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Abstract. The heights of simple closed loops with respect to a holomorphic quadratic
differential play an important role on compact Riemann surfaces. Here, the analogue is developed
for quadratic differentials of finite norm in the disk. The height of a loop is replaced by the height
of a cross cut, which is the same as the vertical distance, with respect to the q.d., of its end points.

1. Introduction

1.1. Let ϕ 6= 0 be a holomorphic quadratic differential in the unit disk

D :=
{

z; |z| < 1
}

. It defines invariant length elements
∣

∣ϕ(z)
∣

∣

1/2|dz| and area

elements
∣

∣ϕ(z)
∣

∣ dx dy , z = x+ iy .
The ϕ-length of an arc γ is

|γ|ϕ :=

∫

γ

∣

∣ϕ(z)
∣

∣

1/2|dz|,

and the ϕ-distance of a pair of points z1 , z2 is equal to

dϕ[z1, z2] := inf
{γ}

|γ|ϕ,

where γ varies over all arcs connecting the two points. The ϕ-area of a point set
E ⊂ D is the integral

∫∫

E

∣

∣ϕ(z)
∣

∣ dx dy,

and the ϕ-area of D is the L1 -norm of ϕ ,

‖ϕ‖ =

∫∫

D

∣

∣ϕ(z)
∣

∣ dx dy.

Throughout this paper we will speak about quadratic differentials of finite norm.
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Besides that ϕ also defines an element of height

∣

∣

∣
Im

{

ϕ(z)1/2dz
}

∣

∣

∣

and one of horizontal length

∣

∣

∣
Re

{

ϕ(z)1/2dz
}

∣

∣

∣
.

Since the last expression is equal to the first one for the differential −ϕ , it is
enough to look at the elements of height. Similarly as for lengths we can define
the ϕ-height of an arc γ by

hϕ(γ) :=

∫

γ

∣

∣

∣
Im

{

ϕ(z)1/2dz
}

∣

∣

∣

and the vertical distance or the ϕ-height of a pair of points z1 , z2 by

hϕ[z1, z2] := inf
{γ}

hϕ(γ),

with the same meaning of {γ} as before (see Definition 2.1 below).

For a better visualization of the different quantities we introduce, locally and
away from the zeroes, the integral of the square root of ϕ ,

w = u+ iv = Φ(z) =

∫ z
√

ϕ(z) dz.

The elements of the multivalued function Φ are well defined up to the transfor-
mation

Φ2(z) = ±Φ1(z) + const .

The elements of length

|dw| =
∣

∣ϕ(z)
∣

∣

1/2|dz|

and of height

|dv| =
∣

∣

∣
Im

{
√

ϕ(z) dz
}

∣

∣

∣

are well defined. The height of an arc γ is nothing but the total variation of the
multivalued harmonic function v along γ . If we introduce w as local parame-
ter instead of z , the elements of length and of height become Euclidean, as the
expressions show, however with branchings in the large.
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1.2. Let D be the closed unit disk |z| ≤ 1 and assign a finite number of points
ζ1, . . . , ζN on ∂D . We call D together with the distinguished points ζi a polygon
P , an N -gon in this particular case. The ζi are its vertices and the intervals on
∂D between the vertices its sides or edges. A quadratic differential ϕ is said to
belong to P , if it is meromorphic in D , with at most simple poles at the vertices,
and real along the sides of P (i.e. ϕ(z) dz2 real for tangential dz ).

It is easy to see (e.g. by means of a conformal mapping of D onto the upper
half plane) that ϕ can be continued to Ĉ by reflection on ∂D . The continuation
is a quadratic differential with closed trajectories which sweep out a finite number
of disjoint annuli (for details see [1]). Each annulus is split into a symmetric pair
of quadrilaterals by two subintervals of different sides of P , separated by at least
two vertices. The quadrilaterals in D are called horizontal strips Si . They are
mapped onto Euclidean rectangles

0 < u < ai, 0 < v < bi

by a branch of w = u+ iv = Φ(z) . If we choose a trajectoryαi out of each open
strip Si , we get a system of disjoint cross cuts of D . Each cross cut connects two
different sides of P , separated by at least two vertices, and different ones connect
different pairs of sides.

Conversely, it was shown by H. Renelt and, simultaneously, by J. Hubbard
and H. Masur (1976), that one can prescribe a system of Jordan arcs γi which
are cross cuts in the above sense, and the numbers bi > 0. Then, there exists a
unique quadratic differential ϕ , associated with the N -gon P and such that its
trajectories are homotopic to the given cross cuts γi and the heights of its strips
(or cylinders) are the given numbers bi . (For a proof and references to the original
literature see [1]).

This theorem can be used to set up a bijection of the differentials of two
different polygons. Let P and P ∗ be two N -gons. Given an order preserving
correspondence of the vertices (and hence of the sides) of P and P ∗ , we assign
to each polygon differential ϕ of P a polygon differential ϕ∗ of P ∗ by the re-
quirement that the strips of ϕ and ϕ∗ connect corresponding sides of P and P ∗

respectively and that corresponding strips have the same heights (measured in the
ϕ- and ϕ∗ -metric respectively). This determines the “mapping by heights” for
two given polygons with a given correspondence of the vertices.

As an example, let us consider two pentagons P and P ∗ . The quadratic
differentials ϕ and ϕ∗ associated with them are the squares of the derivatives of
conformal maps w = Φ(z) , w∗ = Φ∗(z∗) respectively, mapping the pentagons
onto bus like figures with the same heights of the upper and of the lower parts
(Figure 1). The vertices go over into the corners pointing outwards. In terms
of the parameters w and w∗ we have, by the transformation rule for quadratic
differentials, ϕ ≡ ϕ∗ ≡ 1. The basic theorem says that the numbering of the
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Figure 1.

corners and the heights of the two pieces can be given, but then the shape of a
“bus” is uniquely determined.

1.3. The purpose of this note is to generalize this mapping for arbitrary
quasisymmetric homeomorphisms of the boundary of the unit disk. Rather than
heights of strips, which do not exist in the general case, we consider vertical dis-
tances (or heights) of pairs of boundary points. It is easy to see (using intersection
numbers) that the two polygon differentials ϕ and ϕ∗ induce the same vertical
distances of corresponding pairs of sides. (There is no correspondence of boundary
points, except for the vertices.)

Our main result will be, that every quasisymmetric selfmapping of the bound-
ary of the disk induces a selfmapping of the space of holomorphic quadratic dif-
ferentials of finite norm. Corresponding differentials ϕ and ϕ∗ determine the
same vertical distances of all corresponding pairs of boundary points, which is the
characteristic property of the mapping. The proof goes by approximation of dif-
ferentials by polygon differentials. The main ingredient is the notion of a totally
regular trajectory (see [2]). A trajectory α of ϕ is called regular, if it does not
tend, in any of its two directions, to a zero of ϕ . Otherwise it is called critical.
It is known that a regular trajectory of quadratic differential of finite norm has
two different end points on ∂D (for a proof see [1, Section 19]). A regular tra-
jectory α is called totally regular, if for any sequence of points {zn} tending to
a point z ∈ α and such that the trajectories αn ∋ zn are regular, αn → α in
the Euclidean metric of the disk D . It is shown in [2] that there can be at most
denumerably many regular trajectories which are not totally regular. Moreover, if
{ϕn} is a sequence of holomorphic quadratic differentials with uniformly bounded
norm which tends locally uniformly to a differential ϕ not identically equal to zero,
then the above statement is true with αn a trajectory of ϕn rather than of ϕ . It
will be shown that the vertical distance of two points is equal to the supremum
of the vertical distances of pairs of totally regular trajectories separating the two
points. This, together with the fact that the totally regular trajectories and their
vertical distances are invariant under the constructed mapping gives the result.
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For later use we state

Lemma 1.3. Let ϕ be an arbitrary holomorphic quadratic differential of
norm ‖ϕ‖ ≤ M < ∞ in the unit disk D : |z| < 1 . Let ζ be a boundary point of
D . Then, for any ε > 0 and ̺2 > 0 there exists a number ̺1 , 0 < ̺1 < ̺2 , such
that for some ̺ ∈ [̺1, ̺2]

L(̺) =

∫

σ̺

∣

∣ϕ(z)
∣

∣

1/2|dz| < ε,

with σ̺ =
{

z; |z − ζ| = ̺, z ∈ D
}

. Whereas ̺ depends on ϕ , ̺1 does not. (For
a proof see [2 , Lemma 1.1]) .

2. Heights (vertical distances)

2.1. Let ϕ 6= 0 be a holomorphic quadratic differential of finite norm in the
disk D : |z| < 1.

Definition 2.1. Let ζ1 and ζ2 be boundary points of D . The vertical
distance or height of the pair of points ζ1 , ζ2 with respect to ϕ is

hϕ[ζ1, ζ2] := inf
{γ}

∫

γ

|dv|,

where γ runs over all locally rectifiable open Jordan arcs in D with limit points
ζ1 and ζ2 respectively and v is the imaginary part of w = u + iv = Φ(z) =
∫ z √

ϕ(z) dz .

Similarly one defines the vertical distance of two interior points (where the
arcs γ are simply rectifiable Jordan arcs in D ) or the vertical distance of an
interior point and a boundary point.

