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Abstract. Given a doubling measure µ on Rn , one can define an associated quasidistance
on Rn by

δ(x, y) = µ(Bx,y)1/n,

where Bx,y is the smallest ball which contains the points x and y . This paper is concerned with
the resulting geometry which is induced by µ . The main result provides a condition on µ under
which Rn equipped with the quasidistance δ(·, ·) admits a bilipschitz embedding into RN with
the standard Euclidean structure for some N < ∞ . This sufficient condition is not so far from
being necessary, but of course the reader knows how it is.

This paper is closely related to an earlier one by Guy David and the author [DS1].

1. Introduction

Let µ be a doubling measure on Rn , so that there is a C > 0 such that

(1.1) 0 < µ(2B) ≤ Cµ(B)

for all balls B . (Here 2B denotes the ball with the same center as B but twice
the diameter.) We can associate to µ the quasidistance δ(x, y) on Rn defined by

(1.2) δ(x, y) = µ(Bx,y)
1/n,

where

(1.3) Bx,y is the smallest ball that contains both x and y.

To say that δ(x, y) is a quasidistance means that it is nonnegative and symmetric,
that it vanishes exactly when x = y , and that it satisfies the following weakened
form of the triangle inequality:

(1.4) δ(x, z) ≤ C
(

δ(x, y) + δ(y, z)
)
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for some C > 0 and all x , y , z ∈ Rn . If (1.4) were true with C = 1 then δ(x, y)
would be a distance function (as opposed to a quasidistance).

This paper is concerned with the following type of issue. We restrict ourselves
to the case where n > 1 from now on, because the n = 1 case is trivial for the
topics that will be considered here.

Question 1.5. Under what conditions on µ is δ(·, ·) bilipschitz equivalent to
the standard distance on Rn ? In other words, when is it true that there is a
C > 0 and a mapping f : Rn → Rn such that

(1.6) C−1δ(x, y) ≤
∣

∣f(x) − f(y)
∣

∣ ≤ Cδ(x, y)

for all x , y ∈ Rn ?
This problem has a natural reformulation in terms of quasiconformal map-

pings. If a mapping f as above exists, then it must be quasiconformal, and µ will
be comparable in size to the pull-back of Lebesgue measure on Rn by f . Gehring’s
theorem [Ge] then implies that µ must be absolutely continuous, µ = ω(x) dx ,
with ω(x) ∈ L1

loc(R
n) , and ω must be comparable in size to the Jacobian of f .

Conversely, if f : Rn → Rn is quasiconformal and ω(x) is comparable in size to
its Jacobian, then µ = ω(x) dx is a doubling measure and f satisfies (1.6). The
problem of characterizing the functions ω that arise in this fashion is notoriously
difficult.

Here is a variation of Question 1.5 that is somewhat easier.

Question 1.7. Under what conditions on µ does
(

Rn, δ(·, ·)
)

admit a bi-
lipschitz embedding into Rn for some N ? In other words, for which µ do there
exist constants C , N > 0 and a mapping f : Rn → RN such that (1.6) holds?

The following is a simple necessary condition for there to exist a mapping f
as in Questions 1.5 or 1.7.

(1.8) There exists a C > 0 and a distance function δ′(·, ·) on Rn such that

C−1δ(x, y) ≤ δ′(x, y) ≤ Cδ(x, y).

The point here is that δ′(·, ·) should satisfy the actual triangle inequality, i.e., the
analogue of (1.4) with C = 1. The necessity of this condition is trivial; simply set

δ′(x, y) =
∣

∣f(x) − f(y)
∣

∣.

The main result of this paper (Theorem 5.2) is that a “slightly” stronger version
of (1.8) is also a sufficient condition for Question 1.7.

Condition (1.8)—in a different formulation—is considered already in [DS1].
It was noted there that Gehring’s argument in [Ge] implies that if (1.8) holds,
then µ is absolutely continuous, and that its density is an A∞ weight. (See
Proposition 3.4 below.) Let us give a formal name for the class of these weights.
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Definition. A positive locally integrable function on Rn is called a strong
A∞ weight if it is the density of a doubling measure µ which satisfies (1.8).

There is another problem which is closely related to Questions 1.5 and 1.7, that
will not be addressed in this paper, but which should be mentioned for conceptual
reasons. Let M be a connected hypersurface in Rd+1 , d ≥ 2. Assume a priori that
M is smooth, and even that M ∪{∞} is a smooth (closed) embedded submanifold
of Rd+1 ∪ {∞} ∼= Sd+1 . Let n(x) be a smooth choice of the unit normal to
M . (A theorem in algebraic topology implies that M is orientable under these
hypotheses.) Let ‖n‖∗ denote the BMO norm of n on M , i.e.,

‖n‖∗ = sup
x∈M
R>0

1
∣

∣B(x, r) ∩ M
∣

∣

∫

B(x,r)∩M

∣

∣n(y) − nx,R

∣

∣ dy,

where nx,R denotes the average of n over B(x, r) ∩ M .

Question 1.9. Do there exist constants ε , k > 0, depending only on d , so
that if M is as above and ‖n‖∗ ≤ ε , then there exists a mapping g from Rd onto
M such that

(1.10) (1 + k)−1|x − y| ≤
∣

∣g(x) − g(y)
∣

∣ ≤ (1 + k)|x − y|

for all x , y ∈ Rd ?
If the answer is yes, it would be better if we could choose k so that k → 0 as

‖n‖∗ → 0.
The condition that ‖n‖∗ be small is quite natural. In particular there are

various equivalent conditions concerning the geometry of M and analysis on M
given in [S1, 3]. One of these equivalences implies a converse to Question 1.9: if M
is the image of a g that satisfies (1.10) with k small, then ‖n‖∗ is small. Notice
that ‖n‖∗ is unaffected by translations, rotations, or dilations of M .

On the other hand, it follows from [S2, 3] that if ‖n‖∗ is small enough, then
M is homeomorphic to Rd , and that one can even construct parameterizations
of M with Lp bounds on their differentials and their inverses, with p → ∞ as
‖n‖∗ → 0. These bounds do not depend on our a priori smoothness assumptions on
M in a quantitative way. It is much more difficult, however, to build a bilipschitz
parameterization of M .

When d = 2 uniformization can be used to produce a conformal mapping
h from R2 onto M . Using extremal length estimates it can be shown that if
‖n‖∗ is small enough, then there is a doubling measure µ on R2 such that h
satisfies (1.6) with C and the doubling constant depending only on d . This is
proved in [S2], along with related facts, e.g., µ comes from an A∞ weight ω with
the BMO norm of log ω tending to zero as ‖n‖∗ → 0. It follows from this that if
Question 1.5 can be answered affirmatively when n = 2, then Question 1.9 can also
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be answered affirmatively when d = 2. Conversely, if there is a counterexample
for Question 1.5, that might provide insight on how to find a counterexample for
Question 1.9.

The organization of this paper is as follows. Some basic facts about Ap

weights (including the definitions) will be reviewed in the next section. In Section 3
there are some simple reformulations of (1.8) as well as other useful properties of
strong A∞ weights, and in Section 4 some examples and counterexamples per-
taining to strong A∞ weights are given. The main theorem is stated in Section 5,
and the remainder of the paper is devoted to its proof.

Throughout this paper we use the notation

�

∫

A

g for
1

|A|

∫

A

g,

where |A| denotes the Lebesgue measure of A .

The author is grateful to Guy David for many relevant conversations.

2. A review of basic facts about Ap weights

General references include [CF], [Ga] (especially Section 6 of Chapter 6), and
[JL] (especially pp. 19–28).

Let w be a nonnegative locally integrable function on Rn with w > 0 a.e.

Definition 2.1: (i) w is an A∞ weight if there exist C , γ > 0 such that

(2.2)

∫

A
w

∫

Q
w

≤ C
( |A|

|Q|

)γ

for all cubes Q and all measurable subsets A of Q .

(ii) w is an Ap weight, 1 < p < ∞ , if there exists C > 0 so that

(2.3)
(

�

∫

Q

w
)(

�

∫

Q

w−1/(p−1)
)p−1

≤ C

for all cubes Q .

(iii) w is an A1 weight if there is a constant C > 0 so that

(2.4) �

∫

Q

w ≤ C
(

essinf
Q

w
)

.

In each case you get an equivalent condition if you use balls instead of cubes.
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Facts about Ap weights:
(a) A1 ⊆ Ap ⊆ Aq ⊆ A∞ when 1 < p < q < ∞ .
(b) A∞ = ∪p<∞Ap .
(c) If w ∈ A∞ , then σ(E) =

∫

E
w(x) dx defines a doubling measure on Rn .

(d) If w1 , w2 ∈ Ap , 1 ≤ p ≤ ∞ , and if λ ∈ [0, 1] , then wλ
1 w1−λ

2 ∈ Ap . (This can
easily be derived from Hölder’s inequality.)

(e) w ∈ A∞ if and only if there exist C > 0 and p > 1 such that the reverse
Hölder inequality

(2.5)
(

�

∫

Q

wp
)1/p

≤ C �

∫

Q

w

is satisfied by all cubes Q .
(f) If w ∈ Ap , then there is an r > 1 such that wr ∈ Ap .
(g) If w ∈ A∞ then there is a C > 0 so that

(2.6) exp
(

∫

Q

log w
)

≤

∫

Q

w ≤ C exp
(

∫

Q

log w
)

holds for all cubes Q (and similarly for all balls). Indeed, the first inequality
follows from Jensen’s theorem, while the second can be derived, for example,
from (b) and Jensen’s theorem. The converse is also true: if w satisfies (2.6),
then w is an A∞ weight. (See [H], and also Proposition 3.5 below.)

