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Abstract. If {Rn}∞n=1 is a sequence of hyperbolic Riemann surfaces such that for any r > 0
a hyperbolic ball of radius r embeds isometrically into Rn for all n sufficiently large, then as
n → ∞ the inner radii of the associated Teichmüller spaces i(T(Rn)) → 2 . A straightforward
consequence of this is that if a Riemann surface R contains arbitrarily large hyperbolic balls then
i(T(R)) = 2 .

1. Statement of results

Let Γ be a Fuchsian group acting on the upper half plane H , and hence
also on the lower half plane H ∗ , in the complex plane. Let Q∞(Γ) denote the
complex Banach space of bounded quadratic differentials with respect to Γ defined
in H ∗ . The Teichmüller space T(Γ) of Γ is realized via the Bers embedding as
a bounded region in Q∞(Γ).

The inner radius i(Γ) of T(Γ) is the supremum of radii of balls in Q∞(Γ)
centered at the origin which are contained in T(Γ). It has long been known [2]
that if H ∗ carries the hyperbolic metric of curvature ≡ −4 then

(1.1) i(Γ) ≥ 2 whenever T(Γ) 6= {0}.

If Γ is an elementary group then we have equality in (1.1), [4]. On the other
hand it can be shown, following Gehring and Pommerenke [3], that the inequality
in (1.1) is strict for cofinite Γ ([6], [11]). We now state our main theorem:

Theorem 1. Let {Γn}
∞

n=1 be a sequence of Fuchsian groups. Assume that

for any r > 0 a hyperbolic ball of radius r embeds isometrically in H ∗
/

Γn for

all n sufficiently large. Then inf
(

i(Γn)
)

= 2 .

A straightforward consequence of this theorem is
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Theorem 2. Let Γ be a Fuchsian group and assume that the Riemann

surface H ∗
/

Γ contains arbitrarily large hyperbolic balls, i.e. for any r > 0 a

hyperbolic ball of radius r embeds isometrically in H ∗
/

Γ . Then i(Γ) = 2 .

This is precisely the condition (O1 ) in [13], as will be discussed in the next
section. To obtain this result apply Theorem 1 to Γn = Γ, n = 1, 2, . . ..

Also following immediately is

Theorem 3. If Γ is a Fuchsian group of the second kind then i(Γ) = 2 .

2. Preliminaries

Let H2 denote 2-dimensional hyperbolic space with conformal metric ds =
̺ |dz| and curvature −4. Two commonly used conformal models of this are H ,
with metric |dz|/2y , and the unit disc D , with metric |dz|/(1 − |z|2) . A holo-
morphic quadratic differential ϕ on H2 is a holomorphic section of T 2,0(H2) , so
that if z , w are two conformal coordinates on H2 and ϕz , ϕw the respective
coordinate representations of ϕ then

(2.1) ϕw = ϕz

( dz

dw

)2

.

A Beltrami differential µ on H2 is a section of L∞(H2)⊗T 0,1(H2)⊗ T−1,0(H2) ,
so that

(2.2) µw = µz

( dz

dw

)( dz

dw

)−1

.

There is a natural metric on the Beltrami differentials:

(2.3) |µ|
∞

= sup
x∈H2

∣

∣µ(x)
∣

∣.

We also have a natural metric on quadratic differentials:

(2.4) ‖ϕ‖
∞

= sup
x∈H2

̺(x)−2
∣

∣ϕ(x)
∣

∣.

One readily checks that both of these are coordinate independent, and hence are
intrinsic to H2 .

If we realize H2 conformally by a simply connected domain Ω ⊂ Ĉ , we will de-
note by Q∞(Ω) the space of holomorphic quadratic differentials {holomorphic ϕ ∈
T 2,0(Ω) : ‖ϕ‖

∞
< ∞} . We also let Bel (Ω) = {µ ∈ L∞(Ω) ⊗ T 0,1(Ω) ⊗ T−1,0(Ω) :

|µ|
∞

< 1} .
Let Γ denote a discrete subgroup of the orientation preserving isometries of

H2 . (If H2 is realized as the image of D under a Möbius transformation then Γ
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is called a Fuchsian group.) We say the quadratic differential ϕ is Γ-invariant if
it satisfies

(2.5) ϕ(z) = ϕ
(

γ(z)
)

· γ′(z)2 for all γ ∈ Γ, z ∈ H2.