The vertical distance of two point sets E1 and E2 is defined as usual:

hϕ[E1, E2] := inf
{

hϕ[z1, z2]; z1 ∈ E1, z2 ∈ E2

}

.

A special case is the vertical distance of a pair of horizontal geodesics α1 and
α2 . The height of a pair of points z1 ∈ α1 and z2 ∈ α2 does not depend on
their position, since one can add, to a curve γ connecting z1 and z2 , arbitrary
subintervals of α1 and α2 ending at z1 and z2 respectively (because dv = 0 along
any horizontal interval). We therefore have, for the vertical distance of α1 and
α2 ,

hϕ[α1, α2] = hϕ[z1, z2], z1 ∈ α1, z2 ∈ α2.

It follows from the fact that for any boundary point ζ of D there are circular
cross cuts of D , centered at ζ , with arbitrarily short ϕ-length (Lemma 1.3), that
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the vertical distance of z1 and z2 is also equal to the vertical distance of two end
points of the horizontal arcs.

It is immediate by computation of the norm using polar coordinates that
the distance of a boundary point ζ from the center (and hence from any interior
point z ) is finite for a.a. ζ ∈ ∂D . Since the vertical distance is smaller or equal
to the distance, this is also true for heights.

2.2. Lower semicontinuity of the vertical distance

Lemma 2.2. For any fixed
z0 ∈ D , ζ ∈ ∂D

lim inf
z→ζ

hϕ[z0, z] ≥ hϕ[z0, ζ].

Proof. It follows from the length area principle (Lemma 1.3), that there exists
a sequence of radii ̺n → 0 such that the ϕ-length |τn|ϕ of the circular cross cuts

τn :=
{

z ∈ D, |z − ζ| = ̺n
}

tends to zero. Therefore, for every positive ε , there exists a subsequence {τni
}

such that
∑

i

|τni
|ϕ < ε.

To simplify the notation, we call this subsequence {τn} again (Figure 2).

Figure 2.

Let us first consider the case where

hϕ[z0, τ0] + hϕ[τ0, τ1] + hϕ[τ1, τ2] + · · · = A <∞.

For a given ε > 0 we can find an arc γ0 connecting z0 with τ0 such that

hϕ(γ0) < hϕ[z0, τ0] +
ε

2
,
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and arcs γn connecting τn−1 with τn such that

hϕ(γn) < hϕ[τn−1, τn] +
ε

2(n+1)
,

n = 1, 2, . . .. The end points of γn−1 and γn on τn−1 are connected by a subin-
terval ∆τn−1 of τn−1 . Since

∞
∑

0

|τn|ϕ < ε,

we also have
∞
∑

0

|∆τn| < ε.

We thus get a curve γ , which we write

γ := γ0 + ∆τ0 + γ1 + ∆τ1 + γ2 + ∆τ2 + · · ·

connecting z0 with ζ which has height

hϕ[z0, ζ] ≤ hϕ(γ) < hϕ[z0, τ0] + hϕ[τ0, τ1] + · · ·+ 2ε = A+ 2ε.

On the other hand, there exists an index n such that

hϕ[z0, τn] ≥ hϕ[z0, τ0] + hϕ[τ0, τ1] + · · · + hϕ[τn−1, τn] > A− ε.

Therefore
hϕ[z0, τn] > hϕ[z0, ζ] − 3ε.

If z is separated from z0 by τn ,

hϕ[z0, z] ≥ hϕ[z0, τn],

which proves that
lim inf
z→ζ

hϕ[z0, z] ≥ hϕ[z0, ζ].

Let now

hϕ[z0, τ0] +

∞
∑

n=1

hϕ[τn−1, τn] = ∞.

Then, for any M <∞ there exists an index n such that

hϕ[z0, τn] ≥ hϕ[z0, τ0] +

n
∑

i=1

hϕ[τi−1, τi] > M,

which shows that
lim inf
z→ζ

hϕ[z0, z] = ∞.
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2.3. Connections of smallest height; step curves

Lemma 2.3. Let ϕ be a holomorphic quadratic differential in D . Then, any
shortest connection of two interior points of D has minimal height.

Proof. Let z0, z1 ∈ D and let γ0 be the shortest curve connecting the two
points. Then, γ0 is a geodesic and hence consists of ϕ-straight pieces satisfying
the angle condition at the zeroes of ϕ (for details see [1, Theorem 8.1]). If γ0 is
horizontal, i.e. ϕ(z) dz2 ≥ 0 along γ0 , then hϕ(γ0) = 0, and thus γ0 has minimal
height. Otherwise, γ0 consists of non horizontal and possibly horizontal straight
segments. Let γ be an arbitrary connection of z0 and z1 . Choose a radius r < 1
such that the disk Dr =

{

z; |z| < r
}

contains both γ0 and γ . Mark the zeroes
of ϕ on γ0 and those points z on the non horizontal edges of γ0 which lie on a
relatively critical trajectory (i.e. one which meets a zero of ϕ before hitting the
circle |z| = r ). There can be only finitely many markings on γ0 . The trajectories
going through non marked points on γ0 are cross cuts of Dr which separate z0 and
z1 . They sweep out finitely many horizontal strips Si of height bi , say, mapped
conformally onto Euclidean horizontal strips by any branch of Φ. Each strip is
passed once (of course in general not vertically) by γ0 . Since the horizontal pieces
of γ0 have height zero, hϕ(γ0) =

∑

bi .
On the other hand, γ must cross every strip Si . Therefore, by Euclidean

geometry in the w -plane, hϕ(γ) ≥ ∑

bi .
Of course, there is no uniqueness of connections of minimal height, as there

is for curves with minimal length. Since, locally, there always exists a shortest
connection (see [1, Theorem 8.1]) we have the following

Corollary 2.3. Every point z has a neighborhood U(z) with the property
that any two points z0, z1 ∈ U(z) can be joined by an arc of minimal height in
U(z) .

We will later work with connections of a special type.

Definition 2.3. A step curve (with respect to ϕ) is a curve which consists
of horizontal (ϕ(z) dz2 ≥ 0) and vertical (ϕ(z) dz2 ≤ 0) pieces.

Figure 3.
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It is easy to see, that, locally, there always exists a connecting step curve
of minimal height. It may have to pass through a zero of ϕ . On the other
hand, there always exists a step curve connection avoiding the zero, and of height
arbitrarily close to the minimum. The preceding picture shows connections of
minimal height in a neighborhood of a third order zero (Figure 3). The arcs consist
of two horizontal and one vertical (dotted) or two vertical and one horizontal pieces.
If the two points are not in adjacent sectors, the connecting arc of minimal height
goes through the zero in the center of the disk.

Of course, a union of step curves is again a step curve. The following is
therefore clear.

Theorem 2.3. Let ϕ 6= 0 be holomorphic in D , z0, z1 ∈ D . Then, every
curve γ connecting z0 and z1 can be replaced by a step curve γ which is contained
in an arbitrarily small neighborhood of γ and has height

hϕ(γ) ≤ hϕ(γ).

An approximation by a step curve γ avoiding the zeroes of ϕ is possible with
height

hϕ(γ) < hϕ(γ) + ε,

for every ε > 0 .

3. Heights and separating trajectories

3.1. The vertical distance of two points can be expressed in terms of the
totally regular trajectories separating them. We begin with the case where the
two points are in D .

Theorem 3.1. The vertical distance of two points z0, z1 ∈ D is zero if and
only if there is no totally regular trajectory which separates them.

Figure 4.
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Remark. As the preceding picture (Figure 4) shows, the statement is wrong
for regular but not totally regular trajectories. The two points z0, z1 have vertical
distance zero, although they are separated by the regular trajectory α . The two
points lie on regular trajectories α0 and α1 respectively, which have an end point
in common with α . Note that a totally regular trajectory cannot have an end
point in common with another trajectory.

Proof. Assume first that α is totally regular and separates the two points.
Then, there are totally regular trajectories α̃ in every neighborhood (in the Eu-
clidean metric of D ) of α . If we choose α̃ in a sufficiently small neighborhood of
α , it also separates the two points. Therefore all curves γ connecting z0 and z1
have a subinterval that connects α and α̃ . Clearly, α and α̃ have positive vertical
distance, and thus

hϕ[z0, z1] ≥ hϕ[α, α̃] > 0.

Addendum. A similar argument works if α passes through z0 , but not
through z1 . Then, α̃ is chosen such that it separates α from z1 . We therefore
have:

If hϕ[z0, z1] = 0, no totally regular trajectory α can separate the two points
nor pass through one of the points without passing through the other.

It is evident, that the above proof also works if one of the points or both are
boundary points of D . We will therefore not repeat it further down.

The converse is a consequence of the following

Lemma 3.1 (Trimming lemma). Assume that no totally regular trajectory
separates z0 from z1 . Then, for every step curve γ connecting the two points and
every ε > 0 there exists a variation γ0 of γ with height hϕ(γ0) < ε .

Proof. If one of the two points lies on a totally regular trajectory σ , the other
one necessarily lies on the same (because otherwise we could find separating ones).
But then γ0 is the connecting subinterval of σ . We can therefore exclude this case
in the sequel.

