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Abstract. In the main result of this paper we show that if the Julia set of a meromorphic
function f contains a free analytic Jordan arc then it must in fact be a straight line, circle, segment
of a straight line or an arc of a circle. If f is transcendental then the Julia set is unbounded and
so consists of one or two straight line segments. We construct examples of functions whose Julia
sets are of this form.

1. Introduction

Let a standard meromorphic function f be a meromorphic function which is
not rational of degree less than two and denote by fn , n ∈ N , the nth iterate
of f . We define the set of normality, N(f) , to be the set of points z in Ĉ such
that (fn)n∈N is well-defined, meromorphic and forms a normal family in some
neighbourhood of z . The complement J(f) of N(f) is called the Julia set of f .
It is clear that N(f) is open and completely invariant under f .

We define E(f) to be the set of exceptional values of f , that is, the points
whose inverse orbit

O−(z) =
{
w : fn(w) = z for some n ∈ N

}

is finite. The set E(f) contains at most two points. Standard meromorphic
functions can be divided into the following four classes:

I rational functions of degree at least two,
II transcendental entire functions,

III transcendental meromorphic functions with ∞ ∈ E(f) and with one pole,
IV transcendental meromorphic functions with ∞ /∈ E(f) and with at least one

pole.

The iteration of functions in classes I and II was studied in detail by Fatou [11,
12] and by Julia [14]. If f is a function in class III then we may assume without
loss of generality that it has a pole at the point 0 and it then follows that f must
be an analytic map of the punctured plane Ĉ \ {0} onto itself. The iteration of
such maps was first studied by R̊adström [20]. Various authors have produced
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work following on from this [3], [8], [15], [16] and [18]. In a recent series of papers
[4, 5, 6] Baker, Kotus and Lü Yinian have studied the iteration of functions in
class IV.

A Jordan arc γ in Ĉ is defined to be the image of the real interval [0, 1]
under a homeomorphism ϕ . In the following work γ is said to be an analytic

arc if the homeomorphism ϕ has a meromorphic extension in a neighbourhood
of [0, 1] . If, in addition, the extended ϕ is univalent at each point of [0, 1] then
γ is said to be a regular arc. If the interval [0, 1] is replaced by the unit circle
in the above definitions then γ is said to be a Jordan curve. Finally, if f is a
standard meromorphic function, α is said to be a free Jordan arc in J(f) if there

exists a homeomorphism ψ of the open unit disc onto a domain D in Ĉ such that
J(f)∩D is the image of (−1, 1) under ψ and α is the image of some real interval
[a, b] where −1 < a < b < 1.

The first theorem which we prove is as follows.

Theorem A. If f is a standard meromorphic function and J(f) contains a

free Jordan arc α , then J(f) is a Jordan arc or a Jordan curve. Further, if α is

analytic, then J(f) is also analytic.

Using Theorem A we are able to prove the main result of this paper.

Theorem B. If f is a standard meromorphic function and J(f) contains a

free analytic Jordan arc, then J(f) is a straight line, circle, segment of a straight

line or an arc of a circle.

Töpfer [21, p. 69] showed that if f is an entire transcendental function then
it is impossible for J(f) to contain a free Jordan arc. We are able to extend his
result to cover functions in class III and so Theorems A and B follow trivially for
functions in class II or III.

Theorem B was shown to be true for rational functions by Fatou [11, p. 225].
It is well known that if f1(z) = z2 then J(f1) =

{
z : |z| = 1

}
. It is also known

that if f2(z) = z2 − 2 then J(f2) = [−2, 2] (see, for example, [9, Theorem 12.1]).
By conjugating f1 and f2 with Möbius transformations it is possible to obtain
examples of rational functions which show that each possible type of behaviour
given in Theorem B can in fact occur.

If f is in class IV then J(f) must be unbounded and so cannot be a circle
or an arc of a circle. We prove the following result which shows that the other
possible types of behaviour given in Theorem B do in fact occur for functions in
class IV.

Theorem C. There exist transcendental meromorphic functions g0 , g1 and

g2 such that

(i) J(g0) = R ∪ {∞} ,

(ii) J(g1) = [0,∞] ,
(iii) J(g2) = [−∞,−1] ∪ [1,∞] .



Meromorphic functions whose Julia sets contain a free Jordan arc 275

Finally, we prove the following.

Theorem D. Suppose that f is a standard meromorphic function and that

J(f) is a Jordan arc or a Jordan curve. Then, if J(f) is not a straight line, circle,

segment of a straight line or an arc of a circle, J(f) contains no differentiable arc.

Fatou [11, p. 229] showed that this is true for rational functions.

2. Background material

In this section we give some results that will be needed to prove Theorems A,
B, C and D. These are results which have either been proved elsewhere or which
are easy extensions of existing results. The first result concerns normal families.

Lemma 2.1 (see, for example, [13, Theorem 6.3]). A family {fα} of meromor-

phic functions in the domain D is normal if and only if the ‘spherical derivatives’

{ ∣∣(fα)′(z)
∣∣

1 +
∣∣fα(z)

∣∣2

}

form a locally bounded family in D .

The second result concerns the set of normality. It was proved for rational
functions by Fatou (see, for example, [9, Theorem 5.2]) and the same method of
proof can be used to show that the result holds for all meromorphic functions.

Lemma 2.2 [4, Lemma 5]. Suppose that f is a function in class IV and that

in some component N0 of N(f) some subsequence of fn has a non-constant limit

function.Then there exists p ≥ 0 such that fp(N0) belongs to a component N1

of N(f) , and q > 0 such that f q maps N1 univalently onto N1 .

The next three results concern the Julia set. The first of these was proved
for functions in class I by Fatou (see, for example, [9, Lemma 2.2]) and this proof
can also be used for functions in class II. The proof for functions in class IV [4,
Lemma 1] can also be applied to functions in class III.

Lemma 2.3. If f is a standard meromorphic function and α ∈ Ĉ \ E(f)
then J(f) ⊂ O−(α)′ and so, if α ∈ J(f) , J(f) = O−(α)′ . In particular, if f is

in class IV, then J(f) = O−(∞)′ .

The remaining results about Julia sets are concerned with the expanding
properties of the iterates fn in a neighbourhood of a point in the Julia set of f .

Lemma 2.4. If f is a standard meromorphic function then the repelling

periodic points of f are dense in J(f) .

For details of the proof of the above result see [11, p. 45] for rational functions,
[2, Theorem 1] for functions in class II, [8, Theorem 5.2] for functions in class III
and [4, Theorem 1] for functions in class IV.
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Lemma 2.5. Let f be a standard meromorphic function. If L is compact,

L ∩ E(f) = ∅ , z ∈ J(f) and V is an open neighbourhood of z then there exists

M ∈ N such that for all n ≥M we have fn(V ) ⊃ L .

Proof. This result was proved by Fatou [11] and [12] for functions in class I
or class II.

If f is a function in class IV, z ∈ J(f) and V is an open neighbourhood of
z , then it follows from Lemma 2.3 that O−(∞) ∩ V 6= ∅ . We take the smallest
value of r ∈ N such that f r has a pole in V . It is clear that there are only finitely
many poles, say p1, . . . , pm , of f r in V and that f r+1 is a meromorphic function
in V \ {p1, . . . , pm} with an essential singularity at each of the points p1, . . . , pm .
It follows from Picard’s theorem that

f r+1(V ) ⊃ C \ E(f r+1) = C \ E(f)

and that f
(
C \ E(f)

)
⊃ C \ E(f) . Thus, if L ∩ E(f) = ∅ , we have fn(V ) ⊃(

C \ E(f)
)
⊃ L for all n ≥ r + 1.

If f is a function in class III, then E(f) = {α,∞} , where α is the pole of
f . If z = α , then α is an essential singularity of f2 and the proof follows as for
functions in class IV. If z ∈ J(f) \ {α} then we can use the same method of proof
as used for functions in class I or II.

In the study of iteration we are frequently interested in showing that the
distortion L(f, A) of a function f holomorphic in A , defined by

L(f, A) = sup
z1,z2∈A

∣∣f ′(z1)/f
′(z2)

∣∣,

is bounded in A . The following result follows easily from [10, Theorem 2.5].