Similarly µ is said to be a Beltrami differential with respect to Γ if

(2.6) µ(z) = µ
(

γ(z)
)

γ′(z)
(

γ′(z)
)−1

for all γ ∈ Γ, z ∈ H2.

The above norms are Γ-invariant for such forms. Thus if Ω is as above and Γ
acts on Ω we denote by Q∞(Ω; Γ) and Bel (Ω; Γ) the subspaces of Q∞(Ω) and
Bel (Ω) which are Γ-invariant.

If µ ∈ Bel (Ω) we will henceforth always suppose it to be extended to be 0

on Ĉ \ Ω, so that µ ∈ Bel (Ĉ) . Consider now the PDE

(2.7) ∂z̄f = µ · ∂zf on Ĉ.

This equation has a solution fµ which is a homeomorphism of Ĉ and is defined
uniquely up to post-composition by Möbius transformations. Now if Ĉ \ Ω has
interior, fµ is conformal on this open domain. In particular, letting 1/D =

Ĉ \ cl (D) (cl (X) means the closure of the set X ), if Ω = H (or D) and the

interior of its complement is H ∗ (or 1
/

D), then fµ: H ∗ (or 1/D) → Ĉ is
univalent.

Given that f : H2 → Ĉ is a locally univalent map, and z is a conformal
parameter on H2 , the Schwarzian derivative of f , Sf , is defined by

(2.8) Sf (z) =

(

(f ′′

f ′

)′

−
1

2

(f ′′

f ′

)
2
)

(z).

One verifies that Sf (z) ≡ 0 if and only if f(z) is Möbius, and that if w is another
conformal parameter on H2 with z = g(w) then

(2.9) Sf◦g(w) = Sf (z)
( dz

dw

)2

+ Sg(w).

Hence if γ is a Möbius transformation then Sγ◦f (z) = Sf (z) , and Sf◦γ(z) =

Sf (γz)γ′(z)
2
.

Henceforth we will assume that H2 is so realized, and our Γ are thus all
Fuchsian groups. The latter of these transformation laws tells us that if H2 is
realized as H ∗ or 1/D and fµ is univalent, then Sfµ is a quadratic differential
on the domain. By a theorem of Kraus [5] we have (in the case of H ∗ )

(2.10) ‖Sfµ‖
∞

= sup
z∈H ∗

4(Im z)2
∣

∣Sfµ(z)
∣

∣ ≤ 6.

The same estimate holds in the case of 1/D . Hence µ 7→ Sfµ maps Bel (H )
to Q∞(H ∗) . If Γ < PSL (2,R) then one checks that in fact Bel (H ; Γ) →
Q∞(H ∗; Γ), and the same holds in the case of D and 1/D .
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Definition. The Teichmüller space T(Γ) of Γ is the image of Bel (H ; Γ) in
Q∞(H ∗; Γ) under the mapping µ 7→ Sfµ .

The following numbers are called the outer radius and the inner radius, re-
spectively, of T(Γ):

o(Γ) = sup
{

‖ϕ‖
∞

: ϕ ∈ T(Γ)
}

,

i(Γ) = inf
{

‖ϕ‖
∞

: ϕ ∈ Q∞(H ∗; Γ) \ T(Γ)
}

.

By (2.4) we have o(Γ) ≤ 6. As mentioned in the introduction, Ahlfors and
Weill showed that i(Γ) ≥ 2. In [13], Nakanishi and Yamamoto showed that
o(Γ) = 6 if and only if one of the following conditions are satisfied:

(O1) for any r > 0, a hyperbolic geodesic ball of radius r embeds isometrically in
H2/Γ (let Br(z) denote the ball of hyperbolic radius r about z ∈ H2/Γ), or

(O2) for any d > 0, a collar of width d exists about the axis of some hyperbolic
element of Γ.

It follows from work of Gehring and Pommerenke that i(Γ) > 2 for cofinite
Γ, and the authors showed in [12] that (O2 ) implies i(Γ) = 2. Herein we show
that (O1 ) also implies this fact.

We would like to note that these theorems may be thought of as the analytic
equivalent of results of Curt McMullen regarding the geometric limits of quadratic
differentials (see the appendix of [9]).