We connect the two points by a step curve γ , consisting of horizontal and
vertical intervals αi and βi respectively and avoiding the zeroes of ϕ (except for
possible zeroes at the end points, of course). To fix the ideas, we write symbolically

γ = z0 + β0 + α1 + β1 + · · ·+ αN + βN + zN

calling the last point zN rather than z1 . We can always start and terminate with
a vertical interval, since γ is not assumed to have minimal height. Moreover, by
arbitrarily small shifts, if necessary, we can achieve that the horizontal intervals
αi lie on totally regular trajectories (which we also call αi ) none of which passes
through z0 or zN .
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Figure 5.

Choose a totally regular trajectory σ intersecting β0 in a point ζ near z0
(Figure 5). The curve γ has a last intersection ζ∗ with σ . The subinterval of γ
between ζ and ζ∗ , which we denote by (γ; ζ, ζ∗) , clearly increases monotonically,
if ζ → z0 , and hence the points ζ∗ have a limit z∗0 ∈ γ . This point is necessarily
an interior point of some vertical side βi of γ . Otherwise it would lie on a totally
regular trajectory, αi+1 , say, and hence z0 would lie on the same, which we have
excluded. The two pairs of points ζ, z0 and ζ∗, z∗0 have the same distance (which
is equal to their vertical distance). We choose σ such that it is smaller than ε/2N
and we replace the arc (γ; z0, z

∗
0) by (β0; z0, ζ) + (σ; ζ, ζ∗) + (βi; ζ

∗, z∗0) , which
means that we go, except for two short vertical intervals, along σ .

Now we look at the remaining arc (γ; z∗0 , zN ) of γ . Its two end points have
the property that there is no separating totally regular trajectory (because such a
trajectory would also separate z0 and zN ) and z∗0 cannot lie on a totally regular
trajectory, unless zN lies on the same. We therefore have the initial situation
and we can continue the trimming process. The two intervals on βi add to one
of length (height) less than ε/N . Because there are at most N steps necessary,
we have a step curve γ0 of height less than N · ε/N = ε which connects the two
points z0 and zN .

The theorem follows immediately: because ε > 0 is arbitrary, hϕ[z0, zN ] = 0.

3.2. We pass to the general case.

Theorem 3.2. Let z0, z1 ∈ D be points with the property that there exist
totally regular trajectories σ separating them. Then,

hϕ[z0, z1] = sup
σ′,σ′′

hϕ[σ′, σ′′],

where σ′ and σ′′ run over all totally regular trajectories which separate z0 and
z1 .

Proof. The inequality sign in one direction is evident. Take two arbitrary
totally regular trajectories σ′ , σ′′ separating z0 and z1 . Then, every curve γ
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connecting z0 with z1 has a subarc γ′ connecting σ′ and σ′′ . Therefore

∫

γ

∣

∣ϕ(z)
∣

∣

1/2|dz| ≥
∫

γ′

∣

∣ϕ(z)
∣

∣

1/2|dz| ≥ hϕ[σ′, σ′′],

and thus
hϕ[z0, z1] ≥ hϕ[σ′, σ′′].

We conclude that
hϕ[z0, z1] ≥ sup

σ′,σ′′

hϕ[σ′, σ′′].

To prove the converse inequality, connect z0 and z1 by a step curve γ as in
the proof of Lemma 3.1 (z1 = zN ).

Orient γ from z0 to zN . Let ζ ′ be the infimum and ζ ′′ the supremum of
the intersections of separating totally regular trajectories σ with γ . We claim
that both points are interior points of certain vertical intervals βi , except possibly
ζ ′ = z0 , ζ ′′ = zN . For, assume that ζ ′ is the end point of a βi (Figure 6). Then
αi+1 is itself a separating totally regular trajectory. All totally regular trajectories
σ in a neighborhood of αi + 1 are also separating, and ζ ′ cannot be the infimum.
If, on the other hand, ζ ′ is the initial point of βi , αi being totally regular cannot
separate the two points but must pass through z0 , which we have excluded. A
similar argument works for ζ ′′ .

Figure 6.

Let ζ ′ ∈ βi . For a given ε > 0 we choose a separating totally regular tra-
jectory σ′ intersecting βi in an ε-neighborhood of ζ ′ . Let ζ ′′ ∈ βk and choose a
totally regular trajectory σ′′ cutting βk in an ε-neighborhood of ζ ′′ . Let γ0 be
a step curve connecting σ′ and σ′′ with a height

hϕ(γ0) < hϕ[σ′, σ′′] + ε.

The subarc of γ connecting z0 with ζ ′ is not cut by any totally regular trajectory σ
separating z0 from ζ ′ , because σ would also separate z0 from zN . By Theorem 3.1
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one can therefore connect z0 and ζ ′ by a step curve γ′ of height < ε . Similarly,
we can connect ζ ′′ and zn by a step curve γ′′ of height < ε . Let τ ′ and τ ′′ be the
two vertical intervals connecting ζ ′ with σ′ and ζ ′′ with σ′′ respectively. They
have length and thus height smaller than ε . The step curve

γ̃ = γ′ + τ ′ + γ0 + τ ′′ + γ′′,

possibly with two subintervals of σ′ and σ′′ respectively, connects z0 with zN
and has height

hϕ(γ̃) < hϕ(γ0) + 4ε < hϕ[σ′, σ′′] + 5ε.

Since ε > 0 is arbitrary, this proves that

hϕ[z0, zN ] ≤ sup
σ′,σ′′

hϕ[σ′, σ′′],

and the theorem is proved.

3.3. In this section and the next one the results of Sections 3.1 and 3.2 are
generalized to boundary points of D .

Theorem 3.3. The vertical distance of an interior point z from a boundary
point r or of two boundary points r and s is positive if and only if there exists a
totally regular trajectory which separates them.

Proof. If there exists a totally regular trajectory σ separating the two points
or ending in one of them without tending, in the opposite direction, to the other
one, then hϕ > 0. This is proved as in 3.1.

The converse is first shown for an interior point and a boundary point. Let
hϕ[z, r] > 0. Choose a sequence of circular cross cuts τn :=

{

z ∈ D; |z− r| = ̺n
}

,
with ̺n → 0 and |τn|ϕ → 0. Because of the lower semicontinuity of the heights,
we can find, for a fixed 0 < A < hϕ[z, r] , an index n such that |τ |ϕ < 1

2
A and

hϕ[z, τn] > A . For any zn ∈ τn we clearly also have hϕ[z, zn] > A . According
to Theorem 3.2 there are two totally regular trajectories σ′ and σ′′ separating z
and zn such that hϕ[σ′, σ′′] > A . If one of these separates z and r , we are done.

Figure 7.
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Figure 8.

If none of them does, by topological reasons (Figure 7), both pass through
τn . Therefore hϕ[σ′, σ′′] ≤ |τn|ϕ < 1

2
A , a contradiction.

In the case of two boundary points r and s , we choose two circular cross cuts

τ ′ =
{

z ∈ D; |z − r| = ̺′
}

, τ ′′ =
{

z ∈ D; |z − s| = ̺′′
}

such that hϕ[τ ′, τ ′′] > A and |τ ′|ϕ < 1
2
A , |τ ′′|ϕ < 1

2
A , for some fixed 0 <

A < hϕ[r, s] . The vertical distance of two arbitrary points z′ ∈ τ ′ , z′′ ∈ τ ′′ is
hϕ[z′, z′′] > A . Then, there exist totally regular trajectories σ′ , σ′′ separating
the points z′ , z′′ and such that hϕ[z′, z′′] > A (Figure 8). If one at least of the
two separates r and s , we are done. If none does, they must both cut one of the
arcs τ ′ , τ ′′ . If both cut the same, we use the earlier argument. Otherwise we
choose a totally regular trajectory σ separating σ′ and σ′′ and such that both
hϕ[σ′, σ] > 1

2
A and hϕ[σ′′, σ] > 1

2
A (see Corollary 4.1). If σ does not separate

r and s , it must intersect at least one of the cross cuts τ ′ or τ ′′ . We then
find a contradiction as before. Thus, if hϕ[r, s] > 0 there exists a totally regular
trajectory separating the two points, as claimed.

3.4. The next theorem is the generalization of 3.2 to boundary points.

Theorem 3.4. Let r and s be boundary points of D . If there are totally
regular trajectories σ separating r and s , then

hϕ[r, s] = sup
σ′,σ′′

hϕ[σ′, σ′′],

the supremum being taken over all separating pairs of totally regular trajectories.
The same is true for an interior point z0 and a boundary point .

Proof. We start with the second case. Let z0 ∈ D , s ∈ ∂D . Let σ be
a totally regular trajectory separating z0 and s . Then, for all sufficiently small
̺ > 0 it also separates z0 from the circular cross cut

τ(̺) :=
{

z ∈ D; |z − s| = ̺
}

.
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From Theorem 3.2 we conclude that for any z ∈ τ(̺)

hϕ[z0, z] = sup
σ′,σ′′

hϕ[σ′, σ′′],

σ′ and σ′′ running over the totally regular trajectories separating z0 and z .

Figure 9.