Lemma 2.6. Let D(w, r) denote a disc of radius r , centre w . Then, for

0 < s < r , there is a constant K(s/r) =
{
(r + s)/(r − s)

}4
such that, for every

univalent map g: D(w, r) → C , the distortion of g in D(w, s) is bounded by

K(s/r) .

The next few results are concerned with Ahlfors’ five-islands theorem. The
form of this theorem given below can easily be deduced from that given by Tsuji
in [22, Theorem VI.13 using p. 252 for the definition of an island].

Lemma 2.7. Suppose that i) f is meromorphic in D(z, R) and ii) Ei ,
1 ≤ i ≤ 5 , are simply connected domains in C bounded by sectionally-analytic

Jordan curves such that the Ei are disjoint. Then there exists a constant C =
C(E1, . . . , E5) independent of f such that if

R
∣∣f ′(z)

∣∣

1 +
∣∣f(z)

∣∣2
> C

then some subdomain of D(z, R) is mapped by f univalently onto one of the Ei .
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An open Riemann surface R is said to be regularly exhaustible if R can be
exhausted by a sequence of compact Riemann surfaces R0 ⊂ R1 ⊂ · · · → R where
Rn ⊂ Rn+1 and the boundary Γn of Rn consists of a finite number of analytic
Jordan curves such that

lim
n→∞

Ln/|Rn| = 0,

where Ln is the spherical length of Γn and |Rn| is the spherical area of Rn .
An alternative form of Ahlfors’ five-islands theorem to Lemma 2.7 is that

given below (see, for example, [22, Theorem VI.8]).

Lemma 2.8. Let R be a simply connected open Riemann surface spread

over the complex sphere K and let Ei , 1 ≤ i ≤ 5 , be simply connected domains

in K bounded by sectionally-analytic Jordan curves such that the Ei are disjoint.

Then if the spherical area of R , |R| , is equal to ∞ and R is regularly exhaustible

there are infinitely many domains in R that are mapped univalently by f onto

one of the Ei .

We prove the following result.

Lemma 2.9. If, for some r0 > 0 , f is a meromorphic function in r0 ≤ |z| <
∞ with an essential singularity at ∞ then the Riemann surface R generated by

f is regularly exhaustible.

Proof. Put

L(r) =

∫

|z|=r

∣∣f ′(z)
∣∣

1 +
∣∣f(z)

∣∣2
|dz| =

∫ 2π

0

∣∣f ′(reiθ)
∣∣

1 +
∣∣f(reiθ)

∣∣2
r dθ

and

A(r) =

∫

r0≤|z|≤r

∣∣f ′(z)
∣∣2

{
1 +

∣∣f(z)
∣∣2}2 |dz|2 =

∫ r

r0

∫ 2π

0

∣∣f ′(̺eiθ)
∣∣2

{
1 +

∣∣f(̺eiθ)
∣∣2}2 ̺ dθ d̺.

Thus A(r) is the spherical area of R(r) = f
(
{z : r0 ≤ |z| ≤ r}

)
and L(r) +L(r0)

is the spherical length of the boundary of R(r) . We note that A(r) → ∞ as
r → ∞ since by Picard’s theorem f(z) takes all but at most two values infinitely
often in r0 ≤ |z| <∞ .

It follows from the Cauchy–Schwarz inequality that

L2(r) ≤

∫ 2π

0

r dθ

∫ 2π

0

∣∣f ′(reiθ)
∣∣2

{
1 +

∣∣f(reiθ)
∣∣2}2 r dθ = 2πr

dA(r)

dr
.

If, for some constant h and some r′ > r0 , we have A(r) ≤ hL(r) for r ≥ r′ then
it follows from the above inequality that

A2(r) ≤ h2L2(r) ≤ h22πr
dA(r)

dr
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for r ≥ r′ , and so

∫ ∞

r′

dr

r
≤

∫ ∞

r′

2πh2

A2(r)
dA(r) =

2πh2

A(r′)
.

As the left hand side of the above expression is unbounded it follows that A(r′) = 0
and hence f ′ ≡ 0. This, however, is a contradiction and so there must be an infinite
sequence rn → ∞ such that r0 < r1 < · · · < rn < · · · and L(rn)/A(rn) → 0 as
n→ ∞ . We know that A(r) → ∞ as r → ∞ and so

[
L(rn) + L(r0)

]
/A(rn) → 0

as n→ ∞ . Thus R is indeed regularly exhaustible.
Using the two preceding results one obtains the following form of the five-

islands theorem which we will use in the proof of Theorem B.

Lemma 2.10. If, for some r0 > 0 , f is a meromorphic function in r0 ≤
|z| < ∞ with an essential singularity at ∞ , and Ei , 1 ≤ i ≤ 5 , are simply

connected domains bounded by sectionally-analytic Jordan curves such that the

Ei are disjoint then there are infinitely many domains in r0 ≤ |z| < ∞ that are

mapped univalently by f onto one of the Ei .

The final result of this section is a generalisation of Gross’s star theorem (see,
for example, [19, p. 287]) which we need for the proof of Theorem B.

Lemma 2.11. If R is a branch, analytic at z0 , of the inverse of a function

g that is meromorphic in C or in C \ {0} then R can be continued analytically

along almost every ray from z0 to ∞ .

Proof. Gross’s star theorem covers the case when g is meromorphic in C

and so we may assume that g is meromorphic only in C \ {0} . We consider the
function G = gf where f(z) = ez and note that G is meromorphic in C . If we
take a branch g0 of g−1 that is analytic at z0 then, as g−1(z0) 6= 0, there exists a
branch f0 of f−1 that is analytic at g−1(z0) and hence a branch G0 of G−1 that
is analytic at z0 . We know that G0 can be continued analytically along almost
every ray from z0 to ∞ . If G1 is an analytic continuation of G0 along one such
ray then it is clear that fG1 is an analytic continuation of g0 along the same ray.
This completes the proof.

3. Proof of Theorem A

Töpfer [21, p. 69] showed that the Julia set of a transcendental entire function
cannot contain a free Jordan arc. By using his method of proof we obtain the more
general result given below.

Lemma 3.1. If f is a function in class II or III then J(f) cannot contain a

free Jordan arc.
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Proof. Suppose that f is such a function and that J(f) contains a free
Jordan arc α . As E(f) contains at most two points we may assume without loss
of generality that α ∩ E(f) = ∅ . It follows from Lemma 2.4 that we can choose
a point z0 ∈ α such that fm(z0) = z0 for some m ∈ N . We now take three
distinct points zi ∈ α , 1 ≤ i ≤ 3, with neighbourhoods Ni such that the Ni are
mutually disjoint and such that J(f) ∩Ni ⊂ α , 1 ≤ i ≤ 3. It then follows from
Lemma 2.5 that for some n ∈ N there exist three distinct points wi ∈ Ni such
that fn(wi) = z0 and hence wi ∈ α .

We now take the subarc γ of α which passes through all three points wi
and has two of these points as its endpoints. As γ ∩ E(f) = ∅ and ∞ ∈ E(f) ,
fn(γ) = Γ is clearly compact and we claim that it is in fact a component of J(f) .
For, if z ∈ Γ, there exists w ∈ γ such that fn(w) = z and a neighbourhood N
of w such that J(f) ∩N ⊂ γ . It then follows that fn(N) is a neighbourhood of
z and J(f) ∩ fn(N) ⊂ Γ. It is also clear that Γ is connected and contained in
J(f) . Thus Γ is indeed a bounded component of J(f) .

As z0 ∈ Γ and fm(z0) = z0 , it now follows that fm(Γ) ⊂ Γ and hence
fpm(Γ) ⊂ Γ for all p ∈ N . As f is transcendental, J(f) must be unbounded
and so there exists a point z4 ∈ J(f) and a compact set L such that z4 ∈ L
and L ∩

(
E(f) ∪ Γ

)
= ∅ . We now take a neighbourhood N0 of z0 such that

N0 ∩ J(f) ⊂ Γ. It follows from Lemma 2.5 that there exists M ∈ N such that
fN (N0) ⊃ L for all N ≥M . This, however, is a contradiction as for each M ∈ N

there exists p ∈ N such that pm > M and J(f) ∩ fpm(N0) ⊂ Γ. This completes
the proof.

