
Annales Academiæ Scientiarum Fennicæ
Series A. I. Mathematica
Volumen 18, 1993, 377–393

ON THE TANGENT SPACE TO THE

UNIVERSAL TEICHMÜLLER SPACE
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Abstract. We find a remarkably simple relationship between the following two models of
the tangent space to the universal Teichmüller space:

(1) The real-analytic model consisting of Zygmund class vector fields on the unit circle;
(2) The complex-analytic model comprising 1-parameter families of schlicht functions on the

exterior of the unit disc which allow quasiconformal extension.
Indeed, the Fourier coefficients of the vector field in (1) turn out to be essentially the same

as (the first variations of) the corresponding power series coefficients in (2).
These identities have many applications; in particular, to conformal welding, to the almost

complex structure of Teichmüller space, to study of the Weil–Petersson metric, to variational
formulas for period matrices, etc. These utilities are explored.

1. Introduction

Let ∆ denote the open unit disc, and S1 = ∂∆. Two classic models of the
universal Teichmüller space T (1) = T (∆) are well-known (see [6], [7]):

(a) the real-analytic model containing all (Möbius-normalised) quasisymmet-
ric homeomorphisms of the unit circle S1 ;

(b) the complex-analytic model comprising all (normalised) schlicht functions
on the exterior of the disc:

∆⋆ =
{
z ∈ Ĉ : |z| > 1

}
= Ĉ − (∆ ∪ S1)

which allow quasiconformal extension to the whole of Ĉ (the Riemann sphere).

The connection between them is via the rather mysterious operation called
“conformal welding” (see [5], and below). Nevertheless, at the infinitesimal level,
the above models have an amazingly simple relationship that forms the basis for
this paper. Indeed, the kth Fourier coefficient of the vector field representing
a tangent vector in model (a), and the (first variation of) the kth power series
coefficient representing the same tangent vector in model (b), turn out to be just
(
√
−1 times) complex conjugates of each other. That relationship can also be

formulated as a direct identity relating the vector field on the circle with the
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holomorphic function in the exterior of the disc describing the perturbation in the
complex-analytic model. See Theorem 1 below.

It seems that this unexpectedly simple tie-up has several interesting conse-
quences.

1. It allows a description of the tangent space to T (∆) by “Zygmund class power
series” (Section 3).

2. It provides immediate proof for the remarkable fact that the Hilbert transform
on Zygmund class vector fields on S1 represents the almost complex structure
on T (∆) (Section 4).

3. It provides a simple explicit formula for the derivative of the conformal welding
map (Section 5).

4. The infinite-dimensional Weil–Petersson metric on (the “smooth points” of)
T (∆) that was found by the present author in [10] Part II gets a new expres-
sion (Section 6).

5. We get a formula for the derivative of the infinite-dimensional universal period
mapping studied by us in [8], [9] (and in a recent IHES preprint with Dennis
Sullivan) in terms of power series variations. This relates to formulas claimed
in [4] (Section 7).

Acknowledgement. I would like to thank Clifford Earle and Dennis Sullivan
for helpful communications. In particular, C. Earle suggested some rather explicit
examples that led me to my general results. He also suggested the proof using
harmonic Beltrami coefficients. I thank the referee for valuable suggestions leading
to a reformulation and to the second proof of Theorem 1.

2. Teichmüller theory

The universal Teichmüller space T (∆) is a holomorphically homogeneous
complex Banach manifold that serves as the universal ambient space where all
the Teichmüller spaces (of arbitrary Fuchsian groups) lie holomorphically embed-
ded.

As usual, we set the stage by introducing the chief actor—namely the space
of (proper) Beltrami coefficients L∞(∆)1 ; it is the open unit ball in the complex
Banach space of L∞ functions on the unit disc ∆. The principal construction is
to solve the Beltrami equation

(1) wz̄ = µwz

for any µ ∈ L∞(∆)1 . The two above-mentioned models of Teichmüller space
correspond to discussing two pertinent solutions for (1):

(a) wµ -theory: The quasiconformal homeomorphism of C which is µ-conformal
(i.e. solves (1)) in ∆, fixes ±1 and −i , and keeps ∆ and ∆⋆ (= exterior of ∆)
both invariant. This wµ is obtained by applying the existence and uniqueness
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theorem of Ahlfors–Bers (for (1)) to the Beltrami coefficient which is µ on ∆ and
extended to ∆⋆ by reflection (µ̃(1/z̄) = µ(z)z2/z̄2 for z ∈ ∆).