(h) Suppose that u and v are A1 weights, and let t be any positive real number.
Then uv−t is an A∞ weight. Conversely, if w is an A∞ weight, then there
exist u , v ∈ A1 and t > 0 so that w = uv−t . This is the factorization
theorem of Peter Jones [J].

3. Basic facts about strong A∞ weights

A large proportion of the content of this section can already be found in [DS1],
but the presentation here is somewhat different, and in a few instances it is also
more detailed.

We begin with a couple of easy and useful reformulations of (1.8).

Lemma 3.1. (1.8) holds if and only if

(3.2) there is a constant C > 0 so that for any finite sequence x1, . . . , xk

of points in Rn we have

δ(x1, xk) ≤ C

k−1
∑

j=1

δ (xj , xj+1) .
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It is immediate that (1.8) implies (3.2). To prove the converse define δ′(·, ·)
by

δ′(x, y) = inf
{

k−1
∑

j=1

δ (xj , xj+1)
}

,

where the infimum is taken over all finite sequences {xj}
k
j=1 such that x1 = x

and xk = y . Clearly δ′(x, y) ≤ δ(x, y) for all x , y , and (3.2) implies that
C−1δ(x, y) ≤ δ′(x, y) . It is also easy to see that δ′(·, ·) is a distance function.

Lemma 3.3. Let µ be a doubling measure on Rn . Then (3.2) holds if

and only if the same condition is true but with the additional constraint that

xj ∈ B
(

x1, 2|xk − x1|
)

for all j .

The “only if” part is automatic, and so we need only concern ourselves with
the “if” part. Suppose that the above constrained version of (3.2) is satisfied, and
let us show that that implies the unconstrained version. Let x1, . . . , xk be given,
and suppose that there is a j , 1 ≤ j ≤ k , such that

xj /∈ B
(

x1, 2|xk − x1|
)

.

Let j0 be the smallest such j . Then

xj ∈ B
(

x1, 2|xj0 − x1|
)

when 1 ≤ j ≤ j0 , and so the constrained version of (3.2) can be applied to give

δ(x1, xj0) ≤ C

j0−1
∑

i=1

δ(xi, xi+1) ≤ C
k−1
∑

i=1

δ(xi, xi+1).

On the other hand we have

δ(x1, xk) ≤ Cδ(x1, xj0)

because xk ∈ B
(

x1, |xj0 − x1|
)

. This uses also the definition (1.2) of δ(·, ·) and
the doubling condition on µ . Combining these inequalities yields

δ(x1, xk) ≤ C

k−1
∑

i=1

δ(xi, xi+1),

as desired.
Next we discuss the absolute continuity of the µ ’s for which (1.8) holds.

Proposition 3.4. If µ is a doubling measure that satisfies (1.8), then µ is

absolutely continuous and it is given by ω(x)dx , where ω is an A∞ weight.
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Proposition 3.4 is essentially due to Gehring [Ge]. He stated it only in a
special case, but his proof works in general. A proof will now be given for the
convenience of the reader. One of the key ingredients is the following criterion for
membership in A∞ .

Proposition 3.5. Suppose that ω ∈ L1
loc(R

n) , ω > 0 a.e., and that there

exist constants C1 > 0 and r ∈ (0, 1) so that

(3.6) �

∫

Q

ω ≤ C1

(

�

∫

Q

ωr
)1/r

for all cubes Q . Then there exist C2 > 0 and p > 1 , depending only on C1 , r ,

and n , so that
(

�

∫

Q

ωp
)1/p

≤ C2 �

∫

Q

ω

for all cubes Q . In particular, ω is an A∞ weight with constants that depend

only on C1 and r (by Fact (e) of Section 2).

See [Ge] or [Ga] (Theorem 6.9, p. 260) for a proof.
Let us now use this to prove Proposition 3.4. Let θ(x) be a smooth bump

function on Rn , with θ ≥ 0, supp θ ⊆ B(0, 1), and
∫

Rn θ = 1. Set θt(x) =
t−nθ (x/t) , and define ωt on Rn for each t > 0 by

(3.7) ωt = θt ∗ µ.

It is not hard to check that µ will satisfy the conclusions of Proposition 3.4 if we
can show that each ωt is in A∞ with constants that do not depend on t .

According to Proposition 3.5 it suffices to show that there is a C1 so that
each ωt satisfies (3.6) with r = 1/n . To do this we fix t and consider separately
the cases where diam Q ≤ t and diamQ > t . The first case is trivial, because the
doubling condition on µ ensures that ωt is roughly constant on the scale of t . To
treat the situation where diam Q > t we use the following estimate.

Lemma 3.8. Let µ be a doubling measure that satisfies (1.8). Then there

is a C > 0 so that if L is any line segment with length > t and endpoints x and

y , then

δ(x, y) ≤ C

∫

L

ωt(z)1/ndz.

The “dz” on the right side denotes arclength measure.
This result is easily derived from Lemma 3.1. Let k be the integer part of

length(L)/t , and let z0, . . . , zk be points on L such that z0 = x , zk = y , and
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t ≤ |zj+1 − zj | ≤ 2t for each j . Using the doubling condition on µ and (3.2) we
get

∫

L

ωt(z)1/ndz =

k
∑

j=1

∫

[zj−1,zj ]

ωt(z)1/ndz ≥
k

∑

j=1

C−1µ
(

Bzj−1,zj

)1/n

= C−1
k

∑

j=1

δ (zj−1, zj) ≥ C−1δ(x, y).

This proves Lemma 3.8.
Once you have the lemma it is easy to check that (3.6) holds for r = 1/n and

ω = ωt when diamQ > t , using Fubini’s theorem, the definition of δ(x, y) , and
the doubling condition on µ . When diam Q ≤ t (3.6) is trivial. This finishes the
proof of Proposition 3.4.

Next we give a characterization of strong A∞ weights in terms of lengths of
curves. This is in fact how the strong A∞ condition was defined in [DS1].

By a path we mean a continuous map from an interval into Rn . Given a
path γ: [a, b] → Rn we define its µ-length as follows. To each partition {tj}

l
j=0

of [a, b] (i.e., a = t0 < t1 < · · · < tl = b) we associate the real number

(3.9)

l
∑

j=1

δ
(

γ(tj−1), γ(tj)
)

.

Given η > 0 consider the quantity obtained by taking the infimum of (3.9) over
all partitions {tj} of [a, b] such that |tj − tj−1| ≤ η for all j . This quantity gets
larger as η gets smaller, and its limit as η → 0 is defined to be the µ-length of γ .

(Note that the “lim sup” in the definition of the ω -length of a path in [DS1]
should have been a “lim inf ”, in order to be consistent with the usual definition of
Hausdorff measures. However, it is not hard to show that, in the end, this change
does not really matter.)

It is easy to check that this definition of the µ-length of a path has many of
the normal properties. For example, if γ1: [a, b] → Rn and γ2: [b, c] → Rn are
two paths with γ1(b) = γ2(b) , and if γ: [a, c] → Rn is obtained by joining γ1 to
γ2 in the obvious way, then

(3.10) µ-length(γ) = µ-length(γ1) + µ-length(γ2).

The deduction of this fact from the definition of the µ-length is straightforward.
Having defined the µ-length of a path we can define the associated geodesic

distance in the obvious way, i.e.,

(3.11) δg(x, y) = inf {µ-length(γ) : γ is a path that joins x to y} .

(Here the subscript “g” standard for “geodesic”.)
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Proposition 3.12. Let µ be a doubling measure on Rn .

(a) µ satisfies (1.8) if and only if there is a constant C > 0 such that

(3.13) C−1δ(x, y) ≤ δg(x, y) ≤ Cδ(x, y)

for all x , y ∈ Rn .

(b) Suppose that µ is absolutely continuous and that its density is an A∞

weight. Then there is a C > 0 so that

(3.14) δg(x, y) ≤ Cδ(x, y)

for all x , y ∈ Rn .

Let us begin with the “only if” portion of (a). It is easy to check from the
definitions that the first inequality in (3.13) holds when µ satisfies (1.8) and hence
(3.2). The second inequality in (3.13) follows from (b) and Proposition 3.4.

Conversely, (3.13) imples (1.8), because the geodesic distance always satisfies
the triangle inequality.

It remains to prove (b). Let ω denote the density of µ , and fix x , y ∈ Rn .
We need to find a path that joins x to y whose µ-length we can control. Set
z = 1

2
(x + y) and R = |x − y| , and let H denote the hyperplane through z that

is orthogonal to the line segment that joins x to y . For each u ∈ B(z, R)∩H let
γu: [0, R] → Rn be the path such that γu(0) = x , γu(R/2) = u , γu(R) = y , and
γ̇u is constant on (0, R/2) and on (R/2, R) . To prove (3.14) it suffices to show
that

µ-length(γu) ≤ Cδ(x, y)

for some u ∈ B(z, R) ∩ H . To do this we shall estimate the average of the left
hand side.

For each t > 0 define ωt by (3.7). It is not hard to check that if {sj}
l
j=0 is

a partition of [0, R] with t ≤ |sj − sj−1| ≤ 2t for all j , then

l
∑

j=1

δ
(

γu(sj), γu(sj−1)
)

≤ C

l
∑

j=1

sj
∫

sj−1

ωt

(

γu(s)
)1/n

ds ≤ C

R
∫

0

ωt

(

γu(s)
)1/n

ds.

(Note that |γ̇u| ≈ 1.) Using this and the definition of the µ-length of a path it is
easy to see that

µ-length(γu) ≤ C lim inf
t→0

R
∫

0

ωt

(

γu(s)
)1/n

ds.
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Hence

(3.15)

δg(x, y) ≤ C �

∫

B(z,R)∩H

(

lim inf
t→0

R
∫

0

ωt

(

γu(s)
)1/n

ds
)

du

≤ C lim inf
t→0

�

∫

B(z,R)∩H

R
∫

0

ωt

(

γu(s)
)1/n

ds du.

using Fatou’s lemma. Standard computations permit us to bound this last expres-
sion by

(3.16) C lim inf
t→0

∫

B(z,10R)

ωt(q)
1/nL(x, y, q) dq,

where L(x, y, q) = max
(

|x − q|1−n, |y − q|1−n
)

. (The iterated integral on the
right side of (3.15) can be split into two pieces corresponding to s in [0, R/2] and
[R/2, R] , each of which is basically an integral in polar co-ordinates centered at x
or y .)

