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Abstract. We prove generalizations of the relative Schoenflies extension theorem for topo-
logical, quasiconformal, or bi-Lipschitz embeddings due to Gauld and Väisälä, and show that
maximal dilatations and bi-Lipschitz constants of the extensions can be controlled.

1. Introduction. The relative Schoenflies theorem of Gauld and Väisälä [GVä,
2.4] for C-embeddings with C one of the categories TOP (just topological), LQC
(locally quasiconformal), and LIP (locally bi-Lipschitz) has turned out to be very
important in the theory of LQC manifolds and LIP manifolds. In this version
of the Schoenflies theorem the given embedding is assumed and the extending
embedding claimed to respect a given set Y (= R

k or R
k
+ ) and to be the identity

map on another given set Z (= ∅ or Y ∩R
l ). But before we continue, we remark

that just since respecting a given set is preserved in this result and wanting to
reserve the word ‘relative’ for other purposes, we prefer to talk about the respectful
Schoenflies theorem rather than the relative Schoenflies theorem, following here
the practice of Siebenmann [S, p. 123] and of our earlier papers [L1] and [L3]. In
addition to the numerous applications of the Gauld–Väisälä theorem already in
[GVä], we used it (with C = LQC and Z = ∅) in our recent paper [L3] for deducing
from a respectful extension result for quasiconformal homeomorphisms a similar
result for LQC homeomorphisms. Unfortunately, thus, the proof in [GVä] contains
some small errors and a more serious gap as observed by the author. The gap is
in the fourth paragraph, where the proof is not valid for Y = R

1
+ . Fortunately,

Väisälä could later fill in the gap. The first goal of this paper is to give a revision
of the proof of Gauld and Väisälä. We decided not to give a proof consisting
of comments on the original proof, which already refers to the proof of the non-
respectful Schoenflies theorem of Gauld and Vamanamurthy [GVa, Theorem 3].
Instead, we give a complete detailed proof without indicating the flaws of [GVä].
A detailed proof has also the advantage that we can then easily prove the theorem,
Theorem 3, in a mixed-category form and generalize the result in Theorems 12
and 15 to a form which is more general and more symmetric with respect to the
family {Y, Z} .

In Theorems 17 and 19 we prove quantitative versions of Theorems 3, 12, and
15 where maximal dilatations and bi-Lipschitz constants are under control. The
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proofs are based on the latter theorems themselves and on the known respectful
quantitative Schoenflies theorem for embeddings near the identity. These results
generalize non-respectful results of Tukia and Väisälä [TV2].

I thank Jussi Väisälä for discussions concerning [GVä] and the referee for a
comment on the exposition.

2. Notation and terminology. The boundary of a manifold X is denoted by
∂X . If 0 ≤ k < n , we identify R

k with the subspace R
k × {0} of R

n . We let
RR

n = R
n∪{∞} denote the one-point compactification of R

n and equip it with the
chordal metric, which is LIP equivalent to the Euclidean metric on R

n . Writing
x = (x1, . . . , xn) for a point x ∈ R

n , the following subsets of R
n are defined:

R
n
+ = { x | xn ≥ 0 } , R

n,k
+ = { x ∈ R

n
+ | xi = 0 if i ≤ n− k } for 1 ≤ k ≤ n ,

R
n,k
++ = { x ∈ R

n,k
+ | xn−1 ≥ 0 } for 2 ≤ k ≤ n , Bn(r) = { x

∣

∣ |x| < r } and

Sn−1(r) = ∂Bn(r) for r > 0, Bn = Bn(1), and Sn−1 = Sn−1(1). We let Y1

be the set of the subsets R
1 , R

1
+ , R

1
−

= −R
1
+ , and R

0 of R
1 , and let Yn for

n ≥ 2 be the set of all products Y1 × · · ·× Yn ⊂ R
n where Yi ∈ Y1 , i = 1, . . . , n .

An embedding f : A→ RR
n of a set A ⊂ RR

n is said to respect a set Y ⊂ RR
n

if f−1Y = A ∩ Y . We let id denote various inclusion maps. By H we denote
the group of all self-homeomorphisms of R

1
+ . A homeomorphism σ: R

n → R
n is

radial if there is σ0 ∈ H such that σ(0) = 0 and σ(x) = σ0(|x|)x/|x| if x 6= 0.
For M = R

n or R
n
+ and an open set U ⊂M , we let E(U ;M) denote the set of

all embeddings f : U → M which are open, i.e., respect ∂M , and equip it with
the compact-open topology. A set F ⊂ E(U ;M) is called solid if its closure in
E(U ;M) is compact.