Let now 0 < A < hϕ[z0, s] ≤ ∞ and ε > 0. There exists ̺ > 0 such that
∣

∣τ(̺)
∣

∣

ϕ
< ε and hϕ[z0, z] ≥ hϕ[z0, τ(̺)] > A . Let σ′ , σ′′ be totally regular

trajectories separating z0 and z and such that hϕ[σ′, σ′′] > A . If they do not
both separate z0 and s (Figure 9), choose σ separating σ′ from σ′′ with ε <
hϕ[σ, σ′′] < 2ε . Then, σ cannot cut τ(̺) . For, if it does, so does σ′′ , and hence
hϕ[σ, σ′′] ≤

∣

∣τ(̺)
∣

∣

ϕ
< ε , a contradiction. Therefore σ separates z0 and s , and

hϕ[σ′, σ] = hϕ[σ′, σ′′] − hϕ[σ, σ′′] > A− 2ε.

To show the same for two boundary points r and s , choose a separating
totally regular trajectory σ . Then, it is easy to see that

hϕ[r, s] = hϕ[r, σ] + hϕ[σ, s].

For, clearly the sign ≥ holds. On the other hand, any pair of arcs γ′ , γ′′ connect-
ing r with σ and σ with s respectively can be completed by a subinterval ∆σ of
σ to a curve γ = γ′ + ∆σ + γ′′ connecting r with s . Therefore

hϕ[r, s] ≤ hϕ(γ) = hϕ(γ′) + hϕ(γ′′),

which gives the inequality

hϕ[r, s] ≤ hϕ[r, σ] + hϕ[σ, s].
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Let now, for any A′ < hϕ[r, σ] , A′′ < hϕ[σ, s] , σ′ and σ′′ be totally reg-
ular trajectories separating r from σ and σ from s respectively and such that
hϕ[σ′, σ] > A′ and hϕ[σ, σ′′] > A′′ . Then,

hϕ[σ′, σ′′] = hϕ[σ′, σ] + hϕ[σ, σ′′] > A′ +A′′.

We end up with

sup
σ′,σ′′

hϕ[σ′, σ′′] ≥ hϕ[r, σ] + hϕ[σ, s] = hϕ[r, s].

Since the converse inequality is evident, the theorem is proved.

4. Convergence of heights

4.1. In order to prove the convergence of heights we have to give Theorem 3.2
a more constructive form.

Definition 4.1. Given a closed, regular (i.e. without zeroes of ϕ) vertical
interval β̃ with the property that the two trajectories σ and σ′ through its end
points are totally regular. Then, the domain bounded by σ and σ′ is called an
elementary horizontal strip S spanned by β̃ . It is denoted by (β̃; σ, σ′) .

S is said to separate the two points z, z′ ∈ D , if both σ and σ′ separate the
two points.

Let Sj , spanned by β̃j , be disjoint elementary strips separating the two points
z and z′ . Then, clearly

hϕ[z, z′] ≥
∑

j

|β̃j |.

Theorem 4.1. For every ε > 0 there exists a finite system of non overlapping
elementary strips Sj , spanned by β̃j , such that

hϕ[z, z′] <
∑

j

|β̃j | + ε.

Proof. Let

γ = z0 + β0 + α1 + β1 + · · ·+ αN + βN + zN

be a step curve connecting the two points z0 and z′ = zN . The βi are the vertical,
the αi the horizontal intervals. We may assume that γ does not go through a
zero of ϕ , with the possible exception of z0 and zN , and that the αi are lying on
different totally regular trajectories not going through an end point of γ .
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(1) Suppose that there are totally regular trajectories σ with intersection
ζ = σ ∩ β0 arbitrarily close to z0 which do not separate the two points. Let
ζ∗ be the last intersection of γ , oriented from z0 to zN , with σ . The point
z∗0 = limζ→z0 ζ

∗ is called the conjugate point of z0 . It follows from the above
assumptions about γ that z∗0 is, with exception of the trivial case z∗0 = zN , an
interior point of some βi . We denote the subarc of γ bounded by z0 and by z∗0
by (γ; z0, z

∗
0). As in the proof of Lemma 3.1, this subarc can be replaced by an arc

of height < ε/2N . We continue with the arc (γ; z∗0 , zN ) , which has at least one
vertical side less than γ , namely β0 . The totally regular trajectories separating
z∗0 and zN also separate z0 and zN .

Figure 10.

(2) Assume now that there is a half neighborhood of z0 on β0 which is cut
only by totally regular trajectories σ separating the two points z0 and zN . Let
η0 ∈ β0 be the supremum of all intersections ζ = σ ∩ β0 interior to β0 . Then,
every totally regular trajectory cutting β0 between z0 and η0 separates z0 and
zN . We get an elementary strip bounded by σ , with ζ = σ ∩ β0 near z0 and τ ,
η = τ ∩ β0 near η0 (Figure 10). Its spanning vertical interval is, in our notation,
β̃0 = (β0; ζ, η) . We choose the two points in such a way that the sum of the lengths
of the two vertical intervals [z0, ζ] and [η, η0] is less than ε/2(N + 1).

To find the remaining arc of γ , let η∗ be the last intersection of γ with τ ,
and let η∗0 = lim η∗ if η approaches η0 . Eventually, all η∗ lie on the same βi , and
the two vertical intervals [η, η0] and [η∗, η∗0 ] have the same length.

If η∗ ≡ η , i.e. the only intersection of τ with γ is the point η on β0 , we have
η∗0 = η0 . If η∗0 is an interior point of β0 , the curve γ̃ is the same as γ , subdivided
in the following way:

γ̃ = (β0; z0, ζ) + β̃0 + (β0; η, η0) + (γ; η0, zN ).

It easily follows from the requirements on γ that the arc (γ; η0, zN ) satisfies the
same conditions.
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If η0 = (β0 ∩ α1) , i.e. η0 is the end point of β0 , we set

γ̃ = (β0; z0, ζ) + β̃0 + (β0; η, η0) + α1 + (γ;α1 ∩ β1, zN ).

Again it is immediately clear that (γ;α1 ∩ β1, zN ) , i.e. the subarc of γ starting
with the initial point of β1 , satisfies the same conditions as γ itself.

Assume now that η∗ 6= η , i.e. that the totally regular trajectory τ intersects
γ again. Thus η∗0 6= η0 . It is easy to see that η∗0 must be an interior point of βi .
For, if it is the end point, η∗0 = βi ∩ αi+1 , η∗0 lies on a totally regular trajectory,
namely αi+1 , and η0 lies on the same. This trajectory must separate the two
points z0 and zN , because it cannot go through zN . If η0 is an interior point
of β0 , it therefore can be slightly pushed up, and if it is the end point, α1 and
αi+1 are lying on the same totally regular trajectory, which was excluded from
the beginning.

Likewise one shows that η∗0 cannot lie on a totally regular trajectory αj ,
j > i+ 1.

The new step curve is

γ = (β0; z0, ζ) + β̃0 + (τ ; η, η∗) + (βi; η
∗, η∗0) + (γ; η∗0 , zN ),

in words: starting at z0 we follow β0 to the lower side σ of the elementary strip
S , cross it along β0 , follow the upper side τ of S from η to η∗ , go on βi to
η∗0 , which is the initial point of the remaining arc (γ; η∗0 , zN ) . We continue the
procedure with this subarc of γ .

Every βi of the original step curve γ can give rise to at most one separating
elementary strip, and there can be at most N trimmings. Therefore the total
height of the final step curve γ̃ is

hϕ(γ̃) <
∑

|β̃j | +N
ε

2N
+ (N + 1)

ε

2(N + 1)
=

∑

|β̃j | + ε,

which proves the theorem.

The constructed step curve γ̃ has almost minimal height. It is clear that
among all step curves connecting z0 and zN there exist such elements. The
special feature of γ̃ is that almost its entire height is attained by the crossings β̃j
of disjoint elementary strips.

The following is now evident:

Corollary 4.1. Let hϕ[z0, z1] > 0 . Then, for every number x , 0 ≤ x ≤
hϕ[z0, z1] , and every ε > 0 there exists a separating totally regular trajectory σ
with the property

x− ε < hϕ[z0, σ] < x+ ε.

Remember that hϕ[z0, z1] = hϕ[z0, σ] + hϕ[σ, z1] .
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4.2. We now prove the convergence of vertical distances of pairs of interior
points of D . An inequality in one direction is easy, even without bounded norm.

Lemma 4.2. Let (ϕn) be a sequence of holomorphic quadratic differentials
in D which tends locally uniformly to ϕ 6= 0 . Let z, z′ ∈ D . Then,

lim suphϕn
[z, z′] ≤ hϕ[z, z′].

Proof. Choose a rectifiable curve γ connecting the two points. Then,

hϕn
[z, z′] ≤

∫

γ

|dvn| →
∫

γ

|dv|,

hence

lim sup
n→∞

hϕn
[z, z′] ≤

∫

γ

|dv|.

Since this is true for all γ , the lemma is proved. Evidently, if hϕ[z, z′] = 0, the
heights converge.

It is easy to see, with practically the same proof, that the result is also true
for point sets. Let E,E′ ⊂ D . Then

lim sup
n→∞

hϕn
[E,E′] ≤ hϕ[E,E′].

On the other hand, the lemma does not hold for boundary points r , s , even if
(ϕn) → ϕ in norm. Counterexamples can readily been given using conformal
mappings.