To control (3.16) we use Fact (e) in Section 2, that ω satisfies a reverse Hölder
inequality like (2.5). Let p > 1 be the corresponding exponent, as in (2.5), and let
r be the exponent conjugate to np , so that r < n/(n − 1). Then, using Hölder’s
inequality, we get that (3.16) is dominated by

CRn lim inf
t→0

(

�

∫

B(z,10R)

ωp
t

)1/(np)(

�

∫

B(z,10R)

L(x, y, q)rdq
)1/r

≤ CRn
(

�

∫

B(z,10R)

ω
)1/n

R1−n

≤ Cµ
(

B(z, 10R)
)1/n

≤ Cδ(x, y).

Combining this with (3.15) gives (3.14). This proves Proposition 3.12.

Before leaving this section we record the following useful criterion for being
strong A∞ .

Lemma 3.17. Assume that u ∈ A1 , ω is a strong A∞ weight, and that r
is a positive real number. If urω ∈ A∞ , then urω is a strong A∞ weight.

Let µ , µ̃ be the doubling measures that correspond to ω , urω , respectively,
and let δ(·, ·) and δ̃(·, ·) be the associated quasidistances. Let x1, . . . , xk ∈ Rn be
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given, with xj ∈ B
(

x1, 2|xk −x1|
)

for all j . According to Lemma 3.3 it is enough
to show that

(3.18) δ̃(x1, xk) ≤ C
k−1
∑

j=1

δ̃(xj, xj+1).

Set B = Bx1,xk
and Bj = Bxj ,xj+1

, and notice that Bj ⊆ 100B for all j . By
definitions we have

δ̃(xj , xj+1) =
(

∫

Bj

ω̃
)1/n

≥
(

essinf
Bj

ur/n
)

(

∫

Bj

ω
)1/n

≥
(

essinf
100B

ur/n
)

δ(xj , xj+1),

and therefore

(3.19)

k−1
∑

j=1

δ̃(xj , xj−1) ≥
(

essinf
100B

ur/n
)

k−1
∑

j=1

δ(xj , xj+1)

≥ C−1
(

essinf
100B

ur/n
)

δ(x1, xk)

= C−1
(

essinf
100B

ur/n
)

(

∫

B

ω
)1/n

.

In the second inequality the assumption that ω is a strong A∞ weight is used.
From Jensen and the assumption that u is an A1 weight we have

C

∫

B

ω ≥ CRn
�

∫

B

ω ≥ CRn exp
(

�

∫

B

log ω
)

and

C essinf
100B

u ≥ exp
(

�

∫

B

log u
)

.

In combination with (3.19) this yields (with ω̃ = urω )

k−1
∑

j=1

δ̃(xj, xj+1) ≥ C−1R exp
( 1

n
�

∫

B

log ω̃
)

≥ C−1R
(

�

∫

B

ω̃
)1/n

≥ C−1δ̃(x1, xk).

The second inequality uses Fact (g) from Section 2 applied to ω̃ . This gives (3.18),
which is what we wanted.
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4. Examples and counterexamples

Roughly speaking, the difference between A∞ and strong A∞ weights is that
the latter must satisfy some additional (rather subtle) constraints on how they can
be small. Here are some simple examples to illustrate this point.

Examples. (a) If ω is an A1 weight, then it is a strong A∞ weight. This
can be derived easily from Lemma 3.3, or it can be viewed as a special case of
Lemma 3.17. The point is that the A1 condition prevents ω from ever being
small.

(b) Suppose that ω is a continuous nonnegative function on Rn . Then ω
cannot be a strong A∞ weight if it vanishes on a rectifiable curve. (Otherwise
the curve would have µ-length equal to zero, µ = ωdx , contrary to Proposi-
tion 3.12(a).)

(c) If ω(x) = |x1|
t , x = (x1, . . . , xn) , then ω is an A∞ weight when t > −1,

but it is a strong A∞ weight only when −1 < t ≤ 0.
(d) If ω(x) = |x|p , then ω is both A∞ and strong A∞ exactly when p > −n .

Thus a strong A∞ weight can vanish to large order at a single point.
(e) Let Z be a closed set in Rn that has measure zero, and let p > 0 be

given. A sufficient condition for

ω(x) = dist(x, Z)p

to be an A∞ weight is that Z should be uniformly thin, which means that there
is an a > 0 so that for each x ∈ Z and R > 0 there is a y ∈ B(x, R) such that
B(y, aR)∩Z = ∅ . This condition is not adequate to ensure that ω be a strong A∞

weight. (Consider Z = a line in R2 .) A sufficient condition for ω to be strong
A∞ is that Z should be uniformly scattered, which means that there is a b > 0
so that if x and y lie in Z and if E is a closed connected set that contains them,
then there is a ball B centered on E with radius b|x − y| such that B ∩ Z = ∅ .

It is not so difficult to build Cantor sets in Rn that are uniformly scattered
and that have Hausdorff dimension as close to n as you like. Thus strong A∞

weights can vanish on rather large sets, and to large order.
Although the uniformly scattered condition is convenient for producing ex-

amples of strong A∞ weights, it is by no means essential. Strong A∞ weights can
vanish on nontrivial connected sets, as we shall soon see. These connected sets
must be pretty crooked, though, because they must not contain a rectifiable arc.

Let us consider now some natural questions about strong A∞ weights which
are motivated by classical results for A∞ weights.

Question 4.1. If ω is a strong A∞ weight, is the same true of ωs , 0 < s < 1?

Question 4.2. If ω is a strong A∞ weight, must there be a p > 1 such that
ωp is also strong A∞ ?

In order to state the remaining questions we need a definition.



Bilipschitz mappings and strong A∞ weights 223

Definition 4.3. ω = uv is called an A1 factorization of ω if u , v−t ∈ A1

for some t ≥ 0.

As mentioned in Fact (h) of Section 2, every A∞ weight admits an A1 fac-
torization, and the existence of such a factorization implies that ω ∈ A∞ .

Question 4.4. Does every strong A∞ weight ω admit an A1 factorization
ω = uv such that v is also a strong A∞ weight?

Question 4.5. Does every strong A∞ weight ω admit an A1 factorization
ω = uv such that there is an ε > 0 so that u1−εv1+ε is also a strong A∞ weight?

In other words, this last question asks whether every strong A∞ weight can
be made smaller, in a certain way, and still be strong A∞ .

The answers to each of these questions is no. The counterexamples presented
below were obtained jointly with Guy David. They have the additional feature
that they arise as the Jacobians of quasiconformal mappings in the plane.

Let us begin with the counterexample to Question 4.1. Let λ be a completely
singular doubling measure on R , and define h: R → R by

h(x) =

x
∫

0

dλ.

Let H be a Beurling–Ahlfors extension of h to a quasiconformal map of the
complex plane onto itself. (See [BA] for an example of such a λ as well as the
definition of H .) Let ω1 be the Jacobian of H . Thus ω1 is a strong A∞ weight
(because it is the Jacobian of a q.c. mapping), but ωs

1 is not a strong A∞ weight
for any s ∈ (0, 1), as we now show.

From the definition of H it follows that H is C1 away from R and that

∣

∣∇H(z)
∣

∣ ≈
1

|y|

x+|y|
∫

x

dλ, z = x + iy,

for all z ∈ C with y 6= 0. Because λ is completely singular we have that

(4.6) lim
y→0

∣

∣∇H(x + iy)
∣

∣ = 0 a.e..

Fix s ∈ (0, 1), and let µ1,s be the doubling measure on C associated to ωs
1 .

To prove that ωs
1 is not strong A∞ it suffices to show that

(4.7) lim
t→0

µ1,s-length(γt) = 0,

where γt: [0, 1] → C is the path defined by γt(u) = u + it .
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Because ω1 is continuous on C \ R we have

µ1,s-length(γt) =

1
∫

0

ω1(u + it)s/2du ≤

1
∫

0

∣

∣∇H(u + it)
∣

∣

s
du

when t 6= 0. For 0 < |t| ≤ 1 we have

1
∫

0

∣

∣∇H(u + it)
∣

∣ du ≤ C

2
∫

0

dλ,

so that
∣

∣∇H(u + it)
∣

∣

s
lies in L1/s

(

[0, 1]
)

as a function of u , with norm that is
uniformly bounded in t , 0 < |t| < 1. Combining this with (4.6) and standard
arguments we get that

lim
t→0

1
∫

0

∣

∣∇H(u + it)
∣

∣

s
du = 0,

which implies (4.7).

The counterexample for Question 4.2 will be obtained through sort of a dual
construction. This time the starting point will be a quasisymmetric embedding
f : R → C whose image is very much not rectifiable (e.g., all nontrivial subarcs
will have infinite length). Recall that f : R → C is said to be quasisymmetric if
there is a C > 0 so that

∣

∣f(u) − f(v)
∣

∣ ≤ C
∣

∣f(u) − f(w)
∣

∣

whenever u , v , w ∈ R satisfy |u − v| ≤ |u − w| . Instead of the Beurling–Ahlfors
theorem we shall employ the following result of Tukia [T].

Theorem 4.8. If f : R → C is quasisymmetric, then there is a quasiconfor-

mal mapping F : C → C which extends f , is C1 on C \ R , and satisfies

(4.9) C−1
∣

∣∇F (x + iy)
∣

∣ ≤

∣

∣f(x + y) − f(x − y)
∣

∣

|y|
≤ C

∣

∣∇F (x + iy)
∣

∣

for some C > 0 and all x + iy ∈ C \ R .