It follows that Theorem A is true in a trivial sense for functions in class II or
III and so we need only consider functions which belong to class I or class IV. We
begin by proving the following two results. We define

αn(f) = {z ∈ α : fn is meromorphic in a neighbourhood of z}.

Lemma 3.2. If f is a standard meromorphic function and J(f) contains a

free Jordan arc α then each point z ∈ fn
(
αn(f)

)
⊂ J(f) has an open neighbour-

hood N such that either

(i) J(f) ∩N is a Jordan arc with no end points in N , or

(ii) J(f) ∩N is a Jordan arc with an endpoint at z .

Proof. If α is a free Jordan arc of J(f) then it follows from the definitions
given in the introduction that there exists a homeomorphism ϕ of the open disc
D(0, 1) with J(f) ∩ ϕ

(
D(0, 1)

)
= ϕ

(
(−1, 1)

)
such that α = ϕ

(
[a, b]

)
for some

−1 < a < b < 1. We take a value n ∈ N and put ψ = fnϕ . If z ∈ fn
(
αn(f)

)

then it is clear that there exists a point w ∈ α and t0 ∈ [a, b] such that z =
fn(w) = ψ(t0) . If fn is univalent at w and hence in a neighbourhood of w it is
clear that there exists δ > 0 such that ψ is a homeomorphism of D(t0, δ) ⊂ D(0, 1)
onto an open neighbourhood N of z of form (i).



280 Gwyneth M. Stallard

We now consider the case where fn has valency k > 1 at w . As such points
are isolated it is clear that, for some ε1 > 0, ψ is univalent at each point of
[t0 − ε1, t0) ⊂ (−1, 1) and

{
ψ(t0 − ε1)

}
∩ ψ

(
(t0 − ε1, t0]

)
= ∅ . We claim that in

fact ψ
(
[t0 − ε1, t0]

)
is a Jordan arc.

For let

τ = sup
{
t : t0 − ε1 ≤ t < t0, ψ

(
[t0 − ε1, t]

)
is a Jordan arc

}
.

Suppose that ψ
(
[t0−ε1, τ ]

)
is not a Jordan arc. Then there exists τ ′ ∈ [t0−ε1, τ)

such that ψ(τ) = ψ(τ ′) . If we take τ ′ < τ ′′ < τ then we see that ψ
(
[t0 − ε1, τ

′]
)
,

ψ
(
[τ ′, τ ′′]

)
, ψ

(
[τ ′′, τ ]

)
are three distinct arcs in J(f) which meet at the point ψ(τ) .

It follows from the complete invariance of J(f) under fn that at least three arcs
of J(f) meet at ϕ(τ) ∈ α which is clearly a contradiction. Thus ψ

(
[t0 − ε1, τ ]

)
is

a Jordan arc.
We now suppose that τ < t0 so that ψ is a homeomorphism on [τ −µ, τ +µ]

for some µ > 0. As ψ
(
[t0 − ε1, τ ]

)
is a Jordan arc we know that

(3.1) ψ
(
[t0 − ε1, τ − µ]

)
∩ ψ

(
(τ − µ, τ ]

)
= ∅

and also that

(3.2) ψ
(
[τ − µ′, τ + µ′]

)
∩ ψ

(
[t0 − ε1, τ − µ]

)
= ∅,

for some 0 < µ′ < µ . (3.1) and (3.2) together imply that ψ
(
[t0 − ε1, τ + µ′]

)
is

a Jordan arc which contradicts the definition of τ . Thus τ = t0 and so γ1 =
ψ

(
[t0 − ε1, t0]

)
is indeed a Jordan arc. A similar argument can be used to show

that, for some ε2 > 0, [t0, t0 + ε2] ⊂ (−1, 1) and γ2 = ψ
(
[t0, t0 + ε2]

)
is a Jordan

arc.
We now show that there exists δ ∈ (0, ε2] such that

(3.3) ψ
(
[t0, t0 + δ]

)
⊂ γ1.

We begin by supposing that there exists ε′ ∈ (0, ε2] such that ψ
(
[t0, t0+ε′]

)
∩γ1 =

∅ . If this is the case then there are at least two distinct Jordan arcs in J(f) which
end at ψ(t0) = z . As fn has valency k > 1 at w = ϕ(t0) , the complete invariance
of J(f) under fn implies that there are at least 2k Jordan arcs of J(f) which
meet at w ∈ α . This is clearly a contradiction and so for every ε′ ∈ (0, ε2] we
have ψ

(
[t0, t0 + ε′]

)
∩ γ1 6= ∅ .

We now choose δ ∈ (0, ε2] so small that for t ∈ [t0, t0 + δ] we have

(3.4)
∣∣ψ(t) − z

∣∣ < 1
2

∣∣ψ(t0 − ε1) − z
∣∣
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and claim that this δ satisfies (3.3). If this is not the case then there exists
δ′ ∈ (0, δ] such that ψ(t0 + δ′) 6∈ γ1 . We know from the previous paragraph that

A =
{
t : t ∈ (t0, t0 + δ′), ψ(t) ∈ γ1

}
6= ∅

and so τ1 = supA is well-defined. Clearly τ1 ∈ (t0, t0 + δ′) , ψ(τ1) ∈ γ1 and
hence, from (3.4), there exists T ∈ (t0 − ε1, t0) such that ψ(T ) = ψ(τ1) . If we
take T ′ ∈ (t0 − ε1, T ) the arcs ψ

(
[T ′, T ]

)
, ψ

(
[T, t0]

)
and ψ

(
[τ1, t0 + δ′]

)
belong

to J(f) and are disjoint except for their common endpoint ψ(T ) = ψ(τ1) . The
complete invariance of J(f) under fn implies that there must be at least three
disjoint arcs of J(f) which meet at ϕ(T ) ∈ α . This is clearly a contradiction and
so δ does indeed satisfy (3.3).

If we take a domain U ⊂ D(0, 1) such that U ∩(−1, 1) = (t0−ε1, t0 +δ) then
it is clear that ψ(U) is an open neighbourhood N of z of form (ii).

Lemma 3.3. If f is a standard meromorphic function and J(f) contains a

free Jordan arc α then if, for some n ∈ N , αn(f) = α it follows that fn(α) must

be either a Jordan arc or a Jordan curve.

Proof. It follows from Lemma 3.2 that either

(i) fn(α) has two endpoints b and b′ and fn(α) \ {b, b′} is a non-compact,
connected one-dimensional manifold or

(ii) fn(α) has no endpoints and is a compact, connected one-dimensional
manifold.

In case (i) fn(α) \ {b, b′} must be homeomorphic to an open interval and
hence fn(α) is a Jordan arc. In case (ii) fn(α) must be homeomorphic to a circle
and is hence a Jordan curve. (See, for example, [7, Theorem 3.4.1]).

Proof of Theorem A. If f is a rational function then E(f) ⊂ N(f) (see, for
example, [9, Lemma 2.2]) and so if J(f) contains a free Jordan arc α then it
follows from Lemma 2.5 that J(f) = fN (α) for some N ∈ N . As αN (f) = α it
then follows from Lemma 3.3 that J(f) must be either a Jordan arc or a Jordan
curve.

