following proposition is thus almost immediate, given information
available in [21].

Proposition 1. If R = D/Γ , where the action of Γ on S1 is dissipative,
then i

(

T(R)
)

= 1

2
and o

(

T(R)
)

= 3

2
.

As mentioned above, for any hyperbolic R , BR

(

T(R)
)

is a bounded domain

in Q∞(R) . We denote by o
(

T(R)
)

the outer radius of T(R) , i.e. the infimum

of radii of balls in Q∞(R) centered at the origin which contain BR

(

T(R)
)

. A
well-known theorem of Kraus [11] implies that

(1.10) o
(

T(R)
)

≤
3

2
.

In [18] it was shown that o
(

T(R)
)

= 3

2
if and only if either (O1 ) or (O2 ) of

Theorem 3 hold. In [16] and [17] it was shown that if either (O1 ) or (O2 ) hold on
R , then i

(

T(R)
)

= 1

2
. Thus we have

Theorem 4. For a given hyperbolic Riemann surface R , the following are
equivalent:

1. i
(

T(R)
)

= 1

2
;

2. o
(

T(R)
)

= 3

2
;

3. R has either big balls or long tubes.

Some consequences of these results will be discussed in Section 4.

It follows from [18] that for univalent f : D → Ĉ with either ‖Sf‖∞ = 1

2

for which f(D) is not a quasidisk, or ‖Sf‖∞ = 3

2
, whence f(D) is necessarily

not a quasidisk, we have a sequence {ψn ∈ Möb(D)}∞n=1 such that for some
α ∈ C , Sf◦ψn

→ αdz2/(1− z2)2 uniformly on compacta. We ask if the family of
quadratic differentials αdz2/(1 − z2)2 on D contain the complete obstruction to

any univalent map f : D → Ĉ having a quasidisk as its image. This is answered
in the negative in Section 5 by giving explicit examples. We have
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Theorem 5. There exist univalent maps f : D → Ĉ , with f(D) not
a quasidisk, such that for no sequence

{

ψn ∈ Möb(D)
}∞

n=1
does Sf◦ψn

→

αdz2/(1−z2)2 uniformly on compacta for any α ∈ C . Thus the special collection
of quadratic differentials αdz2/(1− z2)2 does not contain the full obstruction for
a simply connected domain uniformized by D to be a quasidisk.

It is with pleasure that Toshihiro Nakanishi is acknowledged for his sustained
and motivating interest in these topics, and Richard Schwartz for his lively par-
ticipation in related conversations. The referee is thanked for having helped make
this paper more readable.

2. Proof of Theorem 1

A domain Ω ⊂ C is said to have a c-accessible boundary if each w1 , w2 ∈ ∂Ω
can be joined by an open arc Aw1,w2

⊂ Ω such that

(2.1) min
j=1,2

|w − wj | ≤ c dist(w, ∂Ω) for w ∈ Aw1,w2
.

It follows that c ≥ 1.
Gehring and Pommerenke [5, Theorem III.2.3], [6] characterize quasicircles

via domains with c-accessible boundaries. In particular, we will need their

Lemma 1 [6]. Let Ω be a Jordan domain in Ĉ . That Ω is a quasidisk
is equivalent to the existence of a constant c such that, for all φ ∈ Möb with
φ(Ω) ⊂ C , the domains φ(Ω) have c-accessible boundaries. If Ω satisfies this,
then ∂Ω is a quasicircle with constant M ≤ 2c .

It follows that if Ω ⊂ Ĉ is a Jordan domain but not a quasidisk, then for
any c ≥ 1 there is some φ ∈ Möb (with φ(Ω) ⊂ C) such that for some w1 ,
w2 ∈ ∂φ(Ω), any curve Aw1,w2

⊂ φ(Ω) joining w1 to w2 has some w0 on it
satisfying

(2.2) min
j=1,2

|w0 − wj | > c dist
(

w0, ∂φ(Ω)
)

.