We want to apply this extension theorem to an f whose image is far from
rectifiable, e.g., an f whose image is the Van Koch snowflake. The conditions
described in the next lemma will be adequate for our purposes.
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Given f : R → C and an interval I ⊆ R , I = [a, b] , set

∆If =

∣

∣f(a) − f(b)
∣

∣

|a − b|
.

Lemma 4.10. There exists a quasisymmetric embedding f : R → C such

that ∆If → ∞ uniformly as |I| → 0 and

∆If ≥ C−1∆Jf

whenever I ⊆ J , for some C > 0 .

It is not difficult to build such an f by standard methods. For instance you
can take f to be the parameterization of a self-similar quasicircle with Hausdorff
dimension larger than 1. You can take f to be “self-similar” too.

Let f be as in Lemma 4.10, and let F be the extension of f promised by
Theorem 4.8. Set G = F−1 , and let ω2 be the Jacobian of G , so that ω2 is a
strong A∞ weight. Fix p > 1, and consider ωp

2 . If ωp
2 is not an A∞ weight, then

we do not have to do anything. Suppose that it is an A∞ weight, and let µ2,p

denote the corresponding doubling measure. For each t > 0 define αt: [0, 1] → C

by αt(x) = F (x + it) . If we can show that

(4.11) lim
t→0

µ2,p-length(αt) = 0,

then it follows that ωp
2 is not a strong A∞ weight.

By definitions ω2 is continuous on C \ f(R) and so

µ2,p-length(αt) =

1
∫

0

ω2

(

αt(u)
)p/2∣

∣α′
t(u)

∣

∣ du

when t > 0. Set
εt = sup

{

ω2

(

αt(u)
)

: 0 ≤ u ≤ 1
}

,

so that

µ2,p-length(αt) ≤ ε
(p−1)/2
t

1
∫

0

ω2

(

αt(u)
)1/2∣

∣α′
t(u)

∣

∣ du

≤ ε
(p−1)/2
t

1
∫

0

ω2

(

αt(u)
)1/2∣

∣∇F (u + it)
∣

∣ du

≤ Cε
(p−1)/2
t .
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For this last inequality we have used the simple fact that

(4.12) ω2(z) ≈
∣

∣∇F
(

G(z)
)
∣

∣

−2
.

This fact together with (4.9) and the information that ∆If → ∞ uniformly as
|I| → 0 also implies that εt → 0 as t → 0. This gives (4.11).

Notice that ω2 is continuous on C and vanishes precisely on the connected
set f(R) .

The counterexample for Question 4.4 is the same weight ω1 used to dispatch
Question 4.1. Indeed, suppose that ω1 admits an A1 factorization ω1 = uv with
v a strong A∞ weight. Then this contradicts Lemma 3.17, because v is a strong
A∞ weight, ωs

1 = (usvs−1)v is an A∞ weight, and usvs−1 can be written as a
positive power of an A1 weight when s < 1, but ωs

1 is not a strong A∞ weight
when 0 < s < 1.

Similarly, the counterexample for Question 4.2 also provides a counterexample
to Question 4.5. Let ω2 be as above, and assume that ω2 admits an A1 factoriza-
tion ω2 = uv such that u1−εv1+ε is a strong A∞ weight. To get a contradiction
we will use the following.

Lemma 4.13. Under these conditions u1−ηv1+η is a strong A∞ weight for

all η ∈ (0, ε) .

Set ω2,η = u1−ηv1+η . Then

ω2,η = ω
1−η/ε
2,0 ω

η/ε
2,ε ,

and so ω2,η is an A∞ weight when 0 < η < ε , because of Fact (d) in Section 2.
On the other hand,

ω2,η =
(

uε−ηvη−ε
)

ω2,ε,

and so Lemma 3.17 implies that ω2,η is a strong A∞ weight when 0 < η < ε ,
because uε−ηvη−ε is a positive power of an A1 weight in that case. This proves
Lemma 4.13.

Choose η ∈ (0, ε) small enough so that ω1+η
2 is an A∞ weight. This is

possible, because of Fact (f) from Section 2. Then Lemmas 3.17 and 4.13 imply
that ω1+η

2 is also a strong A∞ weight, because

ω1+η
2 = u1+ηv1+η = u2η(u1−ηv1+η).

However, we already know that ωp
2 is not a strong A∞ weight for any p > 1.

Therefore ω2 is a counterexample for Question 4.5.

Remark 4.14. It can be shown that ω−t
2 ∈ A1 for some t > 0. This can be

derived from (4.12) and the fact that |∇F |2 ∈ A1 . The latter can itself be proved
using (4.9) and Lemma 4.10.
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5. The statement of the main result

Definition 5.1. ω is a stronger A∞ weight if it is a strong A∞ weight and
if it admits an A1 factorization (see Definition 4.3) ω = uv such that u1−εv1+ε

is a strong A∞ weight for some ε > 0.

Thus, in order for a strong A∞ weight to be a stronger A∞ weight, it has to be
possible to make it substantially smaller (“more degenerate”) without destroying
the strong A∞ property. The strong A∞ weights which are not stronger A∞

weights should be thought of as living at the boundary of the set of all strong A∞

weights. This is made more precise by Example (d) below. In other words, the set
of stronger A∞ weights can be viewed as being a kind of “interior” of the space
of strong A∞ weights.

Theorem 5.2. If ω is a stronger A∞ weight, then there exist N > n , C > 0 ,

and f : Rn → RN that satisfies (1.6), with µ = ωdx .

The proof of this theorem is given in Sections 6–10. The proof is somewhat
complicated, and the reader might find it helpful to consider the important special
case of A1 weights, which is much simpler.

Although every A∞ weight admits an A1 factorization, not every strong A∞

weight is a stronger A∞ weight, as we saw in Section 4. (Note that the conclusion
of Theorem 5.2 does hold for that example—i.e., ω2—from Section 4.) Still, there
are plenty of stronger A∞ weights, as the following examples indicate.

Examples.

(a) Every A1 weight is a stronger A∞ weight.
(b) The examples of strong A∞ weights discussed in (d) and (e) of Section 4

are also stronger A∞ weights. This is not hard to check, using the observation
that ω−t ∈ A1 for some t > 0 when ω is as in (e) and also when ω is as in (d)
and p ≥ 0. (If p < 0 then ω is already an A1 weight.)

(c) Suppose that ω−t ∈ A1 for some t > 0. Then ω is a stronger A∞ weight
if ω1+ε is a strong A∞ weight. This uses the fact that if v−t ∈ A1 for some t > 0
and v is a strong A∞ weight, then vs is a strong A∞ weight for all s ∈ (0, 1).
This simple observation can be derived from Lemma 3.17, for instance.

(d) Every strong A∞ weight can be approximated by a stronger A∞ weight,
in the following sense. Suppose that ω is a strong A∞ weight, and that ω = uv
is an A1 factorization of ω . Consider ωε = u1/(1−ε)v1/(1+ε) , ε > 0. This lies in
A∞ when ε > 0 is small enough, by Facts (f) and (h) in Section 2. When ωε is
an A∞ weight it is also strong A∞ , because of Lemma 3.17, and in that case it
is clearly stronger A∞ as well because ω is strong A∞ .

There are of course a number of issues left unresolved by Theorem 5.2. One
of the most basic questions is whether the strong A∞ condition alone is sufficient
to imply the conclusions of Theorem 5.2. I do not have a strong opinion on this,
but I am willing to go out on a limb for the analogous issue for Question 1.5.
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Conjecture 5.3. There is a strong A∞ weight ω on R2 for which there does
not exist a mapping f : R2 → R2 that satisfies (1.6).

Persons of a more reckless (or insightful?) nature might be willing to spec-
ulate, in print, about the situation in which the stronger A∞ (or even the A1 )
condition is assumed.

Unfortunately there do not seem to be any good methods available for proving
the nonexistence of a mapping f as in Conjecture 5.3. One way to try to generate
necessary conditions on ω for the existence of such a mapping f is to look for
analytical results on R2 that would have to have a counterpart for ω if f were to
exist. For example, you could take the classical Sobolev and Poincaré inequalities.
These do not work, because their counterparts for ω are true for all strong A∞

weights (in all dimensions), by the results of [DS1].
Another problem which is connected to these issues is the following.

Question 5.4. Is Theorem 5.2 still true if we demand that N depend on n
alone?

The proof given below has N depending on ω in a substantial way. This is
true even when ω is an A1 weight; in that case the proof is substantially simpler,
but N still depends on ω .

Next we discuss ω -regular mappings and their relationship with the topics in
this paper.

A continuous mapping f : Rn → RN is said to be ω -regular for some A∞

weight ω if there is a C > 0 so that:

(5.5) f has locally integrable first (distributional) derivatives, and
∣

∣∇f(x)
∣

∣ ≤ Cω(x)1/n a.e.; and

(5.6)

∫

f−1(B)

ω(x) dx ≤ CRn for every ball B with radius R in RN .

This class of mappings arose in [D] in connection with the behavior of singular
integral operators on their images. As pointed out in [DS1], under the assumption
that ω is an A∞ weight it can be shown that (5.5) is equivalent to the requirement
that there be a C > 0 so that

(5.7)
∣

∣f(x) − f(y)
∣

∣ ≤ Cδ(x, y) for all x, y ∈ Rn.

The proof of this equivalence is pretty straightforward, although perhaps a little
bit technical. For passing from (5.5) to (5.7) it is useful to remember Proposi-
tion 3.12(b), for instance.