(b) wµ -theory: The quasiconformal homeomorphism on C, fixing 0, 1, ∞ ,
which is µ-conformal on ∆ and conformal on ∆⋆ . wµ is obtained by applying
the Ahlfors–Bers theorem to the Beltrami coefficient which is µ on ∆ and zero
on ∆⋆ .

The fact is that wµ depends only real-analytically on µ , whereas wµ depends
complex-analytically on µ . We therefore obtain two standard models ((a) and (b)
below) of the universal Teichmüller space, T (∆).

Define the universal Teichmüller space:

(2) T (∆) = L∞(∆)1/ ∼ .

Here µ ∼ ν if and only if wµ = wµ on ∂∆ = S1 , and that happens if and only if
the conformal mappings wµ and wν coincide on ∆⋆ ∪ S1 .

We let

(3) Φ: L∞(∆)1 −→ T (∆)

denote the quotient (“Bers”) projection. T (∆) inherits its canonical structure as
a complex Banach manifold from the complex structure of L∞(∆)1 ; namely, Φ
becomes a holomorphic submersion.

The derivative of Φ at µ = 0:

(4) d0Φ: L∞(∆) −→ TOT (∆)

is a complex-linear surjection whose kernel is the space N of “infinitesimally trivial
Beltrami coefficients”.

(5) N =

{
µ ∈ L∞(∆) :

∫∫

∆

µφ = 0 for all φ ∈ A(∆)

}

where A(∆) is the Banach space of integrable (L1) holomorphic functions on the
disc. Thus, the tangent space at the origin (O = Φ(0)) of T (∆) is L∞(∆)/N .

See Ahlfors [2], Lehto [6], and Nag [7] for this material and for what follows.

It is now clear that to µ ∈ L∞(∆)1 we can associate the quasisymmetric
homeomorphism

(6) fµ = wµ |S1

as representing the Teichmüller point [µ] in version (a) of T (∆). Indeed T (∆)(a)

is the homogeneous space:

(a)
T (∆) = Homeoq.s.(S

1)/Möb (S1)

= {quasisymmetric homeomorphisms of S1 fixing ± 1 and − i}
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Alternatively, [µ] is represented by the univalent function

(7) fµ = wµ |∆⋆

on ∆⋆ , in version (b) of T (∆). A more natural choice of the univalent function
representing [µ] is to use a different normalisation for the solution wµ (since we
have the freedom to post-compose by a Möbius transformation). In fact, let

(8) Wµ = Mµowµ

where Mµ is the unique Möbius transformation so that the univalent function
(representing [µ] ):

(9) Fµ = Wµ |∆⋆

has the properties:

(i) Fµ has a simple pole of residue 1 at ∞
(ii)

(
Fµ(ζ) − ζ

)
→ 0 as ζ → ∞ .

Namely, the expansion of Fµ in ∆⋆ is of the form:

(10) Fµ(ζ) = ζ
(
1 +

c2

ζ2
+

c3

ζ3
+ · · ·

)
.

Let us note that the original (0, 1,∞ fixing) normalisation gives an expansion of
the form:

(11) fµ(ζ) = ζ
(
a +

b1

ζ
+

b2

ζ2
+

b3

ζ3
· · ·

)

and the Möbius transformation Mµ must be Mµ(w) = w/a − b1/a . Since
(a, b1, b2, . . .) depend holomorphically on µ , we see that (c2, c3, . . .) also depend
holomorphically on µ . Thus, our complex-analytic version T (∆)(b) of the univer-
sal Teichmüller space is:

(b)
T (∆) = {univalent functions in ∆⋆ with power series of the form (10),

allowing quasiconformal extension to the whole plane} .

T (∆)(b) is simply a “pre-Schwarzian-derivative” version of the Bers embedding of
Teichmüller space.