4.3. An inequality in the other direction can be shown for sequences (ϕn)
which are bounded in norm.

Lemma 4.3. Let (ϕn) be a sequence of holomorphic quadratic differentials
in D , with uniformly bounded norm ‖ϕn‖ ≤M <∞ , for all n . Let (ϕn) → ϕ 6= 0
locally uniformly in D . Then, for each elementary strip S : (β; σ, σ′) of ϕ

lim
n→∞

hϕn
[σ, σ′] = hϕ[σ, σ′] = |β|ϕ.

Proof. After the end of Section 4.2 we only have to show that

lim inf
n→∞

hϕn
[σ, σ′] ≥ hϕ[σ, σ′].

Let z and z′ be the end points of β on σ and σ′ respectively. Let βn be the
vertical ϕn -interval, starting at z and ending at a point z′n ∈ σ′ . Then, by
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Figure 11.

Lemma 2.3 and because βn is vertical, hϕn
[z, z′n] = |βn|ϕn

. On the other hand,
the right hand term clearly tends to |β|ϕ = hϕ[z, z′] . Since z′n → z′ , we have

lim
n→∞

hϕn
[z, z′] = lim

n→∞
hϕn

[z, z′n] = hϕ[z, z′].

Choose two points ζ , ζ ′ on β , near z and z′ respectively (Figure 11) and
such that all the trajectories through ζ and ζ ′ of ϕ and ϕn are totally regular.
Denote these trajectories by α , α′ , αn , α′

n respectively. From αn → α , α′
n → α′

we get for all sufficiently large n ,

hϕn
[σ, σ′] ≥ hϕn

[αn, α
′
n] = hϕn

[ζ, ζ ′],

and hence
lim inf hϕn

[σ, σ′] ≥ hϕ[ζ, ζ ′].

Since this is true for all ζ , ζ ′ the result follows.

We now proceed to the general case.

Theorem 4.3. Let ϕ , ϕn be as in Lemma 4.3 . Let z, z′ ∈ D and zn → z ,
z′n → z′ . Then

(1) lim
n→∞

hϕn
[zn, z

′
n] = hϕ[z, z′].

Similarly, for two totally regular trajectories σ , σ′

(2) lim
n→∞

hϕn
[σ, σ′] = hϕ[σ, σ′].

Proof. We first prove equation (1). Evidently Lemma 4.2 also holds for
zn → z , z′n → z′ instead of zn ≡ z and z′n ≡ z′ . We therefore have again

lim sup
n→∞

hϕn
[zn, z

′
n] ≤ hϕ[z, z′].
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To show the reversed inequality, let, for any given ε > 0, γ̃ be a step curve
connecting z and z′ as in Lemma 4.1. Let Sj : (βj , σj, σ

′
j) be a system of disjoint

elementary strips separating z and z′ and such that
∑

|βj | > hϕ[z, z′] − ε.

Then,

hϕn
[z, z′] ≥

∑

j

hϕn
[σj, σ

′
j ] →

∑

j

|βj | > hϕ[z, z′] − ε

and hence
lim inf
n→∞

hϕn
[z, z′] ≥ hϕ[z, z′].

Because of the locally uniform convergence ϕn → ϕ and the triangle inequality
for heights we can replace z and z′ by zn and z′n respectively, which proves part
one of the theorem.

To prove (2), we choose two arbitrary points z ∈ σ and z′ ∈ σ′ . We have
hϕn

[σ, σ′] ≤ hϕn
[z, z′] and hϕ[σ, σ′] = hϕ[z, z′] . Therefore

lim sup
n→∞

hϕn
[σ, σ′] ≤ lim

n→∞
hϕn

[z, z′] = hϕ[z, z′] = hϕ[σ, σ′].

On the other hand, with the same setting as above,

hϕn
[σ, σ′] ≥

∑

j

hϕn
[σj, σ

′
j ]

and hence

lim inf
n→∞

hϕn
[σ, σ′] ≥ lim

n→∞

∑

j

hϕn
[σj , σ

′
j] =

∑

j

hϕ[σj, σ
′
j]

=
∑

j

|βj | > hϕ[z, z′] − ε = hϕ[σ, σ′] − ε.

This is true for every positive ε and thus proves the assertion.

Using Theorem 4.3, we can derive an inequality for pairs of boundary points.

Corollary 4.3. Let r and s be boundary points of D . Then, under the
assumptions of Lemma 4.3 , we have

lim inf
n→∞

hϕn
[r, s] ≥ hϕ[r, s].

Proof. If hϕ[r, s] = 0, there is nothing to prove. So let hϕ[r, s] > 0 and let σ
and σ′ be two separating totally regular trajectories. Then, by Theorem 4.3

hϕn
[r, s] ≥ hϕn

[σ, σ′] → hϕ[σ, σ′],

and by Theorem 3.4 the last expression is arbitrarily close to hϕ[r, s] .
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5. Existence of the mapping

5.1. We use approximation of ϕ by polygon differentials to prove the existence
of a differential ψ that has the same heights as ϕ .

Thoerem 5.1. Let ϕ 6= 0 be a holomorphic quadratic differential of finite
norm in the unit disk D : |z| < 1 . Then, ϕ can be approximated in norm by a
sequence of polygon differentials ϕn in D for which the maximal length of the
sides of the polygons tends to zero.

Proof. Choose a sequence of radii rn → 1. The differential ϕn : ϕn(z) =
ϕ(rnz) is holomorphic in the closed disk D . Choose a number K > 1 and a
sequence of polygons Pj on D with side lenghts tending uniformly to zero. By
the well known frame mapping criterion, applied to ϕn , the dilatation K and the
polygons Pj , there exists a sequence of polygon differentials ϕnj such that

‖ϕn − ϕnj‖ → 0, j → ∞.

On the other hand, it is easy to see that

‖ϕn − ϕ‖ → 0, n→ ∞.

It follows that there exists a subsequence (jn) → ∞ with the property that

‖ϕ− ϕnjn‖ → 0, n→ ∞.

This is the desired approximating sequence; we denote it by (ϕn) again.

5.2. Let w = f(z) be a K -qc selfmapping of the unit disk D , and let
ϕ 6= 0 be a holomorphic quadratic differential of finite norm in D . Let (ϕn) be
a sequence of polygon differentials with uniformly bounded norm which converges
locally uniformly to ϕ . The vertices of the polygons Pn are denoted by ζin and
it is assumed that the maximum of their side lengths tends to zero.

Let P ′
n be the polygon with the vertices ζ ′in = f(ζin) and denote by ψn the

image by heights of ϕn in the polygon P ′
n . The totally regular trajectories of the

polygon differentials are the interior trajectories of the horizontal strips, which
is the same as the subintervals, in the disk, of the closed trajectories in Ĉ . In
corresponding strips of the two differentials ϕn and ψn we define a mapping of
the interior trajectories by equality of heights: if α of ϕn subdivides a strip S
in a certain ratio, α′ of ψn subdivides S′ in the same ratio. This establishes a
mapping by heights for the trajectories: corresponding pairs of trajectories have
the same vertical distance.

It follows from a minimum property of quadratic differentials with closed
trajectories (and hence also for polygon differentials) that

1

K
‖ϕn‖ ≤ ‖ψn‖ ≤ K ‖ϕn‖

(for a proof see e.g. [3]). We can now show
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Theorem 5.2. The sequence (ψn) converges locally uniformly to a differen-
tial ψ 6= 0 . Two boundary points p and q of D are connected by a totally regular
trajectory α of ϕ if and only if the image points p′ = f(p) and q′ = f(q) are
connected by a totally regular trajectory α′ of ψ . Corresponding pairs of totally
regular trajectories α , α̃ and α′ , α̃′ have the same vertical distance (measured
in terms of ϕ and ψ respectively).

Notice that in the proof we only use the fact that the sequence (ϕn) tends to
ϕ locally uniformly and has uniformly bounded norm.

Proof. (1) Let α be a totally regular trajectory of ϕ in D , with end points p
and q . Let p′ = f(p) , q′ = f(q) . Choose a totally regular trajectory αn of ϕn , for
each n , such that αn → α for n→ ∞ . (It is enough to have a sequence of points
zn ∈ αn tending to a point z ∈ α .) The end points pn ,qn of αn tend to the end
points p and q of α . Denote by α′

n the totally regular trajectory of ψn which has
been assigned to αn . By assumption, the distances of neighboring vertices of the
polygons Pn tend to zero, and by the continuity of f on ∂D the same is true for
the polygons P ′

n . Therefore the end points p′n , q′n of the trajectories α′
n tend to

p′ and q′ respectively. (Note that in general p′n 6= f(pn) , q
′
n 6= f(qn) ; for polygon

differentials this is only true at the vertices.)
We claim that every boundary point ζ ′ of D which is different from p′ and

q′ has an ε-neighborhood Uε(ζ
′) which is free from αn for all n .

Figure 12.

Assume the contrary (Figure 12). Then, there is a point ζ ′ and a subsequence
of curves α′

n (which we call (α′
n) again, to avoid double indices) with some z′n ∈

α′
n , z′n → ζ ′ . We choose a second totally regular trajectory α̃ , separating ζ =
f−1(ζ ′) from α , with end points p̃ and q̃ . Let α̃n with end points p̃n and q̃n
be totally regular trajectories of ϕn , with α̃n → α̃ for n → ∞ . By Theorem 4.3
(1) the vertical distance hϕn

[αn, α̃n] tends to hϕ[α, α̃] > 0 for n → ∞ . Since by
definition

hϕn
[αn, α̃n] = hψn

[α′
n, α̃

′
n],
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the vertical distances of the pairs α′
n , α̃′

n are bounded away from zero. On the
other hand, an application of Lemma 1.3 to the point ζ ′ shows that the ψn -
distance of the trajectories becomes arbitrarily small (see Figure 12, right side).
This is a contradiction and thus proves the assertion.