This reformulation of (5.7) makes it easy to see that f : Rn → RN is ω -regular
if it satisfies (1.6) with µ = ω dx . The converse is not true, because ω -regular
mappings need not even be injective. However, if f is ω -regular, then f−1(p) has
only a bounded number of elements for all p ∈ RN . (This is not hard to check,
by estimating the ω -mass of f−1

(

B(p, r)
)

as r → 0.)
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It is natural to hope that it might be easier to characterize the A∞ weights ω
on Rn for which there is an ω -regular mapping f : Rn → RN for some N than to
answer Question 1.7 completely, but so far nothing has occurred to reinforce this
hope. A necessary condition for the existence of an ω -regular mapping is that ω
be strongly A∞ (see [DS1]), but there is not a better sufficient condition known
than the one provided by Theorem 5.2.

The case of A1 weights is of particular interest in the context of ω -regular
mappings, because of the following result from [DS2]. Suppose that f : Rn → RN

is an ω -regular mapping for some A∞ weight ω . Then there is an A1 weight ω′

and an ω′ -regular mapping g: Rn → RN+1 such that

f(Rn) ⊆ g(Rn).

For this we identify RN with a subset of RN+1 in the obvious way.

6. Conceptual preliminaries

Lemma 6.1. Let µ be a doubling measure on Rn . Then µ satisfies (1.8)
if and only if there is a constant C > 0 so that for each x , y ∈ Rn there is a

function f : Rn → R with the property that

∣

∣f(z) − f(w)
∣

∣ ≤ Cδ(z, w) for all z, w ∈ Rn, and(6.2)
∣

∣f(x) − f(y)
∣

∣ ≥ C−1δ(x, y).(6.3)

It is important to remember here that f is allowed to depend on x and y . The
conclusion of Theorem 5.2 concerns the existence of a single RN -valued function
f that works for all pairs of points x , y in Rn .

The proof of Lemma 6.1 is easy. Suppose first that (1.8) holds. Let δ′(·, ·) be
as in (1.8), and let x , y ∈ Rn be given. Define f : Rn → R by f(z) = δ′(x, z) .
Then f satisfies (6.2) and (6.3) because of (1.8) and the fact that δ′(·, ·) satisfies
the triangle inequality.

Conversely, suppose that for each x , y ∈ Rn we can find f as above. Define
δ′(·, ·) by

δ′(z, w) = sup
{
∣

∣g(z) − g(w)
∣

∣ : g is a real-valued function on Rnsuch that
∣

∣g(a)− g(b)
∣

∣ ≤ δ(a, b) for all a, b ∈ Rn
}

.

Then δ′(·, ·) is nonnegative, symmetric, and satisfies the triangle inequality and
also δ′(z, w) ≤ δ(z, w) for all z and w . The existence of the good f ’s implies that

δ(x, y) ≤ Cδ′(x, y)

for all x , y ∈ Rn as well, so that (1.8) is true. This proves the lemma.
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It is not hard to improve Lemma 6.1 by showing that if µ satisfies (1.8), then
there exist C , m > 0 so that for each t > 0 there is a mapping f : Rn → Rm

so that (6.2) holds, and also (6.3) for all x , y ∈ Rn such that t < |x − y| < 2t .
In other words, instead of simply separating well a given pair of points, we can
separate any pair of points at a given scale.

This is still not good enough for Theorem 5.2; for that we must deal with all
scales at the same time. There does not seem to be any simple way to combine
the mappings that work for the various individual scales. Similar difficulties arise
when you try to get L∞ estimates for ∂ problems, and Peter Jones’ work in that
subject provided part of the inspiration for the methods employed in the next
sections.

There is a variant of Lemma 6.1 that will be useful later for constructing
partitions of unity that are adapted to a given strong A∞ weight, and which we
record now.

Lemma 6.4. Suppose that µ satisfies (1.8) . Then there is a C > 0 so that

for each cube Q in Rn there is a function θ: Rn → R such that 0 ≤ θ ≤ 1 , θ = 1
on 2Q , θ = 0 on Rn \ 3Q , and

∣

∣θ(x) − θ(y)
∣

∣ ≤ Cδ(x, y)µ(Q)−1/n for all x, y ∈ Rn.

Let δ′(·, ·) be as in (1.8), and consider

δ′(x,Rn \ 3Q) = inf
{

δ′(x, y) : y ∈ Rn \ 3Q
}

.

Standard computations imply that this function satisfies (6.2), because δ′(x, y)
satisfies (6.2) as a function of x for each y ∈ Rn . Define θ by

θ(x) = min
(

1,
{

δ′(2Q,Rn \ 3Q)−1δ′(x,Rn \ 3Q)
})

,

where, as usual,

δ′ (2Q,Rn \ 3Q) = inf{δ′(x,Rn \ 3Q) : x ∈ 2Q}.

Then it is easy to verify that θ has the required properties.

7. Technical preliminaries

We shall use the following notations from now on.
Let ω be the given stronger A∞ weight on Rn , and let ω = uv be as in

Definition 5.1. Set

(7.1) ω̃ = u1−εv1+ε,
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where ε > 0 is as in Definition 5.1, so that ω̃ is a strong A∞ weight. (If ω is
simply an A1 weight, then we can take ω̃ ≡ 1.) As in Lemma 4.13 we can shrink
ε in (7.1) and still have a strong A∞ weight, and so we can (and do) assume that
ε > 0 is small enough so that

α = ω/ω̃ = uεv−ε

is an A1 weight. Let µ and µ̃ be the measures on Rn corresponding to the
weights ω and ω̃ , and let δ(·, ·) and δ̃(·, ·) be as in (1.2).

Let L > 0 be large, to be chosen later, depending on ε , n , and the relevant
constants that arise in the various conditions on ω , ω̃ , u , v , and α . In what
follows all of the constants “C ” that occur are permitted to depend on any of
the constants just mentioned except L ; the presence of any dependence on L will
always be made clear.

For each j ∈ Z set

(7.2) Ωj =
{

x ∈ Rn : α∗(x) > Ljεn
}

,

where α∗ denotes the Hardy–Littlewood maximal function of α , i.e.,

α∗(x) = sup
B∋x

�

∫

B

α,

where the supremum is taken over all balls that contain x . In order to build the
mapping f promised in Theorem 5.2 we shall first define some auxiliary mappings
in the next section which, roughly speaking, do a good job of separating pairs of
points that lie in a given Whitney cube of some Ωj . In this section we derive some
estimates concerning the various weights and the Ωj ’s.

Define j0 by

j0 = inf{j : Ωj+1 6= Rn} = sup{j : Ωj = Rn}.

Clearly, j0 < +∞ , but it could happen that j0 = −∞ . The j ’s for which j < j0
will not be playing a role in what we do.

Set

(7.3) dj(x) = dist(x,Rn \ Ωj), x ∈ Rn,

for j > j0 . Here “dist” refers to the Euclidian distance. Let δj(x) and δ̃j(x) be

the counterparts of (7.3) associated to δ(·, ·) and δ̃(·, ·) , i.e.,

(7.4) δj(x) = δ(x,Rn \ Ωj) = inf
{

δ(x, y) : y ∈ Rn \ Ωj

}

and

(7.5) δ̃j(x) = δ̃(x,Rn \ Ωj)

for x ∈ Rn and j > j0 . When j ≤ j0 it is convenient to define dj , δj , and δ̃j to
all be identically equal to +∞ .

One of the important features of the Ωj ’s is that Ωj+1 is sparse inside of Ωj

when j > j0 and L is large. This is made precise by the following.
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Lemma 7.6. There exist C , η > 0 so that

(7.7) dj+1(x) ≤ CL−εdj(x),

(7.8) δj+1(x) ≤ CL−ηδj(x),

and

(7.9) δ̃j+1(x) ≤ CL−η δ̃j(x)

for all x ∈ Rn and j > j0 .

The first inequality can be derived from the definitions as follows. Because α
is an A1 weight we have

(7.10) α ≥ C−1α∗ ≥ C−1Ljεn a.e. on Ωj .

On the other hand

(7.11) �

∫

B(x,R)

α ≤ Ljεn when R ≥ dj(x)

by definition of Ωj and α∗ . Hence

C−1L(j+1)εndj+1(x)n ≤

∫

B(x,dj+1(x))

α ≤

∫

B(x,dj(x))

α ≤ CLjεndj(x)n,

(by (7.11)). This implies (7.7).

The other two estimates—(7.8) and (7.9)—follow from (7.7) and the obser-
vation that if σ is a doubling measure and B1 , B2 are two balls with B1 ⊆ B2 ,
then

σ(B1)

σ(B2)
≤ C

( |B1|

|B2|

)a

for some C , a > 0. This is easily checked. (Notice that we are only asking that
this inequality hold for balls. That is why you only need a doubling condition on
σ , and not an A∞ condition.)

Next we record a lemma on the relationship between µ and µ̃ in terms of the
Ωj ’s.
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Lemma 7.12. Let B be a ball in Rn .

(a) If B ⊆ Ωj , then

µ(B) ≥ C−1Ljεnµ̃(B).

(b) If B intersects Rn \ Ωj , then

µ(B) ≤ CLjεnµ̃(B).

Part (a) follows immediately from (7.10) and the various definitions. To prove
(b) we use Fact (g) in Section 2 to get that

�

∫

B

ω ≤ C
(

�

∫

B

ω̃
)(

�

∫

B

α
)

.

The definition of Ωj implies that

(7.13) �

∫

B

α ≤ Ljεn when B ∩ (Rn \ Ωj) 6= ∅,

and from here Part (b) follows directly.
The last topic that we take up in this section deals, roughly speaking, with

controlling ω on Ωj \ Ωj+1 .

Lemma 7.14. Let B be a ball and Q be a cube. Assume that

(7.15) Q ⊆ Ωj and Q \ Ωj+1 6= ∅

and that

(7.16) B ⊆ 100Q and B intersects Q \ Ωj+1.