It is worth remarking here that the criteria that an expansion of the form
(10) represents an univalent function, and that it allows quasiconformal extension,
can be written down solely in terms of the coefficients ck , (using the Grunsky
inequalities etc.). See Pommerenke [12]. Thus T (∆)(b) can be thought of as a
certain space of sequences (c2, c3, . . .) , and its tangent space will be given the
concomitant description below.
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Tangent space to the real-analytic model. Since T (∆) is a homogeneous space
(see version (a)) for which the right translation (by any fixed quasisymmetric
homeomorphism) acts as a biholomorphic automorphism, it is enough in all that
follows to restrict attention to the tangent space at a single point—the origin (O
= class of the identity homeomorphism)—of T (∆).

Given any µ ∈ L∞(∆), the tangent vector d0Φ(µ) is represented by the real
vector field V [µ] = ẇ[µ]∂/∂z on the circle that produces the 1-parameter flow wtµ

of quasisymmetric homeomorphisms:

(12) wtµ(z) = z + tẇ[µ](z) + o(t).

The vector field becomes in the θ -coordinate:

V [µ] = ẇ[µ](z)
∂

∂z
= u(eiθ)

∂

∂θ
,

where,

(13) u(eiθ) =
ẇ[µ](eiθ)

ieiθ
.

By our normalisation, u vanishes at 1,−1 and −i .
In Reimann [13], and in Gardiner–Sullivan [3], the precise class of vector

fields arising from such quasisymmetric flows is determined as the Zygmund Λ
class. They have delineated the theory on the upper half-plane U ; we adapt that
result to the disc using the Möbius transformation

(14) T (z) =
z − i

z + i
, T : U −→ ∆.

We point out that (0, 1,∞) go to (−1,−i, 1) respectively. Notice that the corre-
sponding identification of the real line to S1 is given by

(15) x = − cot
θ

2
, or, eiθ =

x − i

x + i
.

The continuous vector field u(eiθ)∂/∂θ becomes, on R , F (x)∂/∂x with

(16) F (x) = 1
2(x2 + 1)u

(x − i

x + i

)
.

Conversely,

(17) u(eiθ) =
2F (x)

x2 + 1
.



382 Subhashis Nag

Since u vanishes at (−1,−i, 1), we see

(18) F (0) = F (1) = 0 and
F (x)

x2 + 1
→ 0 as x → ∞.

Introduce (following Zygmund [13]),

(19)

Λ(R) = {F : R → R; F is continuous, satisfying normalisations (18);

and, |F (x + t) + F (x − t) − 2F (x)| ≤ B|t | for some B,

for all x and t real.}
Λ(R) is a (non-separable) Banach space under the Zygmund norm—which is the
best constant B for F . Namely,

(20) ‖F‖ = sup
x,t

∣∣∣
F (x + t) + F (x − t) − 2F (x)

t

∣∣∣.

In [3] it is shown that Λ(R) comprises precisely the vector fields for quasisymmetric
flows on R . Hence, the tangent space to version (a) of T (∆) becomes:

(21) TOT (∆)(a) =






u(eiθ) ∂
∂θ : (i) u: S1 → R is continuous,

vanishing at (1,−1,−i);

(ii) Fu(x) = 1
2
(x2 + 1)u

(x − i)

(x + i)
is in Λ(R).

Remark. The normalisation by Möbius corresponds to adding an arbitrary
sl(2,R) vector field, (ceiθ + c̄e−iθ + b)∂/∂θ , (c ∈ C , b ∈ R) , to u . On the real
line this is exactly adding an arbitrary real quadratic polynomial to F (x) . These
operations allow us to enforce the 3-point normalization in each description.

We will say a continuous function u: S1 → R is in the Zygmund class Λ(S1)
on the circle, if, after adding the requisite (ceiθ + c̄eiθ + b) to normalise u , the
function satisfies (21). [Can we find a characterization of Λ(S1) in terms of the
decay properties of the Fourier coefficients?]

Tangent space to the complex analytic model. A tangent vector at O (the
identity mapping) to T (∆)(b) corresponds to a 1-parameter family Ft of univalent
functions (each allowing quasiconformal extension):

(22) Ft(ζ) = ζ
(
1 +

c2(t)

ζ2
+

c3(t)

ζ3
+ · · ·

)
, in |ζ| > 1,

with ck(t) = tċk(0) + o(t) , k = 2, 3, 4, . . .. The sequences {ċk(0), k ≥ 2} arising
this way correspond uniquely to the tangent vectors. Theorem 1 will allow us to
specify precisely which sequences occur (see Corollary 1).