Figure 13.

(2) The differentials ψn have uniformly bounded norm. Therefore there exists
a subsequence (which we denote by (ψn) again) which converges locally uniformly
to a holomorphic quadratic differential ψ . We claim that ψ 6= 0, in other words
the sequence (ψn) does not degenerate. To this end we draw a cross cut τ ′ of the
disk D which separates the two pairs of points p′ , p̃′ and q′ , q̃′ (Figure 13). We
conclude from (1) that the trajectories α′

n , α̃′
n cut τ ′ in a compact subinterval.

If ψn → 0 locally uniformly in D , the ψn -distance

dψn
[α′
n, α̃

′
n] ≥ hψn

[α′
n, α̃

′
n]

tends to zero, a contradiction.

5.3. The next step is to show, that the points p′ and q′ are connected by a
horizontal geodesic of ψ .

Lemma 5.3. Let (ψn) be a sequence of holomorphic quadratic differentials
in D which tends locally uniformly to a differential ψ 6= 0 . Assume that the
points z′n , z′′n are connected by a ψn -geodesic γn which is contained in a disk
Dr : |z| ≤ r < 1 for all n . If z′n → z′ , z′′n → z′′ , then, z′ and z′′ are connected
by a ψ -geodesic γ in Dr and γn → γ uniformly in the Euclidean metric (Figure
14).

Proof. The lengths of the ψn -geodesics γn are bounded, |γn|ψn
≤ M , say.

This is so, because the ψn are bounded in Dr and therefore the ψn -distance of
any two points in Dr is bounded. Choose d > 0 such that any two points z1 ,
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Figure 14.

z2 in Dr with ψ -distance ≤ d can be joined by a ψ -geodesic, not necessarily in
Dr (see [1, Theorem 8.1]). Fix N and subdivide each γn into N pieces of equal
ψn -length less than 1

2d . Let zn0 = z′n , zn1, . . . , znN = z′′n be the subdividing
points. By passing to a subsequence we can assume that znk → zk ∈ Dr for every
k = 0, 1, . . . , N , z0 = z′ , zN = z′′ . Clearly, the ψn -geodesic connection ofznk
and zn,k+1 , which is the subinterval of γn connecting the two points, tends to
the ψ -geodesic between zk and zk+1 which is therefore in Dr . Moreover, the arc
zk−1, zk, zk+1 is the shortest ψ -connection between zk−1 and zk+1 . Therefore,
altogether, the points z′ and z′′ are connected by a ψ -geodesic γ in Dr and
γn → γ uniformly. Because of the uniqueness of γ , the original sequence (γn)
converges to γ .

Figure 15.

We are now able to show that p′ and q′ are connected by a horizontal geodesic
of ψ . Fix a double sequence of circles σk , −∞ < k < ∞ , centered at p′ and q′

and tending to these points for k → ±∞ respectively (Figure 15). The trajectory
α′
n of ψn , connecting p′n → p′ with q′n → q′ has (for large enough n) a last

intersection with σk (k < 0) and a first one with σl ( l > 0). The subinterval
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of α′
n between these two points is denoted by αn . Because of (1) there is a

subsequence of the sequence (αn) which tends uniformly to a ψ -geodesic between
two points of σk and σl in D . Passing on to σk−1 , σl+1 etc. we end up with a
diagonal sequence which tends uniformly in D , to a geodesic α′ of ψ . It contains
sequences of points (on the σk , σl ) tending to p′ and q′ respectively. Therefore
it connects the two points. Since all the α′

n are horizontal with respect to ψn ,
and the sequence (ψn) tends locally uniformly to ψ , α′ itself must be a horizontal
geodesic of ψ . Let α and α̃ be totally regular trajectories of ϕ . It follows from
Theorem 4.3 (1) that the corresponding horizontal geodesics α′ and α̃′ have the
same vertical distance.

Figure 16.

5.4. It is now easy to see that α′ is in fact a totally regular trajectory of
ψ . Assume, first, that α′ is not regular. Then, it passes through a zero w
of ψ , where at least one other trajectory γ′ starts, which can be continued as a
horizontal geodesic to a boundary point r′ of D (Figure 16, right side). Of course,
r′ is different from p′ and q′ , and hence r = f−1(r′) is different from p and q .
Since α is totally regular, it is approximated by totally regular trajectories of ϕ .
Choose such a trajectory α̃ , with end points p̃ and q̃ separating r from p and q
(Figure 16 left side). The points p̃′ , q̃′ are connected by a horizontal geodesic α̃′ .
By the invariance of heights we have

hψ[α′, α̃′] = hϕ[α, α̃] > 0.

This is impossible, because α′ and α̃′ necessarily belong to the same component
of the horizontal graph of ψ and hence have vertical distance zero. This proves
that α′ is regular.

Now α is assumed to be totally regular. It can therefore be approximated,
from either side, by a sequence of totally regular trajectories αn of ϕ . Their end
points pn and qn tend to p and q respectively. Therefore, the trajectories α′

n of
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ψ have end points p′n → p′ , q′n → q′ . But then, it is easy to see that the sequence
(α′
n) tends itself to α′ . Otherwise, there would exist a vertical interval β′ with

initital point on α′ , pointing to α′
n but disjoint from all α′

n . We would then
have a regular trajectory α′′ 6= α′ with end points p′ and q′ , contradicting the
uniqueness of geodesic connections of boundary points. Since the approximation
can be performed from either side, α′ is totally regular.

Conversely: Assume that p′ and q′ are connected by a totally regular tra-
jectory α′ of ψ . Then, p = f−1(p′) and q = f−1(q′) are connected by a totally
regular trajectory α of ϕ .

To see that, we use the same approximating sequences of polygon differentials
ϕn → ϕ , ϕn ↔ ψn ψn → ψ . We now just reverse the argument. Let (α′

n)
be a sequence of totally regular trajectories of the differentials ψn which tends
to α′ . (It suffices to choose a sequence of points wn → w ∈ α′ such that wn
lies on a totally regular trajectory α′

n of ψn .) Let αn be the trajectory of ϕn
which corresponds to α′

n . Then, the end points pn and qn of αn tend to p and
q respectively, because the end points p′n and q′n tend to p′ and q′ respectively.
The argument is a repetition of the last part of the earlier one, showing that p and
q are connected by a totally regular trajectory α of ϕ . Because the two points
p′ and q′ can only be connected by one trajectory, α′ is the one corresponding to
α . We therefore have a 1-1- correspondence of the totally regular trajectories of
ϕ and those of ψ .

5.5. It follows readily that ϕ and ψ generate the same vertical distance for
all corresponding pairs of boundary points. For, let r′ = f(r) , s′ = f(s) . If
hϕ[r, s] = 0, there are no totally regular trajectories of ϕ separating r and s .
Since the totally regular trajectories of ϕ and ψ correspond to each other, there
are no totally regular trajectories of ψ separating r′ and s′ . Thus, hϕ[r′, s′] = 0.
The same argument goes in the reversed direction.

Let hϕ[r, s] > 0. Let σ be a totally regular trajectory separating r and s .
Then, the totally regular trajectory σ′ separates r′ and s′ , and conversely. More-
over, the vertical distances of corresponding pairs of totally regular trajectories
are the same. Therefore, by Theorem 3.4,

hϕ[r, s] = sup hϕ[σ, τ ] = sup hψ[σ′, τ ′] = hψ[r′, s′],

where σ and τ are running over all totally regular trajectories of ϕ which separate
r and s .

Theorem 5.5. Let f be a quasisymmetric mapping of ∂D onto itself. Then,
to every holomorphic quadratic differential ϕ of finite norm corresponds a differ-
ential ψ which satisfies

hϕ[r, s] = hψ[r′, s′] for all r, s ∈ ∂D,

with r′ = f(r) , s′ = f(s) .
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5.6. The following uniqueness theorem is based on the vertical distance of
pairs of boundary points.

Theorem 5.6 (Uniqueness). Let ϕ and ϕ̃ be holomorphic quadratic differ-
entials of finite norm in the disk D . Assume that the vertical distance of any pair
of boundary points p , q is the same with respect to ϕ as with respect to ϕ̃ . Then,
ϕ = ϕ̃ .

Clearly, ϕ = 0 if and only if all its heights are zero. For, if ϕ 6= 0, it has a
regular vertical trajectory β , connecting two points r and s . The vertical distance
of r and s is equal to the length of β , which is

|β|ϕ =

∫

β

∣

∣ϕ(z)
∣

∣

1/2|dz| > 0.

Let ϕ 6= 0. Choose a denumerable dense set of regular horizontal trajectories
αν of ϕ . By the vertical strip Sν based on αν we mean the domain swept out
by the set of vertical trajectories which intersect αν . Progressive cancelling of
intersections leads to a system {Sν} of non overlapping strips which cover D up
to the critical points of ϕ (for details see [1, Theorem 19.2]).