Then

(7.17)
∣

∣

∣
�

∫

B

log ω − �

∫

Q

log ω
∣

∣

∣
≤ log Ln + C.

The point here is that B could be much smaller than Q , so that (7.17) would
not follow from the doubling condition on µ . Notice in particular that (7.17)
implies that

(7.18)
∣

∣

∣
log ω(x) − �

∫

Q

log ω
∣

∣

∣
≤ log Ln + C a.e. on Q \ Ωj+1.



234 Stephen Semmes

We assume for the rest of this section that B and Q are as in Lemma 7.14.
Observe first that

(7.19) α ≥ C−1Ljεn a.e. on Q

and

(7.20) �

∫

Q

α ≤ CL(j+1)εn.

These inequalities follow from (7.15) and the definition of Ωj . With the aid of
Jensen they imply that

(7.21) log Ljεn − C ≤ �

∫

Q

log α ≤ log L(j+1)εn + C.

Similarly, (7.16) implies

(7.22) �

∫

B

log α ≤ log
(

�

∫

B

α
)

≤ L(j+1)εn + C.

Next we consider uε and v−ε . Because they are both A1 weights we have
that

(7.23)

(a) �

∫

Q

log uε ≤ essinf
100Q

(log uε) + C,

(b) �

∫

Q

log v−ε ≤ essinf
100Q

(

log v−ε
)

+ C.

Hence, by (7.21)–(7.23),

�

∫

B

log uε + �

∫

B

log v−ε = �

∫

B

log α ≤ log L(j+1)εn + C

≤ log Lεn + �

∫

Q

log α + C

= log Lεn + �

∫

Q

log uε + �

∫

Q

log v−ε + C

≤ log Lεn + essinf
100Q

(log uε) + essinf
100Q

(

log v−ε
)

+ C.
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Because B ⊆ 100Q we get from here that

(7.24)

(a) �

∫

B

log uε ≤ log Lεn + essinf
100Q

(log uε) + C and

(b) �

∫

B

log v−ε ≤ log Lεn + essinf
100Q

(

log v−ε
)

+ C.

Now let us look at ω . We have, by (7.24)(a) and (7.23)(b),

�

∫

B

log ω = �

∫

B

log u + �

∫

B

log v

≤ log Ln + essinf
100Q

log u + esssup
100Q

log v + C

≤ log Ln + �

∫

Q

log u + �

∫

Q

log v + C

≤ log Ln + �

∫

Q

log ω + C.

Similarly,

�

∫

B

log ω ≥ − log Ln + �

∫

Q

log ω − C,

using (7.24)(b) and (7.23)(a). These estimates imply (7.17), as desired. This
proves Lemma 7.14.

8. Building blocks for defining f

In this section we construct the building blocks that will be used to define f
(in the next section). To do that we must first set up some Whitney decompositions
and partitions of unity.

For each j > j0 let {Qj,k} be an enumeration of the maximal dyadic cubes
Q contained in Ωj that satisfy

(8.1) 3 diamQ ≤ (10n)−10n inf
3Q

dj(x).

Thus ∪kQj,k = Ωj , Qj,k and Qj,l have disjoint interiors unless k = l ,

(8.2) 3 diamQj,k ≤ (10n)−10n dist (3Qj,k,Rn \ Ωj),

(8.3) diam Qj,k ≥ C−1 dist (3Qj,k,Rn \ Ωj),

and
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(8.4) for each j , {10Qj,k}k is a sequence of cubes with bounded overlap.

We can associate partitions of unity to these Whitney decompositions in the
usual way, except that we want the bump functions to be Lipschitz relative to
δ̃(·, ·) . For each j , k let θj,k be the function promised to Q = Qj,k by Lemma 6.4,

except that µ and δ(·, ·) are replaced by µ̃ and δ̃(x, y) . Define ϕj,k: Rn → R by

ϕj,k(x) = 0 when x /∈ Ωj ,

and

ϕj,k = θj,k

(

∑

l

θj,l

)−1

on Ωj .

Then each ϕj,k satisfies

(8.5) supp ϕj,k ⊆ 3Qj,k ⊆ Ωj ,

(8.6) 0 ≤ ϕj,k ≤ 1,
∑

k

ϕj,k = χΩj
,

and

(8.7)
∣

∣ϕj,k(x) − ϕj,k(y)
∣

∣ ≤ Cδ̃(x, y)µ̃(Qj,k)−1/n

for all x , y ∈ Rn . Note that

(8.8) µ̃(Qj,k)−1/n ≈ δ̃j(x) for all x ∈ Qj,k,

because of (8.2), (8.3), and the fact that µ̃ is a doubling measure.
It is very important that the Lipschitz condition (8.7) be in terms of δ̃(·, ·)

instead of δ(·, ·) . This is the sort of thing that will allow us to sum in j without
losing control, as we shall have to do. It is for this purpose that we need ω to be
a stronger A∞ weight, rather than merely strong A∞ .

Set

(8.9) M0 = inf
{(

�

∫

B

ω
)1/n

: B ∩ (Rn \ Ωj0+1) 6= ∅
}

and

(8.10) Mj,k =
(

�

∫

Qjk

ω
)1/n

.

Notice that Mj,k is comparable to the ratio of the δ(·, ·)-diameter of Q to its
Euclidean diameter. Also, M0 > 0, as one can show using Lemma 7.14. (See
Section 10 for more details, especially the estimates between (10.13) and (10.14).)

The next 3 lemmas concern the previously-heralded building blocks. Let qj,k

denote the center of Qj,k .
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Lemma 8.11. Assume that j0 > −∞ . Then there is a continuous mapping

f0: Rn → Rn such that

(8.12)
∣

∣f0(x) − M0x
∣

∣ ≤ M0(10n)−10ndj0+1(x),

and

(8.13)
∣

∣f0(x) − f0(y)
∣

∣ ≤ CL(j0+1)εδ̃(x, y) for all x, y ∈ Rn.

Lemma 8.14. For each j > j0 and each k there is a continuous mapping

hj,k: 3Qj,k → Rn such that

(8.15)
∣

∣hj,k(x) − Mj,k(x − qj,k)
∣

∣ ≤ Mj,k(10n)−10ndj+1(x)

and

(8.16)
∣

∣hj,k(x) − hj,k(y)
∣

∣ ≤ CL(j+1)ε+1δ̃(x, y)

for all x , y ∈ Rn .

Lemma 8.17. Let hj,k : 3Qj,k → Rn be as in Lemma 8.14, and define

fj,k: Rn → Rn by

fj,k(x) = 0 when x ∈ Rn \ 3Qj,k,

fj,k = θj,khj,k on 3Qj,k.

Then

(8.18)
∣

∣fj,k(x)
∣

∣ ≤ Cδj(x)

and

(8.19)
∣

∣fj,k(x) − fj,k(y)
∣

∣ ≤ CL(j+1)ε+1δ̃(x, y) for all x, y ∈ Rn.

Again, for the purposes of a future summation in j it is important that the
Lipschitz conditions in (8.13) and (8.19) be in terms of δ̃(·, ·) rather than δ(·, ·) .

The rest of this section will be devoted to the proofs of these lemmata.
Let us begin with Lemma 8.11. Suppose that j0 > −∞ , and define f0: Rn →

Rn by

(8.20)

f0(x) = M0x when x ∈ Rn \ Ωj0+1 and

f0 = M0

∑

k

ϕj0+1,k qj0+1,k on Ωj0+1.
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It is easy to see that f0 is continuous. We must verify (8.12) and (8.13).
Of course (8.12) is automatic when x ∈ Rn \ Ωj0+1 , and so we may as well

assume that x ∈ Ωj0+1 . Because
∑

k ϕj0+1,k(x) = 1 we have

∣

∣f0(x) − M0x
∣

∣ ≤ M0

∑

k

ϕj0+1,k(x)|x − qj0+1,k|.

If ϕj0+1,k(x) 6= 0, then x ∈ 3Qj0+1,k , and so

∣

∣f0(x) − M0x
∣

∣ ≤ M0

∑

k

ϕj0+1,k(x) (3 diamQj0+1,k)

≤ M0

∑

k

ϕj0+1,k(x)(10n)−10ndj0+1(x)

≤ M0(10n)−10ndj0+1(x).

In the second inequality we are using the fact that each Qj,k satisfies (8.2). This
proves (8.12).

Consider now (8.13). Suppose first that

(8.21) |x − y| ≥
1

10
dj0+1(x).

Then

(8.22)

∣

∣f0(x) − f0(y)
∣

∣ ≤
∣

∣f0(x) − M0x
∣

∣ + M0|x − y| +
∣

∣f0(y) − M0y
∣

∣

≤ M0

(

dj0+1(x) + |x − y| + dj0+1(y)
)

≤ 2M0

(

dj0+1(x) + |x − y|
)

≤ CM0|x − y|.

In the third inequality we have used the fact that

(8.23) dj0+1(y) ≤ dj0+1(x) + |x − y|.

On the other hand, (8.21) implies that 20Bx,y intersects Rn \ Ωj0+1 , and so
from (8.9) and Lemma 7.12(b) we get

(8.24)

M0|x − y| ≤
(

�

∫

20Bx,y

ω
)1/n

|x − y| ≤ C
(

∫

20Bx,y

ω
)1/n

≤ CL(j0+1)εµ̃ (20Bx,y)
1/n ≤ CL(j0+1)εδ̃(x, y).

Combining this with (8.22) gives (8.13) when (8.21) holds. Suppose now that

(8.25) |x − y| <
1

10
dj0+1(x).
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In particular both x and y lie in Ωj0+1 . Using (8.20) we get

(8.26)

∣

∣f0(x) − f0(y)
∣

∣ = M0

∣

∣

∣

∑

k

(

ϕj0+1,k(x) − ϕj0+1,k(y)
)

qj0+1,k

∣

∣

∣

= M0

∣

∣

∣

∑

k

(

ϕj0+1,k(x) − ϕj0+1,k(y)
)

(qj0+1,k − x)
∣

∣

∣
.