Now suppose that f is a function in class IV and that J(f) contains a free
Jordan arc α . If we denote by A the set whose members are the endpoints of α
then it follows from Lemma 2.3 that there exist arbitrarily large values of n ∈ N

such that fn has a pole in α \ A . We denote by k the minimum such value
of n and take an arc γ contained in α such that γ contains precisely one pole
p of fk and such that the endpoints of γ are not poles of fk . There exists a
simply connected domain D in C such that J(f) ∩ D = γ and hence a closed
neighbourhood U = fk(D) of ∞ such that J(f) ∩ U = fk(γ) . It then follows
from Picard’s theorem that there are at most two points in J(f) not having pre-
images in U , that is in fk(γ) \ {∞} . It easily follows from Lemma 2.3 that J(f)

is perfect and so J(f) = f
(
fk(γ) \ {∞}

)
.
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We now show that J(f) is in fact equal to f
(
fk(γ) \ {∞}

)
. It follows from

Lemma 3.3 that fk(γ) is a Jordan arc or curve containing ∞ . If ∞ is an endpoint
of fk(γ) or if fk(γ) is a Jordan curve then f

(
fk(γ)\{∞}

)
= C is clearly connected

and so J(f) consists of one component C . Otherwise, fk(γ) \ {∞} is the union
of two connected sets L and R , neither of which can reduce to a single point,
and J(f) = f(L) ∪ f(R). It is now clear that J(f) has at most two components,
neither of which can reduce to a single point.

If J1 is a component of J(f) then, as p is an essential singularity of fk+1 , it
follows from Picard’s theorem that for some z1 ∈ J1 there exist three points wi ,
1 ≤ i ≤ 3, such that as we go along γ we meet w1 , then w2 , followed by w3 and
finally p , and such that, in the subarc γ′ of γ with endpoints w1 and w3 , the
solutions of fk+1(w) = z1 are w1 , w2 and w3 .

We claim that fk+1(γ′) is equal to J1 . For if z ∈ fk+1(γ′) then there
exists w ∈ γ′ such that fk+1(w) = z and a neighbourhood N of w such that
J(f) ∩ N ⊂ γ′ . It follows that fk+1(N) is a neighbourhood of z and J(f) ∩
fk+1(N) ⊂ fk+1(γ′) . It is also clear that fk+1(γ′) is closed, connected and
contained in J(f) . It is thus a component of J(f) and hence equal to J1 .

It also follows from Lemma 3.3 that J1 = fk+1(γ′) must be either a Jordan
arc or a Jordan curve. It is clear that fk+1 is meromorphic in a neighbourhood of
γ′ and so, if α and hence γ′ is an analytic arc, then J1 must be either an analytic
Jordan arc or an analytic Jordan curve.

Finally we show that J(f) is in fact connected. If not, then we have shown
that J(f) must have precisely two components J1 and J2 one of which, say J1 ,
must be bounded. It is clear that ∞ ∈ J2 and we may assume without loss of
generality that 0 ∈ J1 .

It follows from Lemma 2.3 that there exist arbitrarily large values of n ∈ N

such that fn has a pole in J1 . We denote by m the minimum such value of n .
We now take a simple closed curve Γ in N(f) which separates J1 and J2 and has

winding number 1 round 0. As fm is meromorphic in Ĉ\J2 we are able to apply
the argument principle to fm in the domain V bounded by Γ. Since fm(J1) is
a connected, unbounded subset of J(f) we must have fm(J1) ⊂ J2 and so fm

has no zeros in V . Thus the number of zeros of fm in V minus the number of
poles of fm in V is strictly negative and so the winding number of fm(Γ) round
0 is also negative. fm(Γ) is clearly a closed curve in N(f) and so it separates J1

and J2 .

We now take a simple closed curve Γ1 ⊂ fm(Γ) which separates J1 and J2

and repeat the argument. We see that, for any k ∈ N , fmk(Γ) contains a simple
closed curve Γk ⊂ N(f) which separates J1 and J2 . Thus, denoting the spherical
diameter of a set Ω by d(Ω), we see that

d
(
fmk(Γ)

)
> min

(
d(J1), d(J2)

)
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and so (fmk) has some non-constant limit function in the component N1 of N(f)
between J1 and J2 . It is clear that N1 is mapped into itself by fm and so it
follows from Lemma 2.2 that fm maps N1 univalently onto itself.

It is easy to see that N(f) can have at most three components Nj , 1 ≤ j ≤ 3,
since each of J1 , J2 is a Jordan arc or curve. We know that fm takes all but
at most two values in N1 infinitely often and so, as fm is univalent in N1 it
follows that fm(Nk) ⊂ N1 for some k 6= 1. It is then clear that there exists
j 6= 1 such that, for each w ∈ Nj , f

m(z) = w has not solutions. This is clearly a
contradiction and so J(f) must be connected.

We have thus shown that J(f) is either a Jordan arc or a Jordan curve and,
in the case where α is analytic, J(f) is also analytic.

Note. Suppose that J(f) is an analytic Jordan curve or arc and that w ∈ J(f)
is not an endpoint of J(f) . Then it follows from the proof of Lemma 3.2 that there
exists an open neighbourhood N of w such that J(f)∩N is a regular Jordan arc.

4. Proof of Theorem B

This theorem has already been shown to be true for functions in class I and
so it follows from Lemma 3.1 that we need only consider functions in class IV.
Having proved Theorem A, it is sufficient to show that if f is a function in class
IV and J(f) is an analytic Jordan curve or arc then J(f) is in fact a straight line.
We begin with the following result.

Lemma 4.1. Suppose that f is a function in class IV and that J(f) is a

Jordan arc with precisely one finite endpoint, a . Put P (z) = z2 + a . For some

z1 such that fP (z1) = α 6= a,∞ take a fixed branch of P−1(w) = (w − a)1/2 at

w = α . Then F = P−1fP continues analytically to a function in class IV and

J(F ) is a Jordan curve. If J(f) is analytic then J(F ) is also analytic.

Proof. In order to show that F is single-valued it is sufficient to show that
fP is 2-valent at each point in the set

B =
{
z : fP (z) = a or ∞

}
.

We first consider the point 0 and note that it is in B . It is clear that P is
2-valent at 0 and, as only one component of J(f) \ {a} ends at P (0) = a , the
complete invariance of J(f) under f implies that f(a) = a or ∞ and that f is
univalent at P (0).

If z ∈ B \ {0} then P is clearly univalent at z . As P (z) /∈ {a,∞} , exactly
two segments of J(f) end at P (z) and, as only one segment of J(f) ends at
fP (z) , we again use the complete invariance of J(f) under f to deduce that f
is 2-valent at P (z) . Thus fP is 2-valent at each point in B .

It follows that F is a transcendental meromorphic function with at least one
pole and so belongs to class III or class IV. We know that ∞ /∈ E(f) and this
implies that ∞ /∈ E(F ) thus showing that F belongs to class IV.
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We note from Lemma 2.3 that if g is a function in class IV then J(g) is the
closure of the set of poles of all gn . Since Fn = P−1fnP we see that P (β) is
a pole of fn if and only if β is a pole of Fn . Hence J(F ) = P−1

(
J(f)

)
, the

complete inverse image of J(f) under P , and the result follows.

Proof of Theorem B. Let f denote a function in class IV. In proving the
theorem we have to consider three cases:

I) J(f) = Γ is an analytic Jordan curve. Since Γ must pass through ∞ , N(f)
has precisely two components, D+ and D− , both of which are simply connected.
We have either

IA) f(D+) ⊂ D+ and f(D−) ⊂ D− , or

IB) f(D+) ⊂ D− and f(D−) ⊂ D+ .

II) Γ is an analytic Jordan arc and both the endpoints of Γ are finite. In this
case N(f) has one component D and this is also simply connected.

III) Γ is an analytic Jordan arc and has one end at ∞ and one finite endpoint.

Proof in cases IA and II. (1) We begin by introducing a conformal map h of
the upper half plane H+ which has a continuous extension to R . In case IA, h
is a map of H+ onto D+ with h(∞) = ∞ . We set A = ∅ and B = {∞} . In case
II, h is a map of H+ onto D with h(∞) = h(0) = ∞ . We denote the unique
pre-images of b and b′ , the endpoints of Γ, by a and a′ respectively. We set
A = {a, a′} and B = {0,∞} .

Figure 4.1.
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If z ∈ R \ A then it follows from the note at the end of Section 3 that there
exists a neighbourhood V of z , symmetric about R , such that h can be continued
to give a meromorphic function in V by use of the reflection principle.

We now take g to be the map defined by

g = h−1fh

in H+ . We apply the reflection principle to g and deduce that g can be continued
to a meromorphic map in the plane, except for essential singularities at the points
in B , such that g(H+) ⊂ H+ , g(H−) ⊂ H− and g(R \B) ⊂ R ∪ {∞} .