Again, given the arbitrary Beltrami vector µ ∈ L∞(∆), the tangent vector
d0Φ(µ) is therefore represented in this complex-analytic model by the restriction
to the exterior of the unit disc of the holomorphic function Ḟ [µ](z) , where

(22′) F tµ(z) = z + tḞ [µ](z) + o(t),

for small real or complex numbers t .
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3. The promised relationship

Theorem 1. The tangent vector to T (∆) represented by µ ∈ L∞(∆) ,
corresponds to the vector field on S1 having the Fourier expansion

u(eiθ) =

∞∑

k=−∞

akeikθ in version (a).

The same µ corresponds to the 1 -parameter family of schlicht functions in the
exterior of the unit disc:

F tµ(ζ) = ζ
(
1 +

tċ2(0)

ζ2
+

tċ3(0)

ζ3
+ . . .

)
+ o(t) = z + tḞ [µ](z) + o(z)

in version (b) (equations (22) , (22′)) . These are related by the explicit formula:

Ḟ [µ](z) =
iz−1

2π

∫ 2π

0

e2it

1 − eitz−1
u(eit) dt,

valid for |z| > 1 .
Equivalently, one has the identities between the Fourier and Laurent coeffi-

cients:

(∗) ċk(0) = ia−k = iāk, for every k ≥ 2.

Proof I. The principal ingredient in the stew is, of course, the infinitesimal
theory for solutions of the Beltrami equation. The most direct proof appears by a
comparative study of two applications of the basic perturbation formula.

For any ν ∈ L∞(C) let wtν be the quasiconformal homeomorphism of the
plane, fixing 0, 1, ∞ , and having complex dilatation (i.e., Beltrami coefficient)
tν ; (t small complex). Then, (see, for example, Ahlfors [2, p. 104]), uniformly on
compact ζ -sets we have

wtν(ζ) = ζ + tḟ(ζ) + o(t), (t → 0)

where:

(23) ḟ(ζ) = −ζ(ζ − 1)

π

∫∫

C

ν(z)

z(z − 1)(z − ζ)
dx dy.

For version (b) considerations, apply this to

(24) ν =
{

µ on ∆,
0 on ∆⋆.
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We see that

(25)
∂

∂t

∣∣∣
t=0

(
f tµ(ζ)

)
= −ζ(ζ − 1)

π

∫∫

∆

µ(z)

z(z − 1)(z − ζ)
dx dy, |ζ| > 1,

with the univalent functions f tµ as in (11) above. Expand (z− ζ)−1 in powers of
ζ−1 , collect terms, and compare with

(26) f tµ(ζ) = ζ
(
a(t) +

b1(t)

ζ
+

b2(t)

ζ2
+ · · ·

)
.

One obtains (dot representing ∂/∂t):

(27a) ȧ(0) =
1

π

∫∫

∆

µ(z)

z(z − 1)
dx dy

and

(27b) ḃk(0) =
1

π

∫∫

∆

µ(z)zk−2 dx dy, k ≥ 1.

The associated normalized univalent functions

(28) F tµ(ζ) = ζ
(
1 +

c2(t)

ζ2
+

c3(t)

ζ3
+ · · ·

)
,

have coefficients ck(t) = bk(t)/a(t) . Consequently, we derive easily (since a(0) =
1, bk(0) = 0):

(29) ċk(0) = ḃk(0) =
1

π

∫∫

∆

µ(z)zk−2 dx dy, k ≥ 2.

Our aim is to compare these formulas with the Fourier coefficients of the
vector field V [µ] corresponding to the same µ in version (a). Applying (23) to

(30) ν =

{
µ on ∆
µ̃ (obtained by “reflection” of µ) on ∆⋆,

and keeping track of the normalisations, one gets (compare p. 134 of [10, Part II]):

wtµ(ζ) = ζ + tẇ[µ](ζ) + o(t), t → 0,



On the tangent space to the universal Teichmüller space 385

(31)

ẇ[µ](ζ) = −(ζ − 1)(ζ + 1)(ζ + i)

π

{∫∫

∆

µ(z)

(z − 1)(z + 1)(z + i)(z − ζ)
dx dy

+ i

∫∫

∆

µ(z)

(z̄ − 1)(z̄ + 1)(z̄ − i)(1 − ζz̄)
dx dy

}
.