Let β be a regular vertical trajectory of ϕ connecting the boundary points r
and s . Then, with

w̃ = ũ+ iṽ = Φ̃(z) =

∫ z
√

ϕ̃(z) dz

we find
∫

β

|dṽ| ≥ hϕ̃[r, s] = hϕ[r, s] =

∫

β

dv,

where w = u + iv = Φ(z) =
∫ z √

ϕ(z) dz . The strips Sν are oriented in the
increasing direction of v , which is well determined on each individual Sν .

We now introduce the parameter w in the individual strips Sν . We then get,
by first integrating the above inequality over u in each Sν and then summing up,

∫∫

ΣSν

∣

∣

∣

∂ṽ

∂v

∣

∣

∣
du dv ≥

∫∫

ΣSν

du dv = ‖ϕ‖ .

The Schwarz inequality leads to

‖ϕ‖2 ≤ ‖ϕ‖
∫∫

ΣSν

(∂ṽ

∂v

)2

du dv ≤ ‖ϕ‖
∫∫

ΣSν

{(∂ṽ

∂u

)2

+
(∂ṽ

∂v

)2}

du dv

= ‖ϕ‖ ·
∥

∥

∥
Φ̃′

∥

∥

∥

2

= ‖ϕ‖ · ‖ϕ̃‖ .
This gives ‖ϕ‖ ≤ ‖ϕ̃‖ , and by reversing the argument, ‖ϕ‖ = ‖ϕ̃‖ . But then,
∂ṽ/du ≡ 0, and hence ṽ = ṽ(v) . From the Schwarz inequality, applied to the
union of the strips Sν in terms of the parameter w we find that ṽ = a · v + b .
Now the equality of the norms gives a = ±1, hence Φ̃ = ±Φ+const, and finally
ϕ̃ = ϕ , as claimed.
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Corollary 5.6. Let f be a K -quasiconformal selfmapping of the disk D and
let ψ be the induced image by heights of ϕ . Then,

1

K
‖ϕ‖ ≤ ‖ψ‖ ≤ K ‖ϕ‖ .

Proof. Let (ϕn) be a sequence of polygon differentials approximating ϕ in
norm, ‖ϕn − ϕ‖ → 0. The image by heights ψn of ϕn satisfies

1

K
‖ϕn‖ ≤ ‖ψn‖ ≤ K ‖ϕn‖ .

Since ψn → ψ locally uniformly, we have

‖ψ‖ ≤ lim inf
n→∞

‖ψn‖ ≤ K ‖ϕ‖ .

Let the sequence of polygon differentials (ψ̃n) approximate ψ in norm, and let ϕ̃n
be the image by heights of ψ̃n . Let ϕ̃ be the locally uniform limit of the sequence
(ϕ̃n) . It produces the same heights as ψ , and thus because of the uniqueness
theorem ϕ = ϕ̃ . We find, as above,

‖ϕ‖ = ‖ϕ̃‖ ≤ K ‖ψ‖ ,
which completes the double inequality.

5.7. The definition and the uniqueness of the mapping by heights is based on
the vertical distance of pairs of boundary points, whereas for the existence we use
totally regular trajectories and their vertical distance. The two properties are in
fact equivalent.

Theorem 5.7. Let f be a qc selfmapping of the unit disk D . Let ϕ and
ψ be holomorphic quadratic differentials of finite norm in D . Then, the following
two properties are equivalent:

(1) hψ[r′, s′] = hϕ[r, s], r′ = f(r), s′ = f(s),

for all r, s ∈ D .

(2) a) p and q ∈ ∂D are connected by a totally regular trajectory α of ϕ if and
only if p′ = f(p) and q′ = f(q) are connected by a totally regular trajectory α′

of ψ .
b) If α , α̃ and α′ , α̃′ are corresponding pairs of totally regular trajectories,

then
hϕ[α, α′] = hψ[α′, α̃′].

We call ψ the image by heights of ϕ and set ψ = Hf (ϕ) . Hf is the mapping by
heights induced by the quasisymmetric mapping f | ∂D .

Proof. It has been shown in Section 5.5 that (2) implies (1).
Let (1) hold. By Theorem 5.2 we construct a quadratic differential ψ̃ which

has the properties (2). Again by Section 5.5 ψ̃ satisfies (1). The Uniqueness
Theorem 5.6 shows that ψ̃ = ψ . Therefore ψ has the properties (2).
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5.8. Every quasisymmetric mapping of ∂D onto itself induces a mapping by
heights of the space of holomorphic quadratic differentials of finite norm. We now
show that conversely, if a homeomorphism f of ∂D onto itself induces a mapping
by heights with a Lipschitz condition for the norm, then it is quasisymmetric.

Theorem 5.8. Let f : ∂D → D′ be a homeomorphism. Assume that there is
a bijection Hf : ϕ→ ψ = Hf (ϕ) of the space of holomorphic quadratic differentials
of finite norm onto itself satisfying

1

K
‖ϕ‖ ≤ ‖ψ‖ ≤ K ‖ϕ‖

for some constant K ≥ 1 . Then, f is quasisymmetric.

Figure 17.

Proof. Choose four points ζ1 , ζ2 , ζ3 , ζ4 in this order on ∂D and let Φ: z →
ζ∗ = Φ(z) be the conformal mapping of the quadrilateral Q = (D; ζ1, . . . , ζ4) onto
a rectangle R with side lengths a and b (Figure 17).

The square of the derivative of Φ, i.e., ϕ = (dΦ/dz)2 is a quadratic differential
associated with the given quadrilateral Q . All its trajectories in D are totally
regular, and the vertical distance of any two boundary points is the Euclidean
vertical distance of the corresponding boundary points of the rectangle R . Let
ψ = Hf (ϕ) . All its trajectories in D′ are again totally regular. Therefore it has
no zeroes and the function Ψ =

∫ √
ψ is a conformal mapping onto a domain
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S shaped in Figure 17. The trajectories are the horizontal crosscuts, and the
Euclidean vertical distances in R and in S are the same. They connect boundary
points corresponding by f . This serves as an illustration for the mapping by
heights.

However, for our present purposes, we map the quadrilateral Q′ =
(D′; ζ ′1, . . . , ζ

′
4) , ζ

′
i = f(ζi) , conformally onto a rectangle R′ . We double R′ by

reflection on one of its vertical sides and identify the two free vertical sides of the
new rectangle R′′ to form a cylinder. The quadratic differential ψ has a repre-
sentation in terms of the parameter ζ of the R′ -plane. By the Dirichlet principle,
applied to the cylinder, we find that

a′b′ ≤ ‖ψ‖ ≤ K ‖ϕ‖ = Kab.

We end up, because of b′ = b , with

a′

b′
≤ K

a

b
,

which is the module inequality for inscribed quadrilaterals. It is well known that
the inequality proves the quasisymmetry of f .

5.9. The same considerations which served to show the existence of an image
by heights can be used to prove the weak convergence of these images.

Theorem 5.9. Let f be a quasiconformal selfmapping of D and let ψ =
Hf (ϕ) be the image by heights of ϕ . Assume that the sequence (ϕn) tends to
ϕ 6= 0 locally uniformly and has uniformly bounded norm. Then, the images by
heights ψn = Hf (ϕn) converge to ψ in the same sense.

Proof. (This is a repetition of the proof of Theorem 5.2) (1) From the norm
inequality ‖ψn‖ ≤ K ‖ϕn‖ and the boundedness of the sequence (‖ϕn‖) we con-
clude that the sequence (‖ψn‖) is bounded. Therefore there exists a subsequence
(ψni

) which converges locally uniformly to a differential ψ̃ of finite norm.

(2) Let p and q be the end points of a totally regular trajectory α of ϕ .
Choose, for each n , a totally regular trajectory αn of ϕn , such that αn → α
in the Euclidean metric (it suffices to have zn ∈ αn , zn → z ∈ α). Denote the
end points of αn by pn and qn respectively. We have pn → p , qn → q , and
hence p′n = f(pn) → p′ = f(p) , q′n = f(qn) → q′ = f(q) . The points p′n , q′n are
connected by a totally regular trajectory α′

n of ψn . Using these α′
n it follows as

before that ψ̃ 6= 0.

(3) In the next step we show, as in the earlier proof, that the sequence (α′
n)

actually converges pointwise to a horizontal geodesic γ of ψ̃ with end points p′

and q′ .
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(4) Let α and α̃ be two totally regular trajectories of ϕ , with end points
p , q and p̃ , q̃ respectively. The points p̃′ = f(p̃) , q̃′ = f(q̃) are connected by a
horizontal geodesic γ̃ of ψ̃ . It follows from Theorem 4.3 that

hϕ[α, α̃] = hψ̃[γ, γ̃].

From this we easily conclude that γ is actually a regular trajectory α̃′ of ψ̃ .

(5) We then show, again as before, that α̃′ is totally regular. Theorem 3.4 then
shows that the heights (vertical distances of pairs of boundary points) with respect
to ψ and ψ̃ are the same, and by Theorem 5.6 ψ̃ = ψ . A standard argument then
gives ψn → ψ locally uniformly for the original sequence. It seems reasonable to
expect that if the convergence ϕn → ϕ is in norm, so is the convergence ψn → ψ .