We note that g is univalent at each point z ∈ R \B . For if g has valency k
at z then, as exactly two segments of R meet at g(z) , there must be 2k segments
of g−1(R) ⊂ R which meet at z and hence k must be equal to 1. We also note
that

(4.1) h = fhg−1

for all branches of g−1 on H+ ∪ R .

(2) The main part of the proof is to obtain a meromorphic continuation of h

to the whole of Ĉ . The nature of the extended h will enable us to use the fact
that h(R) = Γ to deduce that Γ must be a straight line. In this section we use
(4.1) to obtain a meromorphic continuation of h to a neighbourhood of ∞ .

We know that f has a pole p′ ∈ Γ and so g has a pole p′′ ∈ R which satisfies
h(p′′) = p′ . It is clear that p′ cannot be an endpoint of Γ as this would force
f(p′) = ∞ to be an endpoint of Γ contrary to our initial assumption. We are
therefore able to take a neighbourhood V ′ of p′′ ∈ R \ (A ∪ B) in which h is
defined and such that g is a univalent map of V ′ onto a neighbourhood U of ∞ .
We are now able to use (4.1) to obtain a meromorphic continuation of h to U
by taking the branch G0 of g−1 that maps U univalently onto V ′ and putting
h = fhG0 in U .

We note that hG0(U \ R) ⊂ N(f) and hence

(4.2) h(U \ R) = fhG0(U \ R) ⊂ N(f).

We denote by K the compact set C \ U .

(3) We shall now show that all possible meromorphic continuations of h in
the plane lead to a single-valued meromorphic function. First note that g−1 has
no algebraic singularities on R as g−1(R) ⊂ R \ B and g is univalent at each
point of R \B . Together with Picard’s theorem this shows that there are at most
two points on R at which there are only finitely many analytic branches of g−1 .

If all possible meromorphic continuations of h do not lead to a single-valued
function then we can take a point r ∈ R \ A at which g−1 has infinitely many
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analytic branches and two polygonal paths γ1 , γ2 from r to a point q ∈ K
together with a neighbourhood Dr of r and a neighbourhood Dq of q such that h
is meromorphic in Dr and has a meromorphic continuation along γi to a function
Hi that is meromorphic in Dq , i = 1, 2, where H1 6= H2 .

We know that g is meromorphic in C \B , i.e. in C or in C \ {0} and so it
follows from Lemma 2.11 that we can modify the closed polygonal path γ1 \ γ2

by changing γ1 to a polygonal path λ1 from r to a point q′ ∈ Dq and −γ2 to a
polygonal path −λ2 from q′ to some r′ ∈ R such that [r, r′] ⊂ Dr and such that

(i) for i = 1, 2, h has a meromorphic continuation along λi to the function
Hi at q′ with H1(q

′) 6= H2(q
′) ,

(ii) every branch of g−1 that is analytic at r continues analytically round
Λ = λ1 \ λ2 to r′ ∈ R .

We now show that there is a branch G of g−1 that is analytic at r and which
satisfies G(Λ) ⊂ C \K . We first note that at any point s of Λ at most finitely
many segments σ1, . . . , σk of Λ intersect and there exists a neighbourhood of s
which meets Λ only in σ1, . . . , σk .

We consider the branches G1, G2 . . . of g−1 that are analytic at r and hence
along Λ. Suppose that, for infinitely many i , Gi(Λ) ∩K 6= ∅ . Then there exist
zi ∈ Λ with Gi(zi) = wi → w0 ∈ K and hence zi → z0 = g(w0) ∈ Λ. Now, as
g has valency v at w0 and there are only finitely many segments σ1, . . . , σn of
Λ which meet at z0 , it is clear that there are exactly vn segments ω1, . . . , ωvn
of g−1(Λ) which meet at w0 . By taking a sufficiently small neighbourhood Nw
of w0 in which g has valency v , we can ensure that Λ meets Nz = g(Nw) only
in σ1, . . . , σn and that g−1(Λ) meets Nw only in ω1, . . . , ωvn with w0 being the
only point in Nw at which two segments ωi , ωj meet for 1 ≤ i , j ≤ vn . We then
take a point zk on one of the segments σm , 1 ≤ m ≤ n , such that Gk(zk) = wk
is a point on one of the segments ωs , 1 ≤ s ≤ vn . Continuing Gk along σm to
z0 we have that Gk(z0) = w0 and so g must in fact be univalent in Nw as Gk is
analytic on Λ and hence at z0 . Thus v = 1.

We also note that Gk must map σm onto ωs . Similarly, if for some j 6=
k there exists a point zj ∈ σm with Gj(zj) = wj ∈ ωs , then we must have
Gj(σm) = ωs . But g is univalent in Nw and hence on ωs so Gj ≡ Gk which is a
contradiction. It follows that there are at most n different values of i with zi ∈ σm
and Gi(zi) ∈ Nw and hence at most n2 different values of i with wi ∈ Nw . This
is clearly a contradiction and so there is a branch G of g−1 that is analytic at r
and maps Λ into C \K = U .

We now take this branch G of g−1 and put H = fhG which is well-defined
and meromorphic on the path Λ which joins r to r′ as G(Λ) ⊂ U . It follows
from (4.1) that H is also meromorphic on [r, r′] and that H ≡ h on [r, r′] . Thus
H gives a meromorphic continuation of h along λ1 to q′ and also along λ2 to q′ .
This contradicts (i) and so all possible meromorphic continuations of h lead to a
single-valued function.
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(4) We now show that h can be continued to give a meromorphic function in

the whole of Ĉ . Suppose that this is not the case and that there are five points
ak ∈ K , 1 ≤ k ≤ 5, to which h cannot be continued to give a meromorphic
function. We take five simply connected domains Ek bounded by sectionally-
analytic Jordan curves with ak ∈ Ek such that the closures of the Ek are disjoint
and such that Ek ∩H

+ 6= ∅ . It is clear that there exists r0 > 0 such that g is a
meromorphic function in

{
z : r0 ≤ |z| < ∞

}
⊂ U with an essential singularity at

∞ and so it follows from Lemma 2.10 that there is a subdomain U ′ of U that is
mapped univalently by g onto one of the Ek , say E5 . We then take the branch Ĝ
of g−1 that maps E5 univalently onto U ′ and put Ĥ = fhĜ . Ĥ is well-defined
and meromorphic in E5 and, from (4.1), agrees with h in E5 ∩H

+ . It therefore
gives a meromorphic continuation of h to E5 and hence to a5 .

Thus h can be continued to the whole of Ĉ apart from at most four points
ak ∈ K , 1 ≤ k ≤ 4, to give a single-valued meromorphic function. We denote by
C the set whose members are the essential singularities of h and show that in fact
C = ∅ .

We first show that if s ∈ H− \ C then h(s) ∈ N(f) . For suppose that there
exists a point s ∈ H− \ C with h(s) ∈ J(f) . If we take a neighbourhood N of s
such that N ⊂ H− \C then h(N) will contain an arc of J(f) and so we can take
five distinct points bk ∈ N , 1 ≤ k ≤ 5, such that h(bk) ∈ J(f) . We then take five
simply connected domains Bk bounded by sectionally-analytic Jordan curves with
bk ∈ Bk such that the closures of the Bk are disjoint and such that Bk ∩H

+ 6= ∅ .
By applying Lemma 2.10 as above we are able to show that for one of the domains
Bk , say B5 , there exists a branch G∗ of g−1 that maps B5 univalently onto a
domain U ′′ ⊂ U and h = fhG∗ in B5 . It is clear that G∗(b5) ∈ H− ∩ U and
so, from (4.2), hG∗(b5) ∈ N(f) and hence h(b5) = fhG∗(b5) ∈ N(f) which is a
contradiction. Thus h(H− \ C) ⊂ N(f) as claimed and so, by Picard’s theorem,
C ∩H− = ∅ .