In order for a term in the sum not to vanish either x or y must lie in 3Qj0+1,k .
In either case we must have

(8.27) 3Qj0+1,k ∩ B
(

x,
1

10
dj0+1(x)

)

6= ∅,

by (8.25). This can occur for at most a bounded number of k ’s (for a given x).
For each k for which (8.27) is true we have that

|x − qj0+1,k| ≤ Cdj0+1(x)

and
∣

∣ϕj0+1,k(x) − ϕj0+1,k(y)
∣

∣ ≤ Cδ̃(x, y)µ̃ (Qj0+1,k)
−1/n

,

by (8.7). Before inserting these estimates into (8.26) it is convenient to set

Bx = B
(

x, 2dj0+1(x)
)

,

so that
Cµ̃ (Qj0+1,k) ≥ µ̃(Bx).

Now combining with (8.26) we get

(8.28)
∣

∣f0(x) − f0(y)
∣

∣ ≤ CM0δ̃(x, y)µ̃ (Bx)
−1/n

dj0+1(x).

Because Bx intersects Rn \ Ωj0+1 we have from (8.9) and Lemma 7.12(b)
that

(8.29) M0dj0+1(x) ≤ µ (Bx)
1/n ≤ CL(j0+1)εµ̃ (Bx)

1/n
.

This together with (8.28) gives (8.13) when (8.25) holds. This completes the proof
of Lemma 8.11.

The proof of Lemma 8.14 is quite similar. Fix j > j0 . Define hj,k: 3Qj,k →
Rn by

hj,k(x) = Mj,k(x − qj,k) when x ∈ 3Qj,k \ Ωj+1

and

(8.30) hj,k = Mj,k

∑

l

ϕj+1,l (qj+1,l − qj,k) on 3Qj,k ∩ Ωj+1.
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It is easy to check that hj,k is continuous.
The proof of (8.15) is almost identical to that of (8.12), and so we omit it. The

proof of (8.16) closely resembles that of (8.13), but there are a couple of changes,
and so we sketch the argument.

Suppose that x , y ∈ 3Qj,k satisfy

(8.31) |x − y| ≥
1

10
dj+1(x).

Analogous to (8.22) we have

(8.32)
∣

∣hj,k(x) − hj,k(y)
∣

∣ ≤ CMj,k|x − y|.

On the other hand

(8.33) Mj,k ≤ CL(j+1)ε+1
(

�

∫

20Bx,y

ω̃
)1/n

.

To see this we first observe that

(8.34) Mj,k =
(

�

∫

Qj,k

ω
)1/n

≤ CL
(

�

∫

20Bx,y

ω
)1/n

.

This follows from the doubling condition on µ if 20Bx,y is not contained in 100Qj,k

(so that Bx,y is not too small compared to Qj,k ), and from Lemma 7.14 and
Fact (g) in Section 2 when 20Bx,y ⊆ 100Qj,k . Clearly (8.33) follows from (8.34),
Lemma 7.12(b), and the fact that 20Bx,y intersects Rn \Ωj+1 . Combining (8.32)
with (8.33) gives (8.16) when (8.31) holds.

Assume now that x , y ∈ 3Qj,k satisfy

|x − y| <
1

10
dj+1(x),

so that x , y ∈ Ωj+1 in particular. Just as in (8.28) we have

∣

∣hj,k(x) − hj,k(y)
∣

∣ ≤ CMj,kδ̃(x, y)µ̃(Bx)−1/ndj+1(x),

where now
Bx = B (x, 2dj+1(x)) .

We also have

Mj,k ≤ CL(j+1)ε+1
(

�

∫

Bx

ω̃
)1/n

for essentially the same reasons as for (8.33). These inequalities combine to give
(8.16) in this case as well. This proves Lemma 8.14.
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It remains to prove Lemma 8.17. Observe first that

(8.35)
∣

∣hj,k(x)
∣

∣ ≤ Cµ (Qj,k)
1/n

when x ∈ 3Qj,k.

This is easily derived from the definition of hj,k and Mj,k . With this in hand
(8.18) follows directly. To get (8.19) you use Lemma 6.4, (8.16), (8.35), and also
the second inequality in the next lemma.

Lemma 8.36. There is a C > 0 so that

C−1Ljεnµ̃(Qj,k) ≤ µ(Qj,k) ≤ CLjεnµ̃(Qj,k)

for all j , k .

This is an easy consequence of Lemma 7.12, and (8.3), and the doubling
condition on µ̃ .

9. The definition of f

Basically f is going to be defined by combining the fj,k ’s from Section 8.
This is slightly tricky, because we are only allowing f to take values in a finite
dimensional space, and so we have to arrange the fj,k ’s into a finite set of piles.
We have to be careful about how we do this, in order to make certain that a pair
of fj,k ’s from the same pile do not interact too much.

Set N2 = N0N1 , where N0 is a large constant to be chosen later (indepen-
dently of L), and N1 is a large constant that will be selected very soon (depending
only on n).

Lemma 9.1. If N1 is large enough then we can define a mapping

(9.2) Qj,k 7→ aj,k, aj,k ∈ {1, 2, . . . , N2}

in such a way that aj,k = aj′,k′ implies:

(i) j ≡ j′ modN0 ;

(ii) k = k′ if also j = j′ and

(9.3) dist (3Qj,k, 3Qj′,k′) < 1
2 dist (Qj,k ∪ Qj′,k′ ,Rn \ Ωj) .

The proof of this requires just a small coding argument. Choose N1 so that
for each j and k the set

{k′ : (9.3) holds with j′ = j}

has less than N1 elements. Then the correspondence (9.2) can be defined one cube
Qj,k at a time (in any order), and our condition on N1 ensures that at each stage
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there is a choice for the value of aj,k that is consistent with the previous choices
and the requirements listed in the lemma.

We are going to take f to be a mapping from Rn into RN with N =
(N2 + 1)n + N2 and with f of the form

f = (f0, f1, . . . , fN2
, g1, . . . , gN2

),

where the fi ’s take values in Rn and the gi ’s take values in R . Here f0 is as in
Lemma 8.11 when j0 > −∞ , and we take f0 ≡ 0 otherwise. The remaining fi ’s
and gi ’s are defined as follows.

Given i , 1 ≤ i ≤ N2 , set

(9.4) fi =
∑

{(j,k):aj,k=i}

fj,k

and

(9.5) gi =
∑

{(j,k):aj,k=i}

gj,k,

where the fj,k ’s are as in Lemma 8.17, and where gj,k: Rn → R is defined by

(9.6) gj,k(x) = Ljεδ̃′(x,Rn \ 2Qj,k).

Here δ̃′(·, ·) is a distance function on Rn that is comparable to δ̃(·, ·) , as in (1.8).

In the next section we shall prove that this choice of f works. Before leaving
this section we record some estimates on the gj,k ’s.

Lemma 9.7. Each gj,k satisfies

(9.8) gj,k(x) ≤ Cδj(x)

and

(9.9)
∣

∣gj,k(x) − gj,k(y)
∣

∣ ≤ CLjεδ̃(x, y) for all x, y ∈ Rn.

Also,

(9.10) gj,k(x) ≥ C−1δj(x) when x ∈ Qj,k.

It is easy to derive (9.8) and (9.10) from (9.6), Lemma 8.36, and the doubling
condition on µ̃ . As usual, (9.9) follows from (1.8) and the fact that δ̃′(·, ·) satisfies
the triangle inequality.
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10. The end of the proof of Theorem 5.2

Lemma 10.1. If L is large enough, then there is a C(L) > 0 so that

(10.2)
∣

∣f(x) − f(y)
∣

∣ ≤ C(L)δ(x, y)

whenever x , y ∈ Rn .

Consider first f0 . We may as well assume that j0 > −∞ . Thus Ωj0 = Rn ,
and so Lemma 7.12(a) implies that

Lj0εδ̃(x, y) ≤ Cδ(x, y)

for all x , y ∈ Rn , which in turn implies that the contribution of f0 to (10.2) is
fine, because of (8.13).

Next we look at the fi ’s and gi ’s, 1 ≤ i ≤ N2 . We begin by deriving estimates
for

(10.3)
∑

j0<j≤j1

∑

k

(
∣

∣fj,k(x) − fj,k(y)
∣

∣ +
∣

∣gj,k(x) − gj,k(y)
∣

∣

)

and

(10.4)
∑

j≥j1

∑

k

(
∣

∣fj,k(x)
∣

∣ +
∣

∣gj,k(x)
∣

∣

)

,

where j1 is any integer such that j1 > j0 .
Each term in the sum in (10.3) is bounded by CL(j+1)ε+1δ̃(x, y) , by (8.19)

and (9.9). Also, for each j there are at most a bounded number of terms in the
k sum in (10.3) which are nonzero, because fj,k and gj,k are both supported in
3Qj,k . Hence

(10.3) ≤
∑

j0<j≤j1

CL(j+1)ε+1δ̃(x, y) ≤ CL(j1+1)ε+1
(

1 − L−ε
)−1

δ̃(x, y).

We may as well require L to be so large that

(10.5) L−ε ≤ 1
2 ,

whence

(10.6) (10.3) ≤ CL(j1+1)ε+1δ̃(x, y).

For (10.4) we notice that each term in the sum is bounded by Cδj(x) , by
(8.18) and (9.8), and that for each j there are at most a bounded number of terms
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in the k sum that do not vanish, because of the conditions on the supports of fj,k

and gj,k . Hence

(10.4) ≤
∑

j≥j1

Cδj(x).

From (7.8) it follows that

(10.7) (10.4) ≤ Cδj1(x),

at least if L is large enough so that CL−η ≤ 1
2 .