Now we want to expand in Fourier series the vector field V [µ] :

(32) u(eiθ) =
ẇ[µ](eiθ)

ieiθ
=

∞∑

k=−∞

akeikθ.

Since u is real valued, one knows a−k = āk , k ≥ 1. Calculating the ak from (31)
one derives, after taking care of some remarkable simplifications, (to which I drew
attention in [10] also), that

(33) a−k = − i

π

∫∫

∆

µ(z)zk−2 dx dy, k ≥ 2.

(The remark after (21) shows that a0 and a1 do not matter owing to the sl(2,R)
normalisation.)

Compare (29) with (33) to derive the desired (∗).

Proof II. The standard Neumann series solution for the Beltrami equation
(see, for example, Theorem 4.3 of Lehto [6]) implies that Ḟ [µ](z) = Tµ , where T
is the integral operator defined by formula

Tµ(z) =
−1

π

∫∫

C

µ(ζ)

ζ − z
dξ dη.

Comparing the basic perturbation formula for wtµ as in (1.9) on p. 158 of Ahlfors
[1] with the operator T above, we obtain:

ẇ[µ](z) = Ḟ [µ](z) − z2F [µ](1/z̄) + M(z)

M being a quadratic polynomial. In view of the special form of M(z) , given by
(1.8) in [1], we obtain

(34) u(z) = 2 Re
{
Ḟ [µ](z)/iz

}
+

M(z)

iz
= 2 Re

{
Ḟ [µ](z)/iz

}
+ Re{αz−1 + β},

on S1 . The constants α and β are such that u(z) = 0 if z is 1, −i , or −1.
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To obtain the stated theorem, observe that Ḟ [µ](z) is continuous in the ex-
tended plane, holomorphic in {z : |z| > 1} , and vanishes at ∞ . Therefore,
Herglotz’s integral formula for a holomorphic function in terms of its real part on
S1 (adapted to the exterior of the unit disc) can be applied to (34), yielding

2Ḟ [µ](z)

iz
=

1

2π

∫ 2π

0

z + eit

z − eit
u(eit) dt − αz−1 − β

for |z| > 1. The constants α and β (perhaps different from those in (34)) are now
chosen so that the function Ḟ [µ](z)/iz has a double zero at ∞ . Examination of
the Laurent expansion of the integral yields the explicit formula

Ḟ [µ](z) =
iz−1

2π

∫ 2π

0

e2it

1 − eitz−1
u(eit) dt,

valid for |z| > 1, as desired. Clearly, expanding (1 − eitz−1)−1 in powers of z−1 ,
one sees that the above integral identity is equivalent to the claimed relationship
between the Fourier and Laurent coefficients.

Proof III. This proof utilises the well-known harmonic (Bers’) Beltrami co-
efficients. As is fundamental in Teichmüller theory, we introduce the Banach space
of “Nehari-bounded holomorphic quadratic differentials”

B(∆) =
{
φ ∈ Hol(∆) :

∥∥φ(z)(1 − |z|2)2
∥∥
∞

< ∞
}
.

To every φ ∈ B(∆) we associate the L∞ function

(35) νφ = φ(z)(1 − |z|2)2 on ∆.

Foundational results of Teichmüller theory guarantee that the Beltrami coefficients
{νφ : φ ∈ B(∆)} form a complementary subspace to the kernel N (see equation
(5)) of the map d0Φ. Thus, this space of harmonic Beltrami coefficients:

(36) H =
{
ν ∈ L∞(∆) : ν is of the form (35) for some φ ∈ B(∆)

}

is isomorphic to the tangent space TOT (∆). In fact, this remains true for the
Teichmüller space T (G) of any Fuchsian group G acting on ∆, simply by replacing
B(∆) by the subspace B(∆, G) comprising those functions which are quadratic
differentials for G . See Ahlfors [2, Chapter 6] and Nag [7, Chapter 3] for all this.

Therefore the tangent vector associated to an arbitrary µ is also represented
by a unique Beltrami form of harmonic type (35). For harmonic µ we get a
beautifully simple formula for the Fourier coefficients, (and hence using (∗) also
for the power series coefficients), representing that tangent vector d0Φ(µ) . Indeed,
we have:
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Claim. For the harmonic Beltrami form µ = φ(z)(1 − |z|2)2 on ∆ with
φ ∈ B(∆) given by:

φ(z) = h0 + h1z + h2z
2 + · · · , in |z| < 1.