3. Several lemmas

Let A ∈ Möb (Ĉ) be a transformation sending D onto H and µ ∈ Bel (H ; Γ),

where Γ is a Fuchsian group acting on H . Set ν(z) = µ
(

A(z)
)

A′(z)
(

A′(z)
)−1

(and ν(z) = 0 for z ∈ 1/D). We consider the Beltrami equation

(3.1)
∂f

∂z̄
= ν ·

∂f

∂z
.

If fν is a solution of (3.1), then fµ = fν ◦A−1 satisfies ∂z̄f
µ = µ ·∂zf

µ . For
more details of the following description, see [1, Chapter V]. Consider the following
two operators from Lp(C) (p > 2) to itself:

(3.2)

Ph(z) =
1

2πi

∫ ∫

h(ζ)

ζ − z
dζ ∧ dζ̄

Th(z) = p.v.
1

2πi

∫ ∫

h(ζ)

(ζ − z)2
dζ ∧ dζ̄.

The operator T is also defined on L2(C) , where it is an isometry. For p > 2, there
exist constants Cp with limp→2 Cp = 1 and ‖T‖p < Cp . Let k = ess. sup.|µ| =
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ess. sup.|ν| and choose p > 2 so that kCp < 1. Let h be a solution in Lp of the
equation h = T

(

ν(h + 1)
)

. Then the following function f is a solution of (3.1):

(3.3)

f(z) = z + P (ν(h + 1))(z)

= z +
1

2πi

∫ ∫

ν(ζ)
(

h(ζ) + 1
)

[ 1

ζ − z

]

dζ ∧ dζ̄.

Remark. The definition of P is slightly different from that in [1]. This
is because in our treatment we do not need the normalized solution such that
f(0) = 0.

Let z0 ∈ D and z∗0 = z̄−1
0 ∈ 1/D . Letting D and 1/D have hyperbolic

metrics of curvature −4, we denote by Br(z0) the hyperbolic disk of radius r and
center z0 . Let Bel k(D) =

{

µ ∈ Bel (D) : ‖µ‖
∞

≤ k < 1
}

. We now have a lemma
which will be used in the proof of the ensuing one.

Lemma 3.1. If ν ∈ Bel k(D) and if fν is the solution of (3.1) satisfying

fν(z) = z + O(1/z) at z = ∞ , then there exist constants a(k, r) , depending

only on k and r , such that the planar measure of fν
(

D \ Br(0)
)

is < a(k, r) .
Moreover, for each fixed k , a(k, r) → 0 as r → ∞ .

Proof. From Koebe’s famous 1
4 -theorem (see [7, Sektion 28, Satz 6]) it is

trivial that there exists such a constant, as fν(1/D) contains
{

z : |z| > 2
}

. To
show that as r → ∞ , a(k, r) → 0, suppose to the contrary that there exist ε > 0
and νn ∈ Belk(D) such that fνn

(

D \ Bn(0)
)

has planar area > ε . The fact
that the fνn form a normal family (see [8, Chapter II.5.2, Theorem 5.1]), with
every limit fν satisfying (3.1) for some ν ∈ Belk(D) , implies that the limiting
fν maps the unit circle onto a positive measure set in C . This is impossible as
quasiconformal maps are absolutely continuous with respect to Lebesgue measure
[1, Chapter II B, Theorem 3].

Lemma 3.2. There exist constants b(k, r) , depending only on k and r , such

that if µ , ν ∈ Belk(D) with µ ≡ ν on Br(z0) then

̺1/D(z∗0)−2
∣

∣Sfµ(z∗0) − Sfν (z∗0)
∣

∣ =
(

|z∗0 |
2 − 1

)2∣
∣Sfµ(z∗0) − Sfν (z∗0)

∣

∣ < b(k, r).

Moreover, for each fixed k ,

b(k, r) → 0 as r → ∞.

Proof. The existence of bounded b(k, r) is straightforward from the Kraus
estimate [5]. To see that we may arrange for b(k, r) → 0 as r → ∞ , consider
sequences

{

µn ∈ Belk(D)
}

and
{

νn ∈ Belk(D)
}

such that µn ≡ νn on Bn(z0) .