6. Extremal Teichmüller mappings

6.1. A Teichmüller mapping f : D → D′ is a quasiconformal mapping with a
complex dilatation of the form κ = kϕ/|ϕ| , where ϕ is a holomorphic quadratic
differential and k a real constant 0 < k < 1 (we do not admit conformal map-
pings, where k = 0). It is well known that the mapping generates a holomorphic
quadratic differential ψ in the image domain and that in the Φ- and Ψ-planes the
mapping is represented by a horizontal stretching by the factor K = (1+k)/(1−k)
(Figure 18).

Figure 18.



The mapping by heights for quadratic differentials 187

Setting z = x + iy , w = u + iv for the variables in the Φ- and Ψ-plane re-
spectively the mapping f has locally and away from the zeroes the respresentation

f = Ψ−1 ◦ F ◦ Φ, w = F (z) = Kx+ iy.

The two differentials ϕ and ψ are called the Teichmüller differentials associated
with f . One can read off several properties of f from the figure, in particular:

(1) The trajectories of ϕ (which are the horizontals in the Φ-plane) are taken
into the trajectories of ψ . Vertical distances of pairs of trajectories stay the same.

(2) The height of a curve γ with respect to ϕ , which is the Euclidean height in
the Φ-plane, is the same as the height of its image with respect to ψ . Therefore
the vertical distances of the pairs of boundary points in the z -plane and their
images in the w -plane are the same (in terms of ϕ and ψ respectively). This
means that ψ is the image by heights of ϕ .

(3) The vertical trajectories of ϕ (which are the verticals in the Φ-plane) are
taken into the vertical trajectories of ψ . The horizontal distance of corresponding
pairs of vertical trajectories is multiplied by K .

(4) The norm of ϕ , which is the Euclidean area in the Φ-plane, is multiplied
by K : ‖ψ‖ = K ‖ϕ‖ .

It is also known that a Teichmüller mapping associated with a quadratic
differential of finite norm is uniquely extremal for its boundary values.

6.2. The mapping by heights permits to formulate the existence problem for
Teichmüller mappings associated with quadratic differentials of finite norm as an
extremum problem for norms.

Theorem 6.2. Let f : ∂D → ∂D′ be a quasisymmetric mapping, and let
Hf be the associated mapping by heights. Then, f allows for an extension to
a Teichmüller mapping associated with the holomorphic quadratic differentials ϕ
and ψ of finite norm if and only if the quotient ‖ψ‖ / ‖ϕ‖ , ψ = Hf (ϕ) , assumes
a maximum greater than one. The differentials ϕ0 , ψ0 = Hf (ϕ0) of the max-
imum are the Teichmüller differentials of the mapping and the maximum is its
dilatation K0 .

Proof. Let

L = max
{‖ψ‖
‖ϕ‖ ,

‖ϕ‖
‖ψ‖

}

> 1

and suppose that it is assumed by ϕ0 , ‖ψ0‖ = L ·‖ϕ0‖ . Let β be an open, regular
vertical interval with end points on totally regular trajectories α1 , α2 of ϕ . They
connect p1 , q1 and p2 , q2 respectively on ∂D . The domain swept out by the
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Figure 19.

trajectories through β is called the horizontal strip S . Let α be a variable totally
regular trajectory through β .

The images α′
1 , α′

2 of α1 and α2 , connecting p′1 = f(p1) , q
′
1 = f(q1) etc.,

form the upper and lower boundaries of a horizontal strip S′ in D′ . We now apply
the conformal mappings Φ, Ψ to the strips S , S′ respectively. Using the same
notations downstairs, we arrive at Figure 19. Note that the widths of the strips
S and S′ as well as the heights of α and its image α′ are the same in the two
planes.

We now apply the mapping by heights to −ψ in the reversed direction, i.e.
we look at ϕ̃ = (Hf )

−1(−ψ) = Hf−1(−ψ) . We partition D into non overlapping
horizontal strips Si and represent ϕ̃ in each strip in terms of the z -parameter
(for details see [1, Theorem 19.2]). We have w̃ = ũ + iṽ = Φ̃ =

∫ √
ϕ̃ , and the

computation of ‖ϕ̃‖ looks as follows. We first integrate |dṽ| along α in the z -
plane and remember that its heights are the same as the heights of −ψ , which are
the horizontal lenghts of ψ . We get

∫

α

|dṽ| =

∫

α

∣

∣

∣

∂ṽ

dx

∣

∣

∣
dx ≥ hϕ̃[p, q] = h−ψ[p′, q′] =

∫

α′

du.

Since ϕ and ψ have the same vertical distances, we get, in S and S′ , dy = dv .
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Therefore integration over y in S and over v in S′ gives

∫∫

S

∣

∣

∣

∂ṽ

dx

∣

∣

∣
dx dy ≥

∫∫

S′

du dv.

A summation over all Si and subsequent application of the Schwarz inequality
yields

‖ψ‖ =

∫∫

ΣS′

i

du dv ≤
∫∫

ΣSi

∣

∣

∣

∂ṽ

∂x

∣

∣

∣
dx dy,

‖ψ‖2 ≤
{

∫∫

ΣSi

∣

∣

∣

∂ṽ

∂x

∣

∣

∣
dx dy

}2

≤
∫∫

ΣSi

dx dy ·
∫∫

ΣSi

(∂ṽ

∂x

)2

dx dy

≤ ‖ϕ‖
∫∫

ΣSi

{(∂ṽ

∂x

)2

+
(∂ṽ

∂y

)2}

dx dy = ‖ϕ‖ · ‖ϕ̃‖.

Remember that ‖ψ‖ = L ‖ϕ‖ with maximal L . Therefore

L ‖ψ‖ ≤ ‖ϕ̃‖ ≤ L ‖−ψ‖ = L ‖ψ‖ ,

which gives ‖ϕ̃‖ = L ‖ψ‖ . We thus must have equality all over. This im-
plies ∂ṽ/∂y ≡ 0. Therefore the orthogonal trajectories of ϕ (locally the curves
x =const) are the trajectories of ϕ̃ (locally the curves ṽ =const). Therefore
ϕ̃ = c(−ϕ) , with a positive constant c . From ‖ϕ̃‖ = L ‖ψ‖ = L2 ‖ϕ‖ we finally
get ϕ̃ = L2(−ϕ) .

Since ϕ̃ = Hf−1(−ψ) , Hf (ϕ̃) = Hf

(

L2(−ϕ)
)

= −ψ . The interpretation of
this functional equation is as follows.

Let β be a totally regular vertical trajectory of ϕ , connecting the boundary
points r , s . Then, ψ has a totally regular vertical trajectory β′ connecting
r′ = f(r) with s′ = f(s) . The horizontal distances of β1 and β2 , connecting r1 ,
s1 and r2 , s2 respectively, measured in terms of the differential L2ϕ is the same
as the horizontal distance of β′

1 , β′
2 connecting r′1 , s′1 and r′2 , s′2 respectively,

measured in terms of ψ . In other words, measuring in terms of ϕ and ψ , the
horizontal distance of corresponding pairs of totally regular vertical trajectories is
multiplied by L .

So far we only have a mapping of trajectories and orthogonal trajectories. We
now define a mapping of points. Let z ∈ D be the intersection of a totally regular
trajectory α of ϕ connecting p and q with a totally regular vertical trajectory
β of ϕ connecting r and s . Then, their images α′ and β′ cut at a point w ,
because their pairs of end points separate each other. This is a bijection of a
dense set of points of D onto a dense set of points on D′ . We are actually right
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back at Figure 18: the completion of the mapping can be carried out in the Φ-
and Ψ-planes, as horizontal stretching by the factor L of small rectangles with
sides parallel to the axes. We end up with an L -quasiconformal mapping of the
disk D punctured at the zeroes of ϕ onto D′ punctured at the zeroes of ψ . It
can therefore be extended to these zeroes and to the boundary. Because the end
points of the totally regular horizontal and vertical trajectories are everywhere
dense on ∂D , the boundary values are the given ones, and we have found an
L -qc extension of the quasisymmetric boundary mapping which is a Teichmüller
mapping associated with the differentials ϕ and ψ = Hf (ϕ) . Such a mapping is
known to be uniquely extremal, and so is ϕ , if we normalize it by ‖ϕ‖ = 1. In
correspondence with the usual notation we set L = K0 .

We have the horizontal stretching version of the Teichmüller mapping from
left to right. If the maximum were taken by the quotient ‖ϕ‖ / ‖ψ‖ = L , we
would have a horizontal stretching from the right to the left. Replacing ϕ by
ϕ̃ = (−ϕ)/L2 , ψ by ψ̃ = −ψ , we have again ‖ψ̃‖/‖ϕ̃‖ = L , so we are back at the
former case.

The converse is immediate. Let f be a Teichmüller mapping associated with
the differentials ϕ in D and ψ in D′ , of finite norm, in the horizontal stretching
version. Then, ψ = Hf (ϕ) , ‖ψ‖ = K0 ‖ϕ‖ , with K0 the extremal dilatation.
Since the mapping by heights satisfies the double inequality

1

K0
‖ϕ‖ ≤ ‖ψ‖ ≤ K0 ‖ϕ‖ ,

ϕ gives the maximal value of ‖ψ‖ / ‖ϕ‖ .
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