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Abstract. We show that the tangent norm on an infinite dimensional symmetric complex
Banach manifold of compact type has constant positive holomorphic curvature (in the sense of [2],
8.7).

Introduction

Symmetric Banach manifolds generalise to infinite dimensions the Hermitian
symmetric spaces. The finite dimensional Hermitian symmetric spaces were classi-
fied by Cartan, in [1], using the theory of Lie groups and Lie algebras. The theory
of J∗ -triple systems appears to be the more appropriate tool in infinite dimen-
sions and a classification of the symmetric Banach manifolds in terms of J∗ -triple
systems is given by Kaup in [5].

The J∗ -triple systems, or J∗ -triples, which are Banach spaces endowed with
a certain triple product structure, generalise the concepts of C∗ -algebra, J∗ -
algebra, and JB∗ -algebra. The J∗ -triples which are positive in a certain sense,
corresponding to a certain class of linear operators on the space having positive
spectrum, are called JB∗ -triples. It is known that, for the above classification, the
JB∗ -triples characterise the bounded symmetric domains, or, in finite dimensions,
the Hermitian symmetric spaces of non-compact type.

Changing the sign of the triple product on a J∗ -triple, U say, produces
another J∗ -triple which is referred to as the dual triple of the J∗ -triple U . In
particular, the dual triple of a JB∗ -triple is negative in a certain sense. Moreover,
the symmetric Banach manifold associated, via Kaup’s construction, to the dual
triple of a JB∗ -triple is called a symmetric manifold of compact type, since in
finite dimensions these manifolds are exactly the Hermitian symmetric spaces of
compact type.

In this way, to every JB∗ -triple we can associate a bounded symmetric do-
main and a symmetric manifold of compact type (classified by the dual triple).
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This gives an exact analogy of the duality in finite dimensions between the Her-
mitian symmetric spaces of compact and non-compact type. While the bounded
symmetric domains are relatively well understood and studied, little is known of
the symmetric manifolds of compact type in infinite dimensions.

Examples include certain Grassmann manifolds (cf. [6]) and certain function
spaces (cf. [7] ).

As infinite dimensional analogues of the compact Hermitian symmetric spaces,
these symmetric manifolds of compact type may be expected to display some
properties reminiscent of compactness. In this paper we show this to be the case,
by proving that the holomorphic curvature of an arbitrary symmetric manifold of
compact type is constant and positive (with a value of +4).

The concept of holomorphic curvature that we use, is one that may be defined,
for an arbitrary infinitesimal Finsler metric on a complex Banach manifold, in
terms of a generalised Hessian. It is important to note, that this does not coincide
with the concept of holomorphic curvature as understood in the Riemannian sense.
For a survey in this direction, see [2].

Notation

Throughout, we let D =
{

z ∈ C : |z| < 1
}

and for r , 0 < r < 1, rD =
{

rz :

z ∈ D
}

. We use Dom(f) to denote the domain of a function f . For complex
Banach spaces E and F , let L(E, F ) denote the Banach space of all continuous
linear maps: E → F and let L(E) = L(E,E) . We denote by Lk(E) the space of
all continuous homogeneous polynomials: E → E of degree k . We say T ∈ L(E)
is hermitian if eiλT is an isometry for all λ ∈ R .

Let U be a complex Banach space with continuous conjugate-linear mapping
∗: U → L2(U) and write a∗ for ∗(a) . For all a, b, z in U define

{a, b∗, z} :=
1

2

(

b∗(a+ z) − b∗(a) − b∗(z)
)

and define a b∗ in L(U) by a b∗(z) := {a, b∗, z} , for all z in U .
Then (U, ∗) is called a J∗ -triple system, or J∗ -triple, if and only if

(i)
{

α, β∗, {x, y∗, z}
}

=
{

{α, β∗, x}, y∗, z
}

−
{

x, {β, α∗, y}∗, z
}

+
{

x, y∗, {α, β∗, z}
}

for all α, β, x, y and z in U .
(ii) α α∗ ∈ L(U) is hermitian for all α in U .

If, in addition, the following hold

(iii) α α∗ ≥ 0 for all α ∈ U
(iv) ‖α α∗‖ = ‖α‖2 for all α in U

we call U a JB∗ -triple.
We denote by Uz the closed J∗ -subtriple of U generated by z in U .
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A morphism of J∗ -triple systems λ: (U, ∗) → (V, ∗) is a continuous linear
map λ: U → V such that

λ
(

{u, v∗, w}
)

=
{

λ(u), λ(v)∗, λ(w)
}

for all u, v, w in U .

A manifold M modelled locally on open subsets of complex Banach spaces
with biholomorphic coordinate transformations is called a complex Banach mani-
fold. Let TM denote the tangent bundle of M .