We now know that C must be contained in A . If w ∈ A , we take a
neighbourhood W of w such that h is analytic in W \ {w} . We know that
h(W ∩H−) ⊂ N(f) and so, since h(z) tends to an endpoint of Γ as z → w on
any path in H+∪R , it follows from Picard’s theorem that h is analytic at w and
hence C = ∅ .

(5) In case IA we have obtained an analytic continuation of h to the whole of

Ĉ with h(H+) ⊂ D+ and h(R) ⊂ Γ. We know that h(H−) ⊂ N(f) and, as h is
continuous and h(H−)∩D− 6= ∅ , it follows that h(H−) ⊂ D− . As h is conformal

in H+ it follows that h is a conformal map of Ĉ . As h has no poles it must in
fact be linear and so J(f) = Γ = h(R) is a straight line as claimed.

In case II we have obtained a meromophic continuation of h to the whole of
Ĉ with h(H+) = h(H−) = N(f) = D and h(R) = Γ = J(f) . As h is conformal
in H+ it is easy to see that for each point w ∈ Γ there are at most two real
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solutions of h(z) = w and hence at most two solutions in C to h(z) = w . Thus,
by Picard’s theorem, h has a pole at ∞ and so must be a rational function of
degree two. We know that h has precisely one finite pole and that this is at the
point 0. We have

(4.3) h(z) = [az2 + bz + c]/z

for some constants a , b , c .
We know that h is a conformal map of H+ onto D and so h is also univalent

in H− . Thus the solutions of h′(z) = 0 must be real. Differentiating (4.3) we see
that h′(z) = 0 if and only if az2 − c = 0 and so µ2 = c/a ∈ [0,∞) . Rewriting
(4.3) as

h(z) = a[z + µ2/z] + b

we see that J(f) is the image of

[−∞,−2µ] ∪ [2µ,∞]

under the map w(t) = at+ b and is therefore a straight line segment as claimed.

Proof in case IB. (1) We note that f2 is meromorphic in C apart from
essential singularities in Γ. Denoting by E the set whose members are the essential
singularities of f2 we see that f2(D+) ⊂ D+ , f2(D−) ⊂ D− and f2(Γ \E) ⊂ Γ.

As in case IA we take a conformal map h of the upper half plane H+ such
that h(H+) = D+ and h(∞) = ∞ . By use of the reflection principle we are able
to obtain an analytic continuation of h to a neighbourhood N of R such that h
is univalent in H+ ∪N .

We now take G to be the map defined by

G = h−1f2h

in H+ . By using the reflection principle we are able to obtain a continuation of G
that is meromorphic in the plane apart from essential singularities at the points
in h−1(E) ⊂ R such that the continued function G satisfies G(H+) ⊂ H+ ,
G(H−) ⊂ H− and G

(
R \ h−1(E)

)
⊂ R ∪ {∞} . We note that

(4.4) h = f2hG−1

for all branches of G−1 on H+ ∪R and that G is univalent on R \ h−1(E) .

(2) In this section we use (4.4) to obtain an analytic continuation of h to a
neighbourhood of ∞ . We know that f2 has a pole P ′ ∈ Γ and hence G has a
pole P ′′ ∈ R which satisfies h(P ′′) = P ′ . we take a neighbourhood V ⊂ N of
P ′′ such that G is a univalent map of V onto a neighbourhood U of ∞ that is
symmetric about R . We now continue h analytically to U by taking the branch
G0 of G−1 that maps U univalently onto V and putting h = f2hG0 in U .

From the invariance of J(f) under f2 it is clear that f2 is univalent at P ′

and so by keeping V sufficiently small we are able to ensure that h is a univalent
map of U onto h(U) = W . Letting U− = U ∩H− and U+ = U ∩H+ we note
that h(U−) ⊂ D− and h(U+) ⊂ D+ .
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(3) We have shown that h can be continued analytically to a function that is
univalent in H+ ∪R ∪ U ∪N , where N is a neighbourhood of R , and so h−1 is
analytic in D+ ∪ Γ ∪W ∪ h(N) . The main part of the proof is to show that h−1

can be continued analytically to the whole of C . We denote by K the compact
set C \W .

We take g to be the function defined by

g = h−1fh

in U− ∪ N ′ , where N ′ is a neighbourhood of R satisfying fh(N ′) ⊂ h(N) . By
use of the reflection principle we are able to obtain a meromorphic continuation
of g to U ∪N ′ . We note that

(4.5) h−1 = gh−1f−1

on Γ for all branches of f−1 . It follows from the invariance of J(f) under f that
f is univalent at each point of f−1(Γ) = Γ and so it follows from Picard’s theorem
that there are at most two points in Γ at which f−1 does not have infinitely many
analytic branches.

(4) We now show that all possible analytic continuations of h−1 lead to a
single-valued function. If not then we can take a point r ∈ Γ at which f−1 has
infinitely many analytic branches and two polygonal paths γ1 , γ2 from r to a
point q ∈ K together with a neighbourhood Dr of r and a neighbourhood Dq of
q such that h−1 is analytic in Dr and can be continued analytically along γi to
a function Hi that is analytic in Dq , i = 1, 2, where H1 6= H2 .

It follows from Lemma 2.11 that we can modify the closed polygonal path
γ1 \ γ2 by changing γ1 to a polygonal path λ1 from r to a point q′ ∈ Dq and
−γ2 to a path −λ2 from q′ to some r′ ∈ Γ such that there is an arc Λr ⊂ Γ∩Dr
with endpoints r and r′ and such that

(i) for i = 1, 2, h−1 continues analytically along λi to the function Hi at q′

with H1(q
′) 6= H2(q

′) ,
(ii) every branch of f−1 that is analytic at r continues analytically round

Λ = λ1 \ λ2 to r′ ∈ Γ.

By using the same type of argument as that used in section (3) of the proof
in case IA it can be shown that there exists a branch F of f−1 which satisfies
F (Λ) ⊂ C \K = W . We take this branch F of f−1 and put H = gh−1F which
is well-defined and analytic on Λ which joins r to r′ . It follows from (4.5) that H
is also analytic on Λr and that H ≡ h−1 on this arc. Thus H gives an analytic
continuation of h−1 along λ1 from r to q′ and also along λ2 from r′ to q′ . this
contradicts (i) and so all possible analytic continuations of h−1 do in fact lead to
a single-valued function.
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(5) By modifying the arguments used in the proof in case IA as in the previous
section, it can be shown that h−1 can be continued to give an entire function with
h−1(D−) ⊂ H− , h−1(D+) ⊂ H+ and h−1(Γ) ⊂ R . We know that h−1 is a
conformal map of D+ and so h−1 must in fact be a conformal map of C . As h−1

has no poles it must in fact be linear and so h is also linear. Thus Γ = h(R) is
indeed a straight line as claimed.

Proof in case III. If J(f) is an analytic Jordan arc with one end at ∞ and one
finite endpoint, a , we consider the function F = P−1fP where P (z) = z2 + a . It
follows from Lemma 4.1 that J(F ) is an analytic Jordan curve and, as we have
proved Theorem B in case I, it follows that J(F ) must be a straight line. As
J(f) = P

(
J(F )

)
and 0 ∈ J(F ) it follows that J(f) is a half-line.

5. Proof of Theorem C

(i) We consider the function g0 where g0(z) = tan(z) . In [4] several examples
are given of functions whose Julia sets are contained in the real line. In particular
it is shown that J(g0) = R ∪ {∞} and is hence an analytic Jordan curve.

(ii) We now consider the function g1 where g1(z) =
[
tan(z1/2)

]2
. This is a

well-defined function in class IV. Clearly g1 = Ig0I
−1 where I(z) = z2 and so

by induction we obtain (g1)
n = I(g0)

nI−1 . It follows that the pre-images of ∞
under the iterates of g1 are contained in and dense in R+ since the pre-images of
∞ under the iterates of g0 are contained in and dense in R . Thus, by Lemma 2.3,
J(g1) = R+ which is an analytic Jordan arc with an endpoint at ∞ .

(iii) We construct a transcendental meromorphic function g2 such that

I) g2 is real on R ,
II) if I1 = (−∞,−1] and I2 = [1,∞) , then g2(z) ∈ I1 ∪ I2 ∪ {∞} if and only

if z ∈ I1 ∪ I2 ,
III) g2 is an odd function.