The following concepts for embeddings between metric spaces are the same
as in [L1, 2.1] and [TV1, 1.1 and 2.22]: bi-Lipschitz (abbreviated BL), locally
BL (LIP), L-BL, L-Lipschitz, locally L-BL, and locally L-Lipschitz for L ≥ 1,
quasisymmetric (QS), locally QS (LQS), η-QS, and locally η-QS for η ∈ H .
The basic theory of LIP embeddings is given in [LuV] (using terminology slightly
different from ours) and of LQS embeddings in [TV1] and [V2]. In particular, LIP
or LQS embeddings of compact spaces are BL or QS, respectively. Moreover, if
an embedding f : A→ R

1 of an interval A ⊂ R
1 is η-QS, then it is K-QS in the

usual sense (though possibly decreasing) with K = η(1), and conversely, if f is
K-QS in the usual sense with K ≥ 1, then it is η-QS with η = ηK ∈ H .

Consider an embedding f : A → RR
n of a set A ⊂ RR

n with n ≥ 2 and
A ⊂ cl intA . If K ≥ 1 and for each component G of intA the homeomorphism
f |G: G → fG is K-quasiconformal in the sense of [V1], we say that f is qua-
siconformal (QC) or K-QC. If every point x ∈ A has an open neighbourhood
U in A such that f |U is QC, then f is called locally QC (LQC). If Y ∈ Yn ,
dimY ≥ 2, and f respects Y , we often say that f |A ∩ Y is (K-)QC or LQC
if the embedding A ∩ Y → Y defined by f is such. Suppose now for M = R

n

or R
n
+ that A and fA are open in M . If f is locally η-QS, then f is η(1)n−1-
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QC by [V1, 34.2]. Conversely, if f is K-QC, then f is locally η-QS with η ∈ H

depending only on (n,K) ; the case M = R
n is proved in [V2, 2.4] and implies

the case M = R
n
+ by reflection and [V1, 35.2]. Thus, f is LQC if and only if f

is LQS. An LQS embedding f : A→ RR
1 of a set A ⊂ RR

1 is also said to be LQC.

3. Theorem. Let C, C′ ∈ {TOP, LQC, LIP} , let 1 ≤ l ≤ k ≤ n be

integers, let Y ∈ {∅, Rk, Rk
+} , let Z ∈ {∅, Y ∩ R

l} , and let A = Bn
rBn(1/2) .

Suppose that e: A → R
n is a C-embedding such that e respects Y and Z , that

e|A ∩ Y is a C′-embedding, that e|A ∩ Z = id , and that eA ⊂ G , where G
is the bounded component of R

n
r eSn−1 . Then there is a C-homeomorphism

ê: Bn → G respecting Y and Z such that ê|Bn ∩ Y is a C′-embedding, that

ê|Bn ∩ Z = id , and that ê = e on Bn
rBn(3/4) .

4. Remark. Of course, except in the cases (C,C′) ∈ {(TOP,LQC), (TOP,
LIP), (LQC,LIP)} , Theorem 3 would be the same if C′ were not present at all;
and without C′ the theorem is essentially the same as [GVä, 2.4]. In the proof
some extra trouble is only caused by the case (C,C′) = (TOP,LQC), with n ≥ 2,
dimY = 1, and Z = ∅ .

5. Proof of Theorem 3. We denote D = Bn(3/4) and A0 = Bn
rD . We may

assume e|ArSn−1 to respect ∂Y . Indeed, note that e| intA respects ∂Y . Thus,
by choosing a radial LIP homeomorphism σ: R

n → R
n with σA = Bn

rBn(2/3)
and σ|A0 = id and by replacing initially e by σ−1eσ|A and finally ê by σêσ−1|Bn

we arrive at the desired situation.

Consider first the case n = 1. We may assume that e is LIP near S0(1/2),
resorting to [LeV, Lemma 1] if LQC ∈ {C,C′} . Now we can define ê: B1 → R

1

to be the extension of e which is affine on B1(1/2) if Y ∈ {∅,R1} and linear on
[−1/2, 0 ] and on [ 0, 1/2 ] if Y = R

1
+ .