Assume now that we are given f : D → Ĉ with ‖Sf‖∞ = 1

2
and f(D) = Ω

not a quasidisk. Let c = n ∈ Z+ , and φn ∈ Möb take Ω into C such that the
conditions of the last paragraph hold. Giving φn(Ω) hyperbolic geometry, we take
w1,n , w2,n ∈ ∂φn(Ω), let Aw1,n,w2,n

be the hyperbolic geodesic joining w1,n and
w2,n in φn(Ω), and w0,n ∈ Aw1,n,w2,n

be such that (2.2) is satisfied. Then as (2.2)
is invariant under postcomposition by a complex affine transformation we may
assume φn is chosen so that w0,n = 0. Precomposing by a Möbius transformation
ψn , we let fn = φn ◦ f ◦ ψn and may assume that fn(−1) = w1,n , fn(1) = w2,n ,
and fn(0) = 0. As we still have freedom left in our choice of φn , we may also
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assume that f ′

n(0) = 1. It follows that in this case we have 1

4
≤ dist(w0, ∂Ω) ≤ 1,

[13, Section 28, Satz 6], so that

(2.3) min
j=1,2

|wj,n| >
n

4
.

We now establish the following

Lemma 2. If {fn: D → C}∞n=1 , normalized by fn(z) = z+ anz
2 +O(z3) , is

a sequence of maps satisfying ‖Sfn
‖∞ ≤ 1

2
, and

∣

∣fn(1)
∣

∣ ,
∣

∣fn(−1)
∣

∣ > n , then

(2.4) fn(z) → tanh−1 (z)

uniformly on compacta in D .

Immediate consequences of this are

1. Re
(

Sfn
(0)

)

→ 2,
2. an → 0, and
3. the verity of Theorem 1. (The fn given preceding Lemma 2 satisfy the criteria

of Lemma 2.)

To establish Lemma 2, we use a technique of Hawley and Schiffer [7] (see
also [6]). We precompose with h: T =

{

t ∈ C :
∣

∣ Im (t)
∣

∣ < 1

2
π
}

→ D given by
h(t) = tanh ( 1

2
t) . Let gn = fn ◦ h , so that

(2.5) gn(t) = t+ ant
2 +O(t3)

and

(2.6) Sgn
(t) = −

1

2
+

1

4

(

1 − h(t)2
)2

Sfn

(

h(t)
)

.

Evidently Re
(

Sgn
(t)

)

≤ 0 with equality if and only if Sfn

(

h(t)
)

= 2/
(

1−h(t)2
)2

.
It suffices to show

(2.7) gn → id

uniformly on compacta in T .
Defining

(2.8) vn(t) =
∣

∣g′n(t)
∣

∣

−1/2
for t ∈ R,

we note that since gn: T → C is univalent in T , vn never vanishes. Also

(2.9)
v′n
vn

= −
1

2
Re

(g′′n
g′n

)

,
v′′n
vn

−
(v′n
vn

)2

=
1

2
Re

( d

dt

g′′n
g′n

)

so that

(2.10) v′′n(t) = pn(t) · vn(t)

where

(2.11) pn(t) = −
1

2
Re

(

Sgn
(t)

)

+
1

2
Im

(g′′n(t)

g′n(t)

)2

≥ 0.

We now verify that (2.7) does indeed hold.
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Suppose that vn(1) ≥ 1 + ε . Assume for the moment that vn(t) ≥ 1 for
t ∈ (0, 1). The mean value theorem tells us that for some τn ∈ (0, 1), v′n(τn) = ε ,
so that v′n(1) ≥ ε . As vn is convex, vn(t) ≥ 1 + εt for t ≥ 1. Thus

∣

∣g′n(t)
∣

∣ ≤
(1 + εt)−2 , so that

(2.12) |w2,n| ≤

∫

∞

0

∣

∣g′n(t)
∣

∣ dt ≤ 1 +

∫

∞

1

1

(1 + εt)2
dt ≤ 1 +

1

ε
.

We see that 1

4
n ≤

(

1+(1/ε)
)

, or that n ≤ 4
(

1+(1/ε)
)

. Similarly if vn(−1) ≥ 1+ε

and vn(t) ≥ 1 for t ∈ (−1, 0), then n ≤ 4
(

1+(1/ε)
)

. The convexity of vn implies
that indeed vn(t) ≥ 1 on either t ∈ (−1, 0) or (0, 1), so that as n → ∞ we see
that vn(±1) → 1.