The above properties of g2 imply that N1 = C \ (I1 ∪ I2) is an invariant
domain of g2 and so N1 ⊂ N(g2) which has only one component. It now follows
from Lemma 2.2 that no subsequence of fn can have a non-constant limit function
in N(g2) . We see from (III) that g2(0) = 0 and so (g2)

n(z) → 0 as n → ∞ for
each z ∈ N(g2) . It then follows from (II) that J(g2) = I1 ∪ I2 ∪ {∞} and is thus
of the required form. The remainder of this section is devoted to the construction
of the function g2 .

We begin by giving an outline of the method of construction. We start with
the function g(z) = 1/(sin z) . This is an odd function and has the property that
g(z) ∈ I1 ∪ I2 if and only if z ∈ R . Figure 5.1 shows the values of g(z) for real
values of z . We then obtain a rational function h of degree three which behaves
on the real axis as shown in Figure 5.2.
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The main idea behind the construction is to modify g using quasiconformal
surgery so that it behaves like h in a neighbourhood of the origin and retains
its original behaviour elsewhere. To do this we take the disc D = D(0, b) and
construct a quasiconformal map ϕ of D such that the function

F =

{
ϕh for z ∈ D
g for z ∈ C \D

is continuous. The behaviour of F on the real axis is shown in Figure 5.3.
The next step is to obtain a quasiconformal map ν such that f = Fν−1 is

meromorphic. Finally, we show that, for some δ > 0, the function f defined by
fδ(z) = f(δz) is the required function g2 .

Before starting the construction we give some basic definitions and results
concerning quasiconformal maps. Given K > 1, a homeomorphism ϕ of a domain
D is said to be K -quasiconformal in D if it is absolutely continuous on horizontal
and vertical lines and if the complex dilatation of ϕ ,

µϕ = [∂ϕ/∂z̄]/[∂ϕ/∂z],

satisfies
∣∣µϕ(z)

∣∣ ≤ (K−1)/(K+1) almost everywhere (a.e.) in D . ϕ is conformal
in D if and only if µϕ(z) = 0 a.e. in D . If H: D1 → D2 is quasiconformal in D1

and G: D2 → D3 is quasiconformal in D2 then GH is quasiconformal in D1 and

(5.1) µGH(z) =
µH(z) + µG

(
H(z)

)
exp

(
− 2i arg

(
(∂H/∂z)(z)

))

1 + µH(z)µG
(
H(z)

)
exp

(
− 2i arg

(
(∂H/∂z̄)(z)

))

a.e. in D1 .

Lemma 5.1 (The measurable Riemann mapping theorem). Given a measur-

able function µ on the plane such that ‖µ‖∞ < 1 , there exists a unique sense-

preserving quasiconformal homeomorphism ϕ of Ĉ to Ĉ such that µϕ = µ a.e.

and ϕ fixes ±1 and ∞ .

For more details concerning these and other results about quasiconformal
maps see, for example, [17].

We define S to be the class of functions, f , each defined in a domain Ωf
which contains 0 and is symmetric with respect to both the real and imaginary
axes and such that f has the following properties in Ωf :

(i) f is an odd function,
(ii) f(z̄) = f(z) ,
(iii) f(z) ∈ R ∪ {∞} if and only if z ∈ R ∩ Ωf .

It is clear that if two functions f1: Ω1 → Ω2 and f2: Ω2 → Ω3 are in S then their
composition f2f1 also belongs to S . We are now ready to begin the construction
of g2 .
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Figures 5.1, 5.2 and 5.3.
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(1) In this section we construct the rational function h . We begin by consid-
ering the function R defined by

R(z) =
(1 − α2z2)z

(z2 − α2)

where 0 < α < 1. We claim that R belongs to the class S with ΩR = C . It is
not difficult to see that R has properties (i) and (ii) and that it is real on R . It
can be seen that R(−α) = R(α) = R(∞) = ∞ . By considering the behaviour of
R near each of these points it follows that

R
(
(−∞,−α)

)
= R

(
(−α, α)

)
= R

(
(α,∞)

)
= R.

Thus each point in R has three pre-images in R . As R is of degree three it follows
that R is real only on R and so it has property (iii) as claimed.

If we take ∆ to be the unit disc then clearly R maps ∂∆ to itself. By
choosing α sufficiently small we can ensure that R is a conformal homeomorphism
of a neighbourhood of ∂∆. For the zeros of R′ satisfy

α2z4 + z2(1 − 3α4) + α2 = 0

and so if R′(z0) = 0 for some z0 ∈ ∂∆ then

|1 − 3α4| =
∣∣(z0)2(1 − 3α4)

∣∣ = | − α2 − α2z4| ≤ 2α2

which is clearly impossible for sufficiently small values of α , say α < α0 . In the
remaining work we will assume that α has been chosen to be less than α0 . It
follows from the argument principle that the winding number of R(∂∆) about
0 is −1 and so R is a conformal homeomorphism of ∂∆ onto itself. It is now
clear that there must exist a neighbourhood of ∂∆ in which R is also a conformal
homeomorphism.

We take a value b such that 1 < b < π/2, put h(z) = bR(z/b) and γ = ∂D
where D = D(0, b) .

(2) We recall that g(z) = 1/(sin z) . In this section we show that there exists
a quasiconformal map ϕ: C → C in S such that

ϕ|γ = gh−1|γ = g|γh
−1|γ.

Putting W =
{
z : |Re z| < π/2

}
, we note that g is univalent in W and that

g ∈ S with Ωg = W . We let k be the unique conformal map of the open disc
D onto the bounded component of C \ g(γ) which maps 0 to 0 and real positive
values to real positive values. We note that k has a continuous extension to γ
and belongs to the class S .
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We recall that h is a conformal homeomorphism of a neighbourhood of γ onto
itself and so k−1gh−1 is a well-defined map of γ onto itself, preserving orientation.
From the symmetry of the situation we have, for z = beiθ , k−1gh−1(z) = beiψ(θ) ,
where ψ(0) = 0, ψ(π) = π , ψ(−θ) = −ψ(θ) , ψ(θ+ π) = ψ(θ)+π and ψ′(θ) > 0.
In fact there must exist constants 0 < m ≤M <∞ such that

(5.2) m ≤ ψ′(θ) ≤M

for 0 ≤ θ ≤ 2π . We now put

τ(reiθ) = reiψ(θ)

for 0 ≤ r ≤ b . It is clear that τ belongs to the class S , is a homeomorphism of
D onto itself and τ |γ = k−1gh−1|γ . The complex dilatation of τ is

µτ = [∂τ/∂z̄]/[∂τ/∂z] = e2iθ
{
τr + (i/r)τθ

}
/
{
τr − (i/r)τθ

}

where the subscripts denote partial derivatives and so, from (5.2),

|µτ | =
∣∣∣
1 − ψ′(θ)

1 + ψ′(θ)

∣∣∣ ≤ max
(1 −m

1 +m
,
M − 1

M + 1

)
< 1.

Hence τ is a quasiconformal map of D onto itself.
It now follows that kτ is a quasiconformal function in the class S that maps

D onto the bounded component of C \ g(γ) with

kτ |γ = kk−1gh−1|γ = gh−1|γ .

By using a similar argument we are able to extend gh−1 to a quasiconformal
function in S that maps C \D to the unbounded component of C \ g(γ) . This
completes the argument to show the existence of the function ϕ .