From now on we assume n ≥ 2. Then the proof is a modification of the proof
of Theorem 3 of Gauld and Vamanamurthy [GVa] in [GVa, Section 5]. We closely
follow the proof of [GVä, 2.4] in the case n ≥ 2, C = LQC, Z 6= ∅ , and Y 6= R

1
+ .

We use Greek letters to denote embeddings which are LIP independently of C
and C′ .

We start with the following analogue of [GVa, Lemma 7].

Claim A. There is a C-embedding f : Bn → G respecting Y and Z such

that f |Bn∩Y is a C′-embedding, that f |D∩Z = id , and that fBn∪e[intA] = G .

Proof. All closures are taken in RR
n . We divide the proof into two cases.

Case 1: Y 6= R
1
+ . Let x0 = e(7/8). Set X = RR

n if Y = ∅ ; otherwise, set

X =
⋂

({Y , ∂Y , Z, ∂Z} r {∅}) ⊂ RR
n;

note that Z ⊂ ∂Y whenever Y = R
k
+ and l < k . Then X is a positive-

dimensional sphere with {x0,∞} ⊂ X . It is thus possible to choose a LIP
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homeomorphism α: RR
n → RR

n respecting Y and Z such that α(∞) = x0 ,
that B1 = RR

n
r αBn is a small round ball centred at x0 and contained in

e[intA0] , and that α|D = id if Z 6= ∅ . Let G0 denote the bounded compo-
nent of R

n
r eSn−1(3/4), i.e., G0 = G r eA0 . Then G0 ∩ Z = D ∩ Z , and we

can choose a point y0 ∈ G0 ∩X , e.g., y0 = e(2/3).
Define a continuous surjection β: A0 → Bn by β(x) = (4|x| − 3)x/|x| . Then

β defines a LIP homeomorphism Bn
rD → Bn

r {0} , and βSn−1(3/4) = {0} .
Clearly, βe−1 , defined on eA0 , has a continuous extension to G which sends G0

onto {0} . Choose a LIP homeomorphism γ: RR
n → RR

n such that γ = id near
RR

n
r Bn , γ respects Y and Z , and γβe−1(x0) = γ(1/2) = 0. Then the point

p = eβ−1γ(0) is in X . Define a continuous map f̄ : RR
n

r {x0} → RR
n by

f̄(x) =







eβ−1γβe−1(x) if x ∈ Gr {x0} rG0,
p if x ∈ G0,
x if x ∈ RR

n
rG.

Then f̄ defines a C-homeomorphism f̂ : RR
n

r {x0}rG0 → RR
n

rG0 r {p} which

respects Y and Z . Note that f̂ = id near RR
n

r G and that f̂ |f̂−1Y is a C′-
embedding.

Choose open round n-balls U , V , W in R
n such that U and V are centred

at p and W at y0 , U ⊂ V , V ⊂ e[intA0] , and W ⊂ G0 . Choose a LIP
homeomorphism δ: RR

n → RR
n respecting Y and Z such that δW = RR

n
r V and

δ|U = id. Now define a C-embedding f∗: RR
n

r {x0} → RR
n by

f∗(x) =

{

f̂−1δf̂(x) if x ∈ RR
n

r {x0} rG0,
x if x ∈ f̄−1U .

Here f̂−1δf̂ is defined because δ[ im f̂ ] ⊂ V r {p} ⊂ im f̂ , and f∗ is well-defined

because f̂−1δf̂ |f̄−1U rG0 = id. Clearly, f∗ respects Y and Z , f∗|G0 = id, and
f∗|f∗−1Y is a C′-embedding.

Finally, define a C-embedding f = f∗α|Bn: Bn → RR
n . Then f respects Y

and Z , and f |f−1Y is a C′-embedding. Since α = f∗ = id on D ∩ Z , we have
f |D ∩ Z = id. Moreover, fBn ⊂ f̄−1V ⊂ G . Since fBn = f∗[RRn

r B1] ⊃
f∗G0 = G0 , we have G = fBn ∪ e[intA0] . Thus, f is the desired embedding.

Case 2: Y = R
1
+ . This proof is due to Väisälä and published here with his

permission. It suffices to make the following modifications to the proof of Case 1.
We omit all conditions related to Y and Z except those involving D . We

do not define X . We require that αY = [ 0, x0 ] ⊂ Y . We set y0 = 0 ∈ G0 . We
require that γ[ 0, 1/2 ] = [ 0, 1/2 ] (with γ(1/2) = 0). Then p = x0 . We require
that V ∩ eβ−1γ(1/2, 1 ] = ∅ and that δ[ 0, x0 ] = [ 0, x0 ] . Let I = [ 0, 1 ] .