A mapping α: TM → R is called a norm on TM if the restriction of α to
every tangent space Tx , x ∈ M , is a norm on Tx with the following property:
there is a neighbourhood U of x in M which can be realised as a domain in a
complex Banach space E such that

c‖a‖ ≤ α(u, a) ≤ C‖a‖

for all (u, a) ∈ TU ∼= U × E and suitable constants 0 < c ≤ C . We then refer
to (M,α) , or simply M , as a normed manifold. If (M̃, α̃) is another complex
normed manifold, we say that a holomorphic mapping ϕ: M → M̃ is an isometry
if for all

(z, v) ∈ TM, α̃
(

ϕ(z), ϕ′(z)v
)

= α(z, v).

Let Aut(M) denote the group of all biholomorphic isometries of M .
A connected complex normed manifold M is called symmetric if for every

a ∈ M there exists an involution sa ∈ Aut(M) having a as an isolated fixed
point.

A morphism of the symmetric manifolds M and M̃ is a holomorphic mapping
h: M → M̃ such that h ◦ sx = sh(x) ◦ h for all x in M . The characterisation of
symmetric manifolds in terms of J∗ -triple systems is given in [5].

Let u be a real-valued upper semicontinuous function with Dom(u) ⊂ C . For
p ∈ Dom(u) , we define the generalised Hessian of u at p , as

∆u(p) = 4 lim inf
r→0
r 6=0

1

r2

{

1

2π

∫ 2π

0

u(p+ reiθ) dθ − u(p)

}

∈ R ∪ {∞}.

Let (p, v) ∈ TM . We say f ∈ H (p, v) if for some r , 0 < r < 1, f is a
holomorphic mapping: rD → M with f(0) = p , f ′(0) = v . For f ∈ H (p, v) we
define λf : rD → R by λf (z) = α2

(

f(z), f ′(z)
)

.
For (p, v) ∈ TM with v 6= 0, we may then define the holomorphic curvature

of α at p in the direction of v , cf. [1], denoted κα(p, v) , as

κα(p, v) = sup

{

∆ logλf (0)

−2α2(p, v)
: f ∈ H (p, v)

}

.
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Clearly, for λ 6= 0 ∈ C , κα(p, v) = κα(p, λv) , for all (p, v) ∈ TM with v 6= 0.
If α1 and α2 are tangent norms on the complex manifolds D1 and D2 re-

spectively and ϕ: D1 → D2 is a biholomorphic mapping which is an isometry for
α1 and α2 then

κα1
(p, v) = κα2

(

ϕ(p), ϕ′(p)v
)

for (p, v) ∈ TD1.

Results

Let U be an arbitrary JB∗ -triple and let M be the associated symmetric
manifold of compact type (i.e. M is the symmetric manifold associated via Kaup’s
construction to the dual triple of U ). Let m0 denote a base point of M and let
α: TM → R be the tangent norm of M . Since Aut(M) acts transitively on M , it
suffices to consider κα(m0, v) where v ∈ Tm0

M = U , ‖v‖ = 1. Let Q(z) denote
the conjugate linear mapping on U given by

Q(z)a = {z, a∗, z},

for all a in U .
The following linear operators on U , called Bergman operators, play an im-

portant role:

B(z, w∗) = IU − 2z w∗ +Q(z)Q(w) for z, w ∈ U.

For all z in U ,
Dz := B(z,−z∗)1/2 and D−1

z

are well defined.
By [4, 4.5], there exists a canonical chart on M , identifying a neighbourhood

W of 0 ∈ U , with a neighbourhood of m0 ∈M , with respect to which the tangent
norm on M may be expressed as follows:

α(z, v) = ‖D−1
z (v)‖ for all (z, v) ∈ TW ∼= W × U.

We may chose 0 < ε < 1 such that the ball B(0, 2ε) := {x ∈ U : ‖x‖ < 2ε} ⊆W .
Fix v ∈ U, ‖v‖ = 1, arbitrary. The mapping ϕ: εD →M , given by ϕ(t) = tv ,

is in H (0, v) . Showing now that

∆ logλϕ(0)

−2‖v‖2
≥ 4

implies κα(0, v) ≥ 4.
By [5, Corollary 4.8], the JB∗ -subtriple of U generated by v , Uv , is isomet-

rically J∗ -isomorphic to C0(S) , for some locally compact space S .
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For any z, w ∈ C0(S) , then

D−1
z (w) =

(

1

1 + |z|2
)

w

and hence
∥

∥

∥
D−1
reiθv

(v)
∥

∥

∥
= sup

s∈S

( |v(s)|
1 + r2|v(s)|2

)

=
‖v‖

1 + r2‖v‖2
.

Then

∆ logλϕ(0) = −8 lim inf
r→0
r 6=0

1

r2
(

log
(

1 + r2‖v‖2
))

.

By elementary calculus, the limit involved here is exactly

g′(0) = ‖v‖2 for g(t) = log
(

1 + t‖v‖2
)

.

Therefore
∆ logλϕ(0) = −8‖v‖2.

In particular

κα(0, v) ≥ ∆ logλϕ(0)

−2‖v‖2
= 4.

In the other direction, we examine

∆ logλψ(0)

−2‖v‖2

for arbitrary ψ ∈ H (0, v) .