The relevant Fourier coefficients ak of the corresponding Zygmund class vector
field V [µ] on S1 are

(37) ā−k = ak =
2i

(k3 − k)
hk−2, for k ≥ 2.

The proof of the claim is a straightforward computation from (33).

Remark 1. In the presence of a Fuchsian group G , φ is a (2, 0)-form for
G and the vector field V [µ] is also G-invariant. That imposes conditions on the
coefficients hk and ak respectively, which interact closely with the relationship
(37) exhibited above.

Remark 2. The result above can be utilised to analyse why Bers coordinates
are geodesic for the Weil–Petersson metric (Section 6). (Vide Ahlfors [1] and later
work of Royden and Wolpert.)

To prove Theorem 1, the crucial thing is to verify our formulas (29) and
(33). As we have just explained, every Beltrami form µ is uniquely the sum of
an infinitesimally trivial one (equation (5)) and a harmonic form (35). Thus the
formulas need to be checked only for these two types of forms. Of course, all the
relevant quantities are zero for infinitesimally trivial forms. The gist of the matter
is that for harmonic Beltrami forms the Ahlfors–Weill section implies formula (29),
whereas (1.21) of Ahlfors [1] implies formula (33). (As Clifford Earle has remarked
to me, those intriguing formulas that Ahlfors exhibited (more than thirty years
ago!) in his Annals paper [1], do have a surprising way of cropping up in various
contexts in later studies. Note that Ahlfors did not have conformal welding on his
mind in [1].)

Ahlfors–Weill and formula (29). Let µ be a harmonic Beltrami form as above.
The Ahlfors–Weill theorem tells us explicitly the schlicht function wtµ on ∆⋆

(for small t) and hence allows us to compute the variation of the power series
coefficients, ċk(0). We refer to Section 3.8 of Nag [7]—especially 3.8.6—for that
result.

In fact, let v1 and v2 be linearly independent solutions in the unit disc of the
differential equation:

(38) v′′ = φv

normalized so that v1(0) = v′

2(0) = 1 and v2(0) = v′

1(0) = 0. Then Ahlfors–Weill
tells us that (up to possibly a Möbius transformation)

wtµ(ζ) = v̄1(1/ζ̄)/v̄2(1/ζ̄) for |ζ| > 1.
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Solving (38) for v1 and v2 by the method of indeterminate coefficients yields:

v1(z) = 1 + t

∞∑

k=2

hk−2

k(k − 1)
zk + o(t),

v2(z) = z + t
∞∑

k=2

hk−2

k(k + 1)
zk+1 + o(t).

Substituting these into Ahlfors–Weill, we deduce quickly that

ċk(0) =
2

(k3 − k)
hk−2 for k ≥ 2.

For the harmonic form µ the above is exactly formula (29).

Remark. In 3.8.5 of Nag [7] a new proof of the Ahlfors–Weill theorem was
given using an idea of Royden. The calculations made there are closely relevant
to proving (29) directly for harmonic µ without passing to series expansions.

Ahlfors [1] and formula (33). Formula (1.21) in Ahlfors [1] in our notation
reads:

(39) ẇ[µ] = Φ̄′′
(
1 − |z|2

)2
+ 2Φ̄′z

(
1 − |z|2

)
+ 2Φ̄z2 − 2Φ

valid for |z| ≤ 1, where µ is the harmonic Beltrami form. Here Φ (holomorphic
in ∆) is related to φ by Φ′′′ = φ . See Ahlfors [1] formula (1.20) for this. In order
to calculate the Fourier coefficients ak , defined as in (32) above, we only require
(39) on the circle |z| = 1. The first two terms of (39) therefore drop off, and a
straightforward computation produces:

(40) ak =
2i

(k3 − k)
hk−2 for k ≥ 2.

But this is exactly formula (37), which, as we saw, is nothing but formula (33) for
harmonic Beltrami forms. Proof III is complete.

We now state the promised precise description of the complex-analytic tangent
space in terms of “Zygmund class power-series”:

Corollary 1. As we saw at the end of Section 2 , a tangent vector to T (∆)(b)
is determined by a complex sequence (ċ2(0), ċ3(0), . . .) = (γ2, γ3, . . .) , say. Pre-
cisely those sequences (γ2, γ3, . . .) occur for which the function

(∗∗) u(eiθ) = i

∞∑

k=2

γ̄keikθ − i

∞∑

k=2

γke−ikθ

is in the Zygmund class on S1 .
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Explicit family of examples. Here is a computable family of examples
for which wtµ can be explicitly determined, and hence our result can be checked.
These examples are a modified form of some that were suggested to me by Clifford
Earle.