As we may, for any t ∈ R rather than just t = ±1, study in the same fashion
the behavior of vn(t) , this means that as n → ∞ , vn(t) → 1 for all t ∈ R .
Note that if {fn}

∞

n=1 is a sequence of positive convex functions on R such that
fn(0) = 1 for all n , and, for all t ∈ R , fn(t) → 1, then fn → 1 uniformly on
compact sets in R . We conclude that vn → 1 uniformly on compact sets in R .

It follows from the identity theorem that gn → id uniformly on compacta, as
desired.

3. Proof of Theorem 2

We pick rn so that Fn: D → Ĉ given by Fn(z) = fn(rnz) is univalent
on D but not on S1 . Such clearly exist, and that rn → 1 as n → ∞ follows
from an estimate of Kra and Maskit [10, Lemma 5.1]. Pick zz,1 , zn,2 ∈ S1 such
that Fn(zn,1) = Fn(zn,2) . Take ψn ∈ Möb(D) such that ψn(zn,1) = −1 and
ψn(zn,2) = 1. By pre- and post-composition with Möbius transformations we may
assume Gn(z) = φn ◦ Fn ◦ ψn(z) is univalent on D , extends holomorphically to
S1 , and Gn(−1) = Gn(1) = ∞ . Note that we still have two degrees of freedom
left in the choice of φn , one in the choice of ψn .

With h: T → D as in Section 2, let gn = Gn ◦h . We wish to choose φn , ψn
so that gn → id uniformly on compacta. As in Section 2, let vn = |g′n|

−1/2 .

Lemma 3. Let t ∈ R . As t→ ±∞ , vn(t) = O
(

exp (−|t/2|)
)

.

Proof of Lemma 3. With Gn as in the preceding paragraph, we let Vn(z) =
∣

∣G′

n(z)
∣

∣

−1/2
. As Gn has a pole at both ±1, G′

n has a double pole at both. Thus
Vn vanishes at ±1. One readily checks that

(3.1) vn(t) = Vn
(

h(t)
)

·
∣

∣

∣

dh

dt

∣

∣

∣

−1/2

with z = h(t) = tanh
( t

2

)

.

Thus, as Vn(z) = O
(

|z − 1|
)

as z → 1,

(3.2)

vn(t) = O
(

tanh ( 1

2
t) − 1

)

·O
(

cosh ( 1

2
t)

)

= O(e−t) ·O(et/2)

= O(e−t/2)

as t→ ∞.
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Since the same argument works as t→ −∞ , the lemma is established.

Lemma 4. For any fixed φn such that our normalization holds,

(3.3) max
t∈R

vn(t)

is defined and 6= ∞ , independent of the freedom of choice of ψn .

Proof of Lemma 4. By Lemma 3, there exists a maximum over R for vn(t) .
Our choice of ψn is determined up to post-composition by an element of Möb(D)
fixing 1 and −1. Since if ψ ∈ Möb(D) fixes both 1 and −1, ψ ◦ ψn ◦ h(t) =
ψn ◦ h(t + τ) for some fixed τ ∈ R , the proof of our lemma reduces down to
showing that maxt∈R vn(t) = maxt∈R vn(t + τ) . But this is immediate, proving
the lemma.

We now choose ψn so that the maximum in (3.3) occurs at t = 0, and choose
φn so that gn(0) = 0, g′n(0) = 1.

Since the gn are univalent on T and normalized as in the last paragraph, we
consider any convergent subsequence (still called {gn}

∞

n=1 for convenience) which
converges uniformly on compacta in T . Then vn also converges uniformly on
compacta in T . Let g∗ be the limit of the gn , and v∗ the limit of the vn . As in
(2.8), v∗ satisfies an ODE

(3.4) (v∗)′′(t) = p∗(t) · v∗(t),

where p∗ ≥ 0. Thus v∗ is convex for t ∈ R .
Noting that if

{

fn: R → [0, 1], fn(0) = 1
}∞

n=1
is a sequence of continuous

functions which converge pointwise to a convex function f∗ , then f∗ ≡ 1, we
deduce that v∗ ≡ 1. As this limit is independent of the subsequence chosen in
the last paragraph from the original sequence {gn}

∞

n=1 , this completes the proof
of the theorem.