Lemma 1.1. Let U be a JB∗ -triple. Then

∥

∥B(z,−z∗)
∥

∥ =
(

1 + ‖z‖2
)2

for all z ∈ U .

Proof. By [3, Corollary 3], we have that for all x, y, z in a JB∗ -triple U ,
∥

∥{x, y∗, z}
∥

∥ ≤ ‖x‖‖y‖‖z‖ . Therefore
∥

∥B(z,−z∗)
∥

∥ ≤
(

1 + ‖z‖2
)2

, for all z ∈ U .
On the other hand, since Uz is isometrically J∗ -isomorphic to C0(S) , for some
locally compact space S ,

∥

∥B(z,−z∗)(z)
∥

∥ =
(

1 + ‖z‖2
)2‖z‖

and the result follows.
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Fix ψ arbitrary in H (0, v) . Then

α
(

ψ(reiθ), ψ′(reiθ)
)

=
∥

∥

∥
D−1
ψ(reiθ)

ψ′(reiθ)
∥

∥

∥
≥

∥

∥ψ′(reiθ)
∥

∥

∥

∥Dψ(reiθ)

∥

∥

.

From this

∆ logλψ(0) ≥ 4 lim inf
r→0
r 6=0

1

r2

{

1

2π

∫ 2π

0

(

2 log
∥

∥ψ′(reiθ)
∥

∥

− 2 log ‖Dψ(reiθ)‖
)

dθ − 2 log ‖v‖
}

.

As the mapping z 7→ 2 log
∥

∥ψ′(z)
∥

∥ is subharmonic

1

2π

∫ 2π

0

2 log
∥

∥ψ′(reiθ)
∥

∥ dθ ≥ 2 log ‖v‖

and

∆ logλψ(0) ≥ −8 lim inf
r→0
r 6=0

1

r2

{

1

2π

∫ 2π

0

log
(

‖Dψ(reiθ)‖
)

dθ

}

.

By the Lebesgue dominated convergence theorem

lim inf
r→0
r 6=0

1

2π

∫ 2π

0

log
(

‖Dψ(reiθ)‖
)

r2
dθ =

1

2π

∫ 2π

0

(

lim inf
r→0
r 6=0

log
(

‖Dψ(reiθ)‖
)

r2

)

dθ.

Let
∑∞
n=0 an(t− 1)n denote the Taylor expansion of the function f(t) =

√
t

for |t− 1| < 1.
Since Dz = f

(

B(z,−z∗)
)

in the sense of the functional calculus, then

Dz =

∞
∑

n=0

an
(

B(z,−z∗) − IU
)n

whenever
σ
(

B(z,−z∗)
)

⊂
{

t ∈ R : |t− 1| < 1
}

.

In particular, for ‖z‖ < 1/2, we have

‖Dz‖ ≤
∞
∑

n=0

|an|
(

(1 + ‖z‖2)2 − 1
)n
.

As

an =
(−1)n+11.3.5 · · · (2n− 3)

2nn!
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for n ≥ 2, a0 = 1, and a1 = 1/2, the power series

∞
∑

n=0

|an|(t− 1)n

represents the function g(t) = 2 −
√

2 − t for |t− 1| < 1, and hence

‖Dz‖ ≤ g
(

(1 + ‖z‖2)2
)

for ‖z‖ < 1/2.
The mapping k(t) = log(2 −

√
2 − t ) is represented about t = 1 by the

expansion

k(t) =
(t− 1)

2
+

(t− 1)3k′′′
(

ξ(t)
)

3!

where ξ(t) lies between t and 1.
From above,

log
(

‖Dz‖
)

≤ k
(

(1 + ‖z‖2)2
)

, for ‖z‖ < 1/2.

Moreover, since ψ(0) = 0 and ψ′(0) = v , it follows that

lim inf
r→0
r 6=0

∥

∥ψ(reiθ)
∥

∥

r
= ‖v‖

and therefore

lim inf
r→0
r 6=0

log
(

‖Dψ(reiθ)‖
)

r2
≤ ‖v‖2.

On the other hand, Lemma 1.1 implies that ‖Dz‖ ≥ 1 + ‖z‖2 , for all z ∈ U ,
so

lim inf
r→0
r 6=0

log
(

‖Dψ(reiθ)‖
)

r2
≥ lim inf

r→0
r 6=0

log
(

1 +
∥

∥ψ(reiθ)
∥

∥

2
)

r2
= ‖v‖2.

Therefore

lim inf
r→0
r 6=0

log
(

‖Dψ(reiθ)‖
)

r2
= ‖v‖2.

It follows then that
∆ logλψ(0)

−2‖v‖2
≤ 4.

Since ψ was arbitrary
κα(0, v) ≤ 4

and we have proved the desired result.
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Theorem 1.2. Let U be a JB∗ -triple and let M be the associated symmetric

complex manifold of compact type with tangent norm α on TM .

The holomorphic curvature of α at any point of M is identically equal to 4 .
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