Look at µ ∈ L∞(∆) given by

(41) µ(z) = −nz2z̄n−1.

Here n ≥ 3; (n = 2 works also, with minor changes).
The vector field V [µ] on S1 has Fourier coefficients (from (33)) as exhibited:

(42) ak =

{−i for k = n − 1
i for k = 1 − n
0 for any other k ≥ 2 or ≤ −2.

The interesting thing is that we can explicitly describe wtµ for these µ , for all
complex t satisfying |t| < 1/n . Indeed, wtµ(ζ) = f tµ(ζ)/(1 + t) , where:

(43) f tµ(ζ) =

{
ζ(1 + t/ζn−1)−1 on |ζ| ≥ 1
(1/ζ + tζ̄n)−1 on |ζ| ≤ 1.

It is not hard to check that f tµ is quasiconformal on C , and that its complex
dilatation on ∆ is tµ . The {|ζ| ≥ 1} portion in (43) represents the 1-parameter
family of schlicht functions, and we can write down immediately:

(44) ċk(0) =

{
−1 for k = n − 1

0 for any other k ≥ 2.

This corroborates Theorem 1.

Remark. In constructing these examples, it is, of course, the quasiconformal
homeomorphisms (43) that were written down first; (41) and (42) were derived
from it.

4. The almost complex structure

Using Theorem 1 we get an immediate proof of the fascinating fact that
the almost complex structure of T (∆) transmutes to the operation of Hilbert
transform on Zygmund class vector fields on S1 . Namely, we want to prove that
the vector field V [µ] (equation (13)) is related to V [iµ] as a pair of conjugate
Fourier series.

But the tangent vector represented by µ in the complex-analytic descrip-
tion T (∆)(b) corresponds to a sequence (ċ2(0), ċ3(0), . . .) , as explained. Since
the ck are holomorphic in µ , the tangent vector represented by iµ corresponds to
(iċ2(0), iċ3(0), . . .) . Without further ado, the relation (∗) of Theorem 1 shows that
the kth Fourier coefficient of V [iµ] is −i · sgn(k) times the kth Fourier coefficient
of V [µ] . We are through.
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Remark 1. The Hilbert transform description of the complex structure on
the tangent space of the Teichmüller space was first pointed out by S. Kerckhoff.
A proof of this was important for our previous work, and appeared in [10, Part I].

Remark 2. The result above gives an independent proof of the fact that
conjugation of Fourier series preserves the Zygmund class Λ(S1) . That was an old
theorem of Zygmund [15].

5. Conformal welding and its derivative

The Teichmüller point [µ] in T (∆)(b) is the univalent function Fµ [or, equiv-
alently its image quasidisc Fµ(∆⋆) ]. The same [µ] appears in T (∆)(a) as the
quasisymmetric homeomorphism wµ on S1 . The relating map is the “conformal
welding”

W: T (∆)(b) −→ T (∆)(a).

Namely, given a simply connected Jordan region D on Ĉ one looks at any Riemann
mapping ̺ of ∆ onto D⋆ (= exterior of D ) and also a Riemann mapping σ of
∆⋆ onto D . Both ̺ and σ extend continuously to the boundaries to provide
two homeomorphisms of S1 onto the Jordan curve ∂D . We define the welding
homeomorphism:

(45) W(D) = ̺−1oσ: S1 → S1.

We can normalize by a Möbius transformation so that W(D) fixes 1, −1, −i .
Clearly, since ̺ = wµow−1

µ on ∆, and σ = wµ on ∆⋆ , work as Riemann
maps, we see that T (∆)(b) and T (∆)(a) are indeed related by this fundamental
operation of conformal welding.

Theorem 2. The derivative at the origin of T (∆) to the map W is the
linear isomorphism:

(46) dOW:
{
(ċ2(0), ċ3(0), . . .)