It suffices to prove that ̺1/D(z∗0)−2
∣

∣Sfµn (z∗0) − Sfνn (z∗0)
∣

∣→ 0 as n → ∞ .
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Precomposing by a Möbius transformation, we may assume that z0 = 0,
z∗0 = ∞ . We will show that

̺1/D(∞)−2
∣

∣Sfµn (∞) − Sfνn (∞)
∣

∣ = ̺1/D(∞)−2
∣

∣Sfµn◦(fνn )−1(∞)
∣

∣→ 0

as n → ∞ . Consider now fn = fµn ◦ (fνn)−1 on Ĉ . This is holomorphic except
on fνn

(

D \ Bn(0)
)

. On this set the quasiconformal deformation is

µ̃n =
(

fνn

z ( fνn
z )−1 µn − νn

1 − ν̄nµn

)

◦ (fνn)−1

with

|µ̃n|∞ = sup
z∈D

∣

∣

∣

(

fνn

z ( fνn
z )−1 µn − νn

1 − ν̄nµn

)

◦ (fνn)−1
∣

∣

∣

= sup
z∈D

∣

∣

∣

( µn − νn

1 − ν̄nµn

)

◦ (fν
n)−1

∣

∣

∣
≤

2k

1 + k2
= κ.

Now let fn(z) have expansion z + cn,1z
−1 + cn,2z

−2 + · · · at z = ∞ , so that

cn,1 =
−1

2πi

∫ ∫

µ̃n(ζ)
(

hn(ζ) + 1
)

dζ dζ̄

from (3.3). Thus

̺1/D(∞)−2
∣

∣Sfn
(∞)

∣

∣ = 6|cn,1| = ̺1/D(∞)−2
∣

∣Sfµn (∞) − Sfν (∞)
∣

∣

and, since hn is an Lp solution to hn = T
(

µ̃n(hn + 1)
)

,

‖hn‖p ≤ Cp(1 − κCp)
−1‖µ̃n‖p.

Hence if α(n) denotes the planar area of fνn

(

D \ Bn(0)
)

we have

̺1/D(∞)−2
∣

∣Sfn
(∞)

∣

∣ = 6|cn,1|

≤ 3π−1
{

κα(n) + ‖hn‖p‖µ̃n‖q

}

(p−1 + q−1 = 1)

≤ 3π−1
{

κα(n) + Cp(1 − κCp)
−1‖µ̃n‖p‖µ̃n‖q

}

≤ 3κa(k, r)π−1
{

1 + Cp(1 − κCp)
−1κ

}

= b(k, n),

where a(k, n) is as in Lemma 3.1. For r ∈ [n, n+1) let b(k, r) = b(k, n) . Evidently
b(k, r) → 0 as r → ∞ , completing the proof.
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A special family in the universal Teichmüller space [4]. Let Γ be the
trivial group 〈1〉 . The quadratic differentials ϕα(z) = αz−2 dz2 (α ∈ C) belong
to Q∞(H ∗) . For either root δ of the equation 2α = 1 − δ2 we have µα(z) =
(δ − 1)z/z̄ is a Beltrami differential on H . In this case the Beltrami equation
∂z̄f = µα · ∂zf is solved explicitly by fα(z) = zz̄δ−1 which has a conformal
continuation fα(z) = zδ to H ∗ .

We readily check that Sfα
= ϕα in H ∗ . As |δ − 1| < 1 implies

α ∈ Λ =
{

1
2(1 − re2iθ) ∈ C : r < 4 cos2 θ, 0 ≤ θ ≤ π

}

,

we conclude that {ϕα : α ∈ Λ} ⊂ T(1) and (letting θ = 0) observe that o(Γ) = 6
and i(Γ) = 2. We remark also that a function f in H ∗ with Sf = ϕα is
univalent in H ∗ if and only if α ∈ cl(Λ).

Consider the Möbius transformation

z 7→ −it
z − (i/t)

z − it

which maps Bln t(i) to H . We pull µα back to a Beltrami differential µα,t with
support on Bln t(i) :
(3.4)

µt,α(z) =

{

−(δ − 1)(z2 − i(t + 1
t )z − 1)(z2 − i(t + 1

t )z − 1)
−1

, z ∈ Bln t(i),

0, z ∈ Ĉ \ Bln t(i).