4. Some consequences

Let R1 and R2 be two quasiconformally equivalent hyperbolic Riemann sur-
faces. If R1 satisfies either condition (O1 ) or (O2 ) then R2 does also: if R1

has big balls then the fact that K -quasiconformal maps are bi-Hölder of exponent
1/K (see [1, Chapter 1]) implies that R2 does as well, and R1 having long tubes
is equivalent to annuli of arbitrarily large moduli being embedded in R1 —a prop-
erty which is preserved by quasiconformal deformation (see [4, p. 159]). We may
thus say that the satisfaction of (O1 ) or (O2 ) is determined by the underlying
quasiconformal structure, and have

Corollary 1. If R is a quasiconformal hyperbolic surface and R1 , R2 are
two conformal structures on R compatible with its quasiconformal structure, then
the following conditions are equivalent:
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1. i
(

T(R1)
)

= 1

2
;

2. o
(

T(R1)
)

= 3

2
;

3. i
(

T(R2)
)

= 1

2
;

4. o
(

T(R2)
)

= 3

2
;

5. R has big balls or long tubes (in the sense of Theorem 3), independent of
the compatible complete hyperbolic structure.

Following this line of thought, we let K1/3 denote the middle thirds Cantor

set, and Ĉ \ K1/3 its complement in the number sphere. As this hyperbolic
Riemann surface is quasiconformally equivalent to a normal cover of a genus two
surface, with Z ∗ Z acting as the group of deck transformations (see [22] for the

construction), we have that hyperbolically Ĉ \ K1/3 satisfies neither (O1 ) nor
(O2 ). This yields

Corollary 2. For the Riemann surface Ĉ\K1/3 one has i
(

T(Ĉ\K1/3)
)

> 1
2

and o
(

T(Ĉ \K1/3)
)

< 3

2
.

Theorems 3 and 4 may be seen to hold in the more general case of sequences
of Riemann surfaces. One has, in particular,

Corollary 3. Let {Rn}
∞

n=1 be a sequence of hyperbolic Riemann surfaces.
The following are equivalent:

1. i
(

T(Rn)
)

→ 1

2
;

2. o
(

T(Rn)
)

→ 3

2
;

3. as n → ∞ the Rn have either larger and larger balls or longer and longer
tubes (in the sense of the result of [18] mentioned in Section 1).

For a hyperbolic Riemann surface R , T(R) depends only on the conformal
type of R , not on any marking. Thus we may consider i

(

T(R)
)

and o
(

T(R)
)

as functions on the moduli space of unmarked Riemann surfaces quasiconformally
equivalent to R . In the case where R has finite hyperbolic area, is of genus g , and
has n punctures, we denote by M g,n this moduli space. Mumford [14] showed
that if {Rk ∈ M g,n}∞k=1

is a sequence of Riemann surfaces leaving every compact
set in M g,n , then the Rn are developing short geodesics. By the collar lemma
(see [9]) this implies that the Rn are developing long tubes. In this finite volume
case, the converses also clearly hold. Thus one has

Corollary 4. i
(

T(Rn)
)

→ 1

2
and o

(

T(Rn)
)

→ 3

2
if and only if the {Rn}

∞

k=1

eventually leave every compacta in M g,n .

Finally we note that these results hold, with little modification, for hyperbolic
orbifolds, i.e. R = D/Γ where Γ may have elliptic elements.
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5. Obstructions to quasidisk-hood may be quite complicated

We now examine in a somewhat more general setting the obstruction to a
simply connected domain being a quasidisk. First note that the set of α ∈ C such
that αdz2/(1− z2)2 is the Schwarzian derivative of a map from D to a quasidisk
forms the interior of the bounded set bordered by the cardioid

Λ =
{

α = 2(1 − re2iθ) : r = 4 cos2 θ, 0 ≤ θ ≤ π
}

,

in C . For α exterior to this cardioid, any map from D to Ĉ having αdz2/(1−z2)2

as its Schwarzian is not even univalent (see [8]). We saw in Theorem 1 above that

for univalent maps f : D → Ĉ with ‖Sf‖∞ ≤ 1

2
the point α = 2 on Λ embodies

the entire obstruction to f(D) being a quasidisk. (Never mind the fact that all

such maps are a priori univalent.) It was seen in [18] that if f : D → Ĉ is univalent
with ‖Sf‖∞ = 3