}
→ Zygmund class Λ(S1)

sending (ċ2(0), ċ3(0), . . .) to the vector field u(eiθ)∂/∂θ , where

(47) u(eiθ) = i

∞∑

k=2

ċk(0)eikθ − i

∞∑

k=2

ċk(0)e−ikθ.

Proof. Follows from Theorem 1 and the remarks above.

Remark. Conformal welding has been studied by many authors even for do-
mains more general than quasidiscs. See, for example, Katznelson–Nag–Sullivan [5].
The derivative formula should now be extended to the larger context.

Remark. By transporting the above formula to arbitrary points of T (∆) us-
ing right translation automorphisms, one may now develop a differential equation
for the conformal welding.
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6. Diff(S1)/Möb(S1 ) inside T (∆)

As usual, let Diff(S1) denote the infinite dimensional Lie group of orientation
preserving C∞ diffeomorphisms of S1 . The complex- analytic homogeneous space
(see Witten [14])

(48) M = Diff(S1)/Möb(S1)

injects holomorphically into T (∆)(a) . This was proved in [10, Part I]. The sub-
manifold M comprises the “smooth points” of T (∆); in fact, in version (b), the
points from M are those quasidiscs Fµ(∆⋆) whose boundary curves are C∞ .

M , together with its modular group translates, foliates T (∆)—and the fun-
damental Kirillov–Kostant Kähler (sympletic) form (Witten [14]) exists on each
leaf of the foliation. Up to an overall scaling this homogeneous Kähler metric gives
the following pairing g on the tangent space at the origin of M :

(49) g(V, W ) = Re

[ ∞∑

k=2

ak b̄k(k3 − k)

]

where

V =

∞∑

2

akeikθ +

∞∑

2

āke−ikθ,

W =

∞∑

2

bkeikθ +

∞∑

2

b̄ke−ikθ,

represent two smooth vector fields on S1 .
The metric g on M was proved by this author [10, Part II] to be the

(regularized) Weil–Petersson metric (WP) of universal Teichmüller space. Theo-
rem 1 allows us to express the pairing for g = WP in terms of 1-parameter flows
of schlicht functions.

Theorem 3. Let Ft(ζ) and Gt(ζ) denote two curves through origin in
T (∆)(b) of the form (22) , representing two tangent vectors, say Ḟ and Ġ . Then
the Weil–Petersson pairing assigns the inner product

(50) WP(Ḟ , Ġ) = −Re

[ ∞∑

k=2

ċk(0)ḋk(0)(k3 − k)

]
,

where ck(t) and dk(t) are the power series coefficients for the schlicht functions Ft

and Gt respectively, as in (22) . The series above converges absolutely whenever
the corresponding Zygmund class functions (see equations (∗∗) of Corollary 1 or
(47)) are in the Sobolev class H3/2 .

Proof. Combine Theorem 1 with (49). The convergence statement follows
directly from [10, Part II].
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7. Variational formula for the period mapping

Recently in [8], [9] the author has studied a generalisation of the classical pe-
riod mappings to the infinite dimensional context of universal Teichmüller space.
Indeed, there is a natural equivariant, holomorphic and Kähler-isometric immer-
sion

(51)
∏

: M −→ D∞

of M = Diff(S1)/ Möb(S1) into the infinite dimensional version, D∞ , of the Siegel
disc. D∞ is a complex manifold comprising certain complex symmetric Hilbert–
Schmidt (Z+ × Z+) matrices.

∏
qualifies as a generalised period matrix map,

and its variation satisfies a Rauch-type formula, see [9]. An extension of
∏

to all
of T (∆) has now been established in Nag–Sullivan (IHES preprint [11]).

In the works cited above we proved that for arbitrary µ in L∞(∆), the
(rs)th -entry of the period matrix satisfies (r, s ≥ 1)

(52)
∏(

[tµ]
)
rs

= t
√
−rs a−(r+s) + O(t2)

as t → 0. Here ak as usual denotes the Fourier coefficients of the vector field
represented by µ (equation (32)). (52) is the Rauch variational formula in the
universal Teichmüller space context.

By Theorem 1 we see that the formula (52) may be written

(53)
∏(

[tµ]
)
rs

=
√

rs cr+s(t) + O(t2)

where ck(t) , as usual, are the power series coefficients appearing in (22) for the
schlicht functions F tµ . Equation (53) may be compared with the formula [(30) in
their paper] claimed by Hong–Rajeev [4] in this setting.
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