The solution fµα pulls back to a solution to ∂z̄f = µα,t∂zf given by

ft,α(z) =
[

− it
z − i/t

z − it

]δ

on Ĉ \ Bln t(i) , etc. Thus on H ∗ , the Schwarzian derivative of this univalent
function is

ϕα,t(z) = −α
(t − 1/t)2

(z − i/t)2(z − it)2
dz2.

We see that ft,α(z) → zδ and ϕt,α → ϕα on any compact subset of H ∗

as t → ∞ . Furthermore, the following lemma shows that ‖ϕt,α‖∞ increases
monotonically to ‖ϕα‖∞ as t → ∞ .

Lemma 3.3. If ϕ ∈ Q∞(H ∗) and f : H ∗ → H ∗ is locally univalent,

let f∗ϕ be the pullback of ϕ to H ∗ via f , i.e. f∗ϕ = (ϕ ◦ f)(f ′)2 . Then

‖f∗ϕ‖∞ ≤ ‖ϕ‖∞ , and if f(H ∗) is precompact in H ∗ then the inequality is

strict.

Proof. This is immediate from the Schwarz–Pick lemma, as ̺
(

f(z)
)

|f ′| ≤ ̺(z)

implies that
∣

∣f∗ϕ(z)
∣

∣̺−2(z) ≤
∣

∣ϕ
(

f(z)
)
∣

∣̺−2
(

f(z)
)

. If f(H ∗) is precompact in

H ∗ then ̺
(

f(z)
)∣

∣f ′(z)
∣

∣ < k̺(z) for some k < 1.
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4. Proof of Theorem 1

To prove Theorem 1 in [12], it was shown to be sufficient to prove Proposi-
tion 4.1 in that paper. The situation here is similar, and the proof of our Theorem 1
follows, verbatum, from

Proposition 4.1. Let {Γn} be a sequence of Fuchsian groups satisfying the

hypothesis of Theorem 1. Let α ∈ Λ . Then there are ϕn ∈ T(Γn) such that

{ϕn} contains a subsequence {ϕnj
} with ϕnj

→ ϕα(z) = αz−2 dz2 uniformly on

compact sets in H ∗ , and ‖ϕnj
‖∞ → 4|α| = ‖ϕα‖∞ as j → ∞ .

Hence we will show that this proposition is true.
Let zn ∈ H be such that γn

(

B2rn
(zn)

)

∩ B2rn
(zn) = ∅ for all γn ∈ Γn ,

γn 6= id, and rn → ∞ as n → ∞ . By conjugating Γn we may assume without
loss of generality that zn = i .

Now, fixing α ∈ Λ, let µn = µrn,α ; see (3.4). Let fµn be the solutions
∂z̄f = µn · ∂zf normalized at −i . Then we have seen (following (3.4), where δ
satisfies |δ − 1| < 1 and 2α = 1 − δ2 ) that as n → ∞ , fµn → zδ uniformly on
compact sets in H ∗ , and ‖Sfµn ‖∞ ≤ 4|α| .

We define νn(z) =
∑

γ∈Γn
µn

(

γ(z)
)

γ′(z)
(

γ′(z)
)−1

so that νn = 0 on H ∗ .
Then in the Dirichlet fundamental region F (i) we have (νn − µn)(z) = 0 in
Brn

(z) , so that
∣

∣Sfνn (z) − Sfµn (z)
∣

∣̺−2
H2(z) < a(k, r) . Letting n be large enough

we have that ‖Sfνn ‖∞ < 4|α| + ε . Also as νn → µn in measure we get that
fνn → zδ uniformly on compact sets, which completes the proof of the lemma and
hence the theorem.

Remark. In the above argument we used several properties of quasiconformal
mappings. The theory of these maps is found in [9] (in particular Section 5 of
Chapter II and Section 4 of Chapter V).

Remark. Proposition 4.1 does not mean that ‖ϕnj
− ϕα‖

∞
→ 0 (see Sec-

tion 4 of [11]).
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J. 41, 1989, 679–688.

[12] Nakanishi, T., and J. Velling: On inner radii of Teichmüller spaces. - Prospects in
Complex Geometry. Lecture Notes in Mathematics 1468, Springer-Verlag, 1991.

[13] Nakanishi, T., and H. Yamamoto: On the outradius of the Teichmüller space. - Com-
ment. Math. Helv. 64, 1989, 288–299.

Received 24 July 1991