(3) We now define

F =

{
ϕh for z ∈ D
g for z ∈ C \D

which is continuous in C . We note that F is an odd function, F (z̄) = F (z) and
F is real on R . Clearly

µF (z) = (∂F/∂z̄)/(∂F/∂z) = 0

a.e. in C \D and µF (z) = µϕh(z) in D . As µh(z) = 0 a.e. in D it follows from
(5.1) that ∣∣µF (z)

∣∣ =
∣∣µϕ

(
h(z)

)∣∣

a.e. in D . ϕ is quasiconformal in Ĉ and so it follows that there exists K > 1
such that ∣∣µF (z)

∣∣ ≤ (K − 1)/(K + 1)

a.e. in C .
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(4) In this section we obtain a quasiconformal map ν such that f = Fν−1

is meromorphic in C . It follows from Lemma 5.1 that there exists a unique
quasiconformal map, ν , of Ĉ which fixes ±1 and ∞ and whose quasiconformal
dilatation is given by µν = µF a.e. in C . Since F is an odd function and
F (z̄) = F (z) , it follows that µν is an even function with µν(z̄) = µν(z) . If we
put λ(z) = −z it then follows from (5.1) that ν and λνλ have the same complex
dilatation and both fix the points ±1 and ∞ . Thus ν is identically equal to λνλ
or, in other words, ν is an odd function. In a similar way it can be shown that
ν(z̄) = ν(z) and, as ν is a homeomorphism of Ĉ , we can then deduce that ν is
real precisely on the real line and so belongs to S .

We now put f = Fν−1 . Note that since F = (Fν−1)ν and ν have the same
complex dilatation µν , it follows from (5.1) that µf = 0 a.e. Thus f is conformal
except perhaps at the isolated points z such that F is not univalent at ν−1(z) .
Since f is continuous at these points it follows that f has no finite singularities
other than poles, i.e. f is meromorphic. Since g is transcendental and ν−1 is a
homeomorphism, f must in fact be a transcendental meromorphic function. As ν
is in the class S and F is an odd function with F (z̄) = F (z) that is real on R ,
it follows that f is also odd, f(z̄) = f(z) and f is real on R .

(5) Finally, putting fδ(z) = f(δz) , we claim that, for some δ > 0, fδ has the
properties I, II, and III and is thus the required function g2 . It is clear that fδ
has properties I and III for any δ > 0. It remains to show that there exists δ > 0
such that f(z) ∈ I1 ∪ I2 ∪ {∞} if and only if z ∈ (−∞,−δ] ∪ [δ,∞) .

We begin by showing that if f(z) ∈ I1 ∪ I2 ∪ {∞} then z must be real. This
is clearly true in the case where f(z) = ϕhν−1(z) as each of ϕ , h and ν−1 is
real precisely on R . We now consider the case where f(z) = gν−1(z) . It is clear
that if z ∈ C \ R and g(z) ∈ R then

∣∣g(z)
∣∣ < 1. Thus g(z) ∈ I1 ∪ I2 ∪ {∞}

implies that z ∈ R . As ν−1 is real only on R it follows that, in both cases,
f(z) ∈ I1 ∪ I2 ∪ {∞} only if z ∈ R .

It remains to show that, for real z , there exists δ > 0 such that
∣∣f(z)

∣∣ ≥ 1
if and only if |z| ≥ δ . We note that ν−1 is a homeomorphism that fixes 0, ±1
and ∞ and so increases with z on R . If z ∈ R and |z| ≥ ν(b) then it follows
that f(z) = gν−1(z) and, as

∣∣g(z)
∣∣ ≥ 1 for all real values of z , it follows that∣∣f(z)

∣∣ ≥ 1 for all real z satisfying |z| ≥ ν(b) .

We now consider the real points satisfying |z| < ν(b) and hence f(z) =
ϕhν−1(z) . As ϕ and ν−1 are both odd homeomorphisms such that |ϕ| and |ν−1|
increase with |z| on R it follows from Figure 5.3 that

∣∣f(z)
∣∣ >

∣∣ϕh(b)
∣∣ =

∣∣g(b)
∣∣ > 1

for all real values satisfying ν(bα) ≤ |z| < ν(b) . It is also clear that there exists
a value of δ such that, on the interval

[
− ν(bα), ν(bα)

]
, f(z) takes values in

I1 ∪ I2 ∪ {∞} precisely for those values of z satisfying |z| ≥ δ . It now follows
that, for this value of δ , the function fδ is of the required form.
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6. Proof of Theorem D

We take a meromorphic function f whose Julia set, J(f) , is a Jordan curve or
a Jordan arc. Let w ∈ J(f) be a repelling periodic point of f , that is fp(w) = w
for some p ∈ N and

∣∣(fp)′(w)
∣∣ = λ′ > 1. We assume that J(f) is differentiable

at w . Thus there exists a constant C ∈ [0, 2π) such that if (wn) is a sequence of
points in J(f) with wn → w as n→ ∞ then, for some subsequence (wn(k)) ,

(6.1) lim
n→∞

arg(w − wn(k)) = C or C + π.

We now take a value λ ∈ (1, λ′) and note that, for some r > 0, the branch h
of f−p which maps w to itself is univalent in D(w, r) and, further,

∣∣h′(z)
∣∣ < 1/λ

for z ∈ D(w, r) . Thus

h
(
D(w, r)

)
⊂ D(w, r/λ) ⊂ D(w, r)

and indeed, for each k ∈ N ,

hk
(
D(w, r)

)
⊂ D(w, r/λk).

We now choose z0 ∈
(
D(w, r/2) \ {w}

)
∩ J(f) and define the functions Gk

in D(w, r) by

(6.2) Gk(z) =
[
hk(z) − w

]
/
[
(hk)′(z0)

]
.

It is clear that each function Gk is univalent in D(w, r) and so it follows from
Lemma 2.6 that the distortion of Gk in D(w, r/2) is bounded above by K(1/2) =
81. Thus for each z ∈ D(w, r/2) and each k ∈ N

(6.3)

∣∣(Gk)′(z)
∣∣

1 +
∣∣Gk(z)

∣∣2
≤

∣∣(Gk)′(z)
∣∣ ≤ 81

∣∣(Gk)′(z0)
∣∣ = 81

and so by Lemma 2.1 the functions Gk form a normal family in D(w, r/2). We
note that Gk(w) = 0 and so, from (6.3),

(6.4) Gk
(
D(w, r/2)

)
⊂ D(0, 81r/2).

We now take a subsequence Gk(r) of the functions Gk which converges uni-

formly to a function ϕ in D(z0, R) ⊂
(
D(w, r/2)\{w}

)
. As each function Gk(r) is

univalent and Gk(r)(z) 6= 0 in D(z0, R) it follows from Hurwitz’ theorem (see, for
example, [1, p. 178]) that ϕ must be univalent or a constant and that ϕ(z) 6= 0
in D(z0, R) . It follows from (6.4) that ϕ(z) 6= ∞ for z ∈ D(z0, R) and, as
(Gk(r))

′(z0) = 1 for each k(r) , we see that ϕ must be univalent in D(z0, R) .
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We now have, from (6.2), that

(6.5) hk(r)(z) − w = (hk(r))′(z0)
[
ϕ(z) + εk(r)(z)

]

where εk(r) → 0 uniformly in D(z0, R) . We let γ be an arc in J(f) ∩ D(z0, R)
and take any point z ∈ γ . Now

hk(r)(z) ∈ J(f) ∩
[
D(w, r/λk(r)) \ {w}

]

and so it follows from (6.1) that, for some subsequence
(
hk(r(s))(z)

)
,

lim
s→∞

arg
(
hk(r(s))(z) − w

)
= C or C + π

where C is a constant that is independent of z ∈ γ .
If we let

lim sup
s→∞

arg
(
(hk(r(s)))′(z0)

)
= C1

then, as ϕ(z) 6= 0 in D(z0, R) , it follows from (6.5) that

argϕ(z) = C − C1 = C2 or C + π − C1 = C2 + π

where C2 is a constant that is independent of z ∈ γ and hence ϕ(γ) must be
a straight line segment. As ϕ is univalent, we see that γ must be an analytic
arc and so it follows from Theorem B that J(f) must be a straight line, circle,
segment of a straight line or an arc of a circle. As we know from Lemma 2.4 that
the repelling periodic points of f are dense in J(f) , Theorem D follows.

Note. It is known that it is possible to have a meromorphic function in class
IV whose Julia set is a Jordan curve and not a straight line. In [4] several examples
are given of functions in class IV whose Julia sets are quasicircles and not straight
lines.

The author wishes to thank Professor I.N. Baker for all his helpful suggestions
and the SERC for their financial support.
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