To finish the proof of Lemma 10.1 it suffices to show that

(10.8)
∑

j>j0

∑

k

(
∣

∣fj,k(x) − fj,k(y)
∣

∣ +
∣

∣gj,k(x) − gj,k(y)
∣

∣

)

≤ C(L)δ(x, y)

for all x , y ∈ Rn . Fix x , y ∈ Rn . Define j(x, y) to be the largest integer j such
that

(10.9) x, y ∈ Ωj and B
(

x, 10|x − y|
)

⊆ Ωj .

Notice that j(x, y) ≥ j0 and j(x, y) > −∞ , but that j(x, y) = j0 is possible
when j0 > −∞ . To prove (10.8) we split the j sum into two pieces, according to
whether or not j ≤ j(x, y) .

Using (10.6) with j1 = j(x, y) we get

∑

j0<j≤j(x,y)

∑

k

(
∣

∣fj,k(x) − fj,k(y)
∣

∣ +
∣

∣gj,k(x) − gj,k(y)
∣

∣

)

≤ CL(j(x,y)+1)ε+1δ̃(x, y) ≤ CL1+εδ(x, y).

The second inequality comes from Lemma 7.12(a) and the fact that Bx,y ⊆ Ωj(x,y) .
From (10.7) we have

∑

j>j(x,y)

∑

k

(
∣

∣fj,k(x) − fj,k(y)
∣

∣ +
∣

∣gj,k(x) − gj,k(y)
∣

∣

)

≤ C
(

δj(x,y)+1(x) + δj(x,y)+1(y)
)

≤ Cδ(x, y).

The last inequality uses the fact that (10.9) fails for j = j(x, y)+1, as well as the
doubling condition on µ .

Combining these estimates gives (10.8). This proves Lemma 10.1.

Lemma 10.10. If N0 and L are large enough, then there is a C(L) > 0 so

that

(10.11)
∣

∣f(x) − f(y)
∣

∣ ≥ C(L)−1δ(x, y)

for all x , y ∈ Rn .
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Fix x , y ∈ Rn , and let j(x, y) be as above. In particular

(10.12) |x − y| >
1

10
dj(x,y)+1(x).

Suppose first that j(x, y) = j0 (and hence j0 > −∞). Then, by (8.12),

∣

∣f(x) − f(y)
∣

∣ ≥
∣

∣f0(x) − f0(y)
∣

∣

≥ M0|x − y| −
∣

∣f0(x) − M0x
∣

∣ −
∣

∣f0(y) − M0y
∣

∣

≥ M0

{

|x − y| − (10n)−10n
(

dj0+1(x) + dj0+1(y)
)}

≥ 1
2M0|x − y|.

For the last inequality we have used (10.12) and

(10.13) dj0+1(y) ≤ dj0+1(x) + |x − y| ≤ 11|x − y|.

We need to show that M0|x − y| ≥ C(L)−1δ(x, y) .
Let Bx,y be as in (1.3), as usual. From (10.12) we get that 20Bx,y intersects

Rn \ Ωj0+1 , and so

(

�

∫

B

ω
)1/n

≥ C−1L−2
(

�

∫

20Bx,y

ω
)1/n

for any other ball B that intersects Rn \ Ωj0+1 , because of Lemma 7.14 and
Fact (g) from Section 2. (In applying Lemma 7.14 we may take Q to be any cube
that contains B and 20Bx,y , because Ωj0 = Rn .) Using this inequality and the
definition (8.9) of M0 we get

M0 ≥ C−1L−2
(

�

∫

20Bx,y

ω
)1/n

≥ C−1L−2δ(x, y)|x− y|−1.

Combining this with our previous estimates yields (10.11) when j(x, y) = j0 .
Now suppose that j(x, y) > j0 . Set J = j(x, y) , and choose K so that

QJ,K contains x . (We can do this because x ∈ ΩJ .) Set i = aJ,K . We have to
distinguish between the cases where y does or does not belong to 2QJ,K .

Suppose first that y ∈ 2QJ,K . Then

(10.14)

∣

∣f(x) − f(y)
∣

∣ ≥
∣

∣fi(x) − fi(y)
∣

∣

≥
∣

∣fJ,K(x) − fJ,K(y)
∣

∣ −
∑

(j,k)∈Z

∣

∣fj,k(x) − fj,k(y)
∣

∣,

where Z =
{

(j, k) : aj,k = i but (j, k) 6= (J, K)
}

. We are going to show that the
first term on the right side of (10.14) is large, by construction, while the sum is
comparitively small if N0 is large enough.
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Because x , y ∈ 2QJ,K we have θJ,K(x) = θJ,K(y) = 1, and so

(10.15)

∣

∣fJ,K(x) − fJ,K(y)
∣

∣ =
∣

∣hJ,K(x) − hJ,K(y)
∣

∣

≥ MJ,K |x − y| −
∣

∣hJ,K(x) − MJ,K(x − qJ,K)
∣

∣

−
∣

∣hJ,K(y) − MJ,K(y − qJ,K)
∣

∣

≥ MJ,K

{

|x − y| − (10n)−10n
(

dJ+1(x) + dJ+1(y)
)}

≥ 1
2
MJ,K |x − y|,

by (8.15). For the last inequality we used (10.12) and the analogue of (10.13) in
this situation. To control this from below by δ(x, y) we use

(10.16) MJ,K =
(

�

∫

QJ,K

ω
)1/n

≥ C−1L−1
(

�

∫

20Bx,y

ω
)1/n

.

This follows from the doubling condition on µ when 20Bx,y is not contained in
100QJ,K (so that Bx,y is not too small compared to QJ,K ), and from Lemma 7.14
and Fact (g) in Section 2 when 20Bx,y ⊆ 100QJ,K . (To apply Lemma 7.14 we need
to know that 20Bx,y intersects Rn \ΩJ+1 , which is true, by (10.12).) Combining
(10.15) with (10.16) gives

(10.17)
∣

∣fJ,K(x) − fJ,K(y)
∣

∣ ≥ C−1L−1δ(x, y).

Let E denote the sum on the right side of (10.14), which we want to be small
compared to the right side of (10.17). Observe that

(10.18) E =
∑

(j,k)∈W

∣

∣fj,k(x) − fj,k(y)
∣

∣,

where W =
{

(j, k) : aj,k = i and j 6= J
}

. Indeed, W ⊆ Z , and (j, k) ∈ Z \ W
only when j = J , aj,k = i , but k 6= K . Under these circumstances Lemma 9.1
implies that Qj,k is far enough way from QJ,K that fj,k(x) − fj,k(y) = 0, since
x , y ∈ 2QJ,K . Hence such a (j, k) does not contribute to E , and we have (10.18).

Using Lemma 9.1 again we have

E ≤ E+ + E−,

where
E+ =

∑

j≥J+N0

∑

k

∣

∣fj,k(x) − fj,k(y)
∣

∣

and
E− =

∑

j0<j≤J−N0

∑

k

∣

∣fj,k(x) − fj,k(y)
∣

∣.
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Applying (10.7) and (10.6) we get

E+ ≤ C
(

δJ+N0
(x) + δJ+N0

(y)
)

and
E− ≤ CL(J−N0+1)ε+1δ̃(x, y).

We can use Lemma 7.6 to obtain

E+ ≤ C(CL−η)N0−1
(

δJ+1(x) + δJ+1(y)
)

≤ C(CL−η)N0−1δ(x, y).

The second inequality is a consequence of the failure of (10.9) when j = J + 1.
On the other hand,

E− ≤ CL1−(N0−1)εδ(x, y),

because of Lemma 7.12(a) and the fact that Bx,y ⊆ ΩJ (since (10.9) holds with
j = J ). Altogether we have

(10.19) E ≤ C
[

(CL−η)N0−1 + L1−(N0−1)ε
]

δ(x, y).

Thus if N0 satisfies

(10.20) (N0 − 1)η, (N0 − 1)ε − 1 > 1,

then we can choose L so large that

E ≤ 1
2

∣

∣fJ,K(x) − fJ,K(y)
∣

∣,

because of (10.17). Combining this with (10.17) and (10.14) we get (10.11) in this
case (where j(x, y) > j0 , y ∈ 2QJ,K ).

It remains to take care of (10.11) when j(x, y) > j0 and y ∈ Rn \ 2QJ,K .
In this case we proceed using gi instead of fi , but the arguments are otherwise
essentially identical.

We have

(10.21)

∣

∣f(x) − f(y)
∣

∣ ≥
∣

∣gi(x) − gi(y)
∣

∣

≥
∣

∣gJ,K(x) − gJ,K(y)
∣

∣ −
∑

(j,k)∈Z

∣

∣gj,k(x) − gj,k(y)
∣

∣,

where Z is the same as before. Because x ∈ QJ,K but y /∈ 2QJ,K we have
gJ,K(x) ≥ C−1δJ (x) and gJ,K(y) = 0, by (9.10) and (9.6). We also have δ(x, y) ≤
CδJ (x) because (10.9) holds with j = J . Thus

(10.22)
∣

∣gJ,K(x) − gJ,K(y)
∣

∣ ≥ C−1δ(x, y).
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Let E′ denote the sum on the right side of (10.21). Essentially the same
arguments as before imply that E′ is dominated by the right side of (10.19). (The
proof of the analogue of (10.18) is slightly different this time, because we do not
have y ∈ 2QJ,K now. However, the fact that (10.9) holds with j = J provides an
adequate substitute.) Hence

E′ ≤ 1
2

∣

∣gJ,K(x) − gJ,K(y)
∣

∣

if N0 satisfies (10.20) and L is large enough. Combining this with (10.22) and
(10.21) gives (10.11) in this case.

This completes the proof of Lemma 10.10, and also of Theorem 5.2.
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