2
then the point α = −6 embodies the obstruction to f(D) being

a quasidisk.
Now consider the space of oriented simply connected domains Ω in Ĉ which

are uniformized by D . We say two such domains are equivalent, denoted by
Ω1 ∼ Ω2 , precisely when there is some φ ∈ Möb such that Ω2 = φ(Ω1) . The space
of such domains mod ∼ is naturally parametrized by the Schwarzian derivatives
of Riemann mappings to the Ω, mod precomposition by elements of Möb(D) .
We have the following straightforward consequence of the Nakanishi–Yamamoto
theorem

Corollary 5. There exists a quasidisk Ω such that no sequence of uniformiz-
ing maps fn: D → Ω has the property that for some α ∈ C , Sfn

→ αdz2/(1−z2)2

uniformly on compacta in D .

Proof. Such a quasidisk may be taken to be one of the components of the
domain of discontinuity of a quasifuchsian group uniformizing two conformally
distinct, quasiconformally equivalent marked finite hyperbolic area Riemann sur-
faces. As the geometries of the two surfaces are finite and fixed, neither big balls
nor long tubes exist.

This allows us to show the following, which includes Theorem 5 of the intro-
duction.

Theorem 5 ′ . There exists a simply connected non-quasidisk domain Ω
uniformized by D such that

1. no sequence of uniformizing maps fn: D → Ω has the property that for some
α ∈ C , Sfn

→ αdz2/(1 − z2)2 uniformly on compacta in D ,
2. for any uniformizing map f : D → Ω , there exists a sequence of quasidisks Ωk

and uniformizing maps gk: D → Ωk such that gk → f uniformly on compacta
in D (and, moreover, Sgk

→ Sf in the topology of (1.3)) .
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Thus the special collection of quadratic differentials αdz2/(1 − z2)2 does not
contain the full obstruction for a simply connected domain uniformized by D to
be a quasidisk.

Proof. For an example here, take a totally degenerate group on the boundary
of Bers’ embedding of Teichmüller space for a finite hyperbolic area Riemann
surface. Once again, the finite geometry of the surface does not allow for big balls
or long tubes. In fact, one may use Corollary 4 to show that ‖Sf‖∞ may be taken
arbitrarily close to either 1

2
or 3

2
.

Addendum. Since the writing of this article, Ohtake’s [20] has appeared,
containing related results.

References

[1] Ahlfors, L.: Lectures on quasiconformal mappings. - Van Nostrand–Reinhold, 1966.

[2] Ahlfors, L., and G. Weill: A uniqueness theorem for Beltrami equations. - Proc. Amer.
Math. Soc. 13, 1962, 975–978.

[3] Bers, L.: Finite dimensional Teichmüller spaces and generalizations. - Bull. Amer. Math.
Soc. 5, 1981, 131–172.

[4] Gardiner, F.: Teichmüller theory and quadratic differentials. - Wiley Interscience, 1987.

[5] Gehring, F.: Characteristic properties of quasidisks.- Sém. Math. Sup., 1982.

[6] Gehring, F., and C. Pommerenke: On the Nehari univalence criterion and quasicircles.
- Comment. Math. Helv. 59, 1984, 226–242.

[7] Hawley, N., and M. Schiffer: Half-order differentials on Riemann surfaces. - Acta
Math. 115, 1966, 199–236.

[8] Kalme, C.: Remarks on a paper by Lipman Bers. - Ann. Math. 91, 1970, 601–606.

[9] Keen, L.: Collars on Riemann surfaces. - Discontinuous Groups and Riemann Surfaces,
Ann. of Math. Stud. 79, 1974, 263–268.

[10] Kra, I., and B. Maskit: Remarks on projective structures. - Riemann Surfaces and
Related Topics: Proceedings of the 1978 Stony Brook Conference, Ann. of Math.
Stud. 97, 1980, 343–359.
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