It remains to check that f respects Y and Z , i.e., f−1Y = I , and that f |I is a
C′-embedding. Let a = e(3/4) and b = e(1). Then eA0∩Y = [ a, b ] and G0∩Y =
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[ 0, a ] . Since βe−1 maps (a, x0) C
′-homeomorphically onto (0, 1/2) = γ(0, 1/2),

we see that f̂ defines a C′-homeomorphism f1: (a, x0) → (a, x0) . Moreover, V ∩

f̂(x0, b ] = ∅ . Define an open cover {I1, I2} of I by I1 = I ∩ α−1f̄−1U and
I2 = I r α−1G0 .

Consider first x ∈ I . We must show that y = f(x) ∈ Y . If x ∈ I1 , then

y = α(x) ∈ [ 0, x0) . Suppose x ∈ I2 . Then α(x) ∈ (a, x0) and y = f̂−1δf̂α(x) .

Since f̂(a, x0) = (a, x0) and δ(a, x0) ⊂ (a, x0) , we get y ∈ (a, x0) . From this we
also see that f |I: I → Y is the C′-embedding (α|I1) ∪ (f−1

1 δf1α|I2) .

Consider then x ∈ Bn with y = f(x) ∈ Y . We must show that x ∈ I . If
y ∈ G0 , then α(x) = y ∈ [ 0, a ] , and therefore x ∈ I . Suppose y /∈ G0 . Then

y = f̂−1δf̂α(x) . Thus y ∈ (a, b) r {x0} . Since f̂(y) ∈ V , we conclude that

y ∈ (a, x0) . Hence, δf̂α(x) ∈ (a, x0) , which implies that f̂α(x) ∈ (0, x0) , and

therefore f̂α(x) ∈ (a, x0) . Thus, α(x) ∈ (a, x0) . It follows that x ∈ I , which
completes the proof of Claim A.

Let f be given by Claim A. For Z = ∅ , observe that if X denotes R
n , Y ,

or ∂Y whenever Y is, respectively, ∅ , R
k , or R

k
+ , then Bn ∩X 6⊂ f−1eA ; the

initial normalization is needed here if Y = R
k
+ . For Z 6= ∅ , note that Bn(1/3) ∩

Z ∩ f−1eA = ∅ and
(

Bn
r Bn(1/2)

)

∩ Z ⊂ f−1e[intA] . In all cases, note that
Sn−1 ⊂ f−1e[intA] .

By these facts, there is a LIP embedding ε: D → Bn respecting Y and Z
such that ε|D ∩ Z = id, εD ∪ f−1e[intA] = Bn , and εBn(1/3) ∩ f−1eA = ∅ .
Then the C-embedding g = fε: D → G has the following properties:

(a) gD ∪ e[intA] = G ,

(b) g[DrBn(b)] ⊂ e[Bn
rBn(a)] for some a , b with 1/2 < a < b < 3/4,

(c) gBn(1/3) ∩ eA = ∅ ,

(d) g respects Y and Z ,

(e) g|D ∩ Y is a C′-embedding,

(f) g|D ∩ Z = id.

The inclusion (b) certainly holds with a = 1/2, b = 3/4, so it holds for some
a > 1/2, b < 3/4.

We now apply the procedure of Lemma 9 of [GVa] to the C-embedding h =
g−1e: e−1gD → R

n . Choose radial LIP homeomorphisms ζ, η: R
n → R

n with

ζ = id near R
n

rD ,

ζ[D rBn(b)] = D rBn(1/3),

ζ(x) = x/3b for each x ∈ Bn(b) ,

η(x) = ax for each x ∈ R
n

rBn ,

ηA = Bn(a) rBn(1/2),

η = id near Bn(1/2).
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Let A1 = Bn
rBn(a) , and define a function ẽ: A1 → R

n by

ẽ(x) =







hη(x) if x /∈ e−1gD,
hηh−1ζh(x) if x ∈ e−1gD and gζh(x) ∈ eA,
ζh(x) if x ∈ e−1gD and gζh(x) /∈ eA.

Claim B. The function ẽ is well-defined, ẽ is a C-embedding, ẽ respects Y
and Z , ẽ|A1 ∩ Y is a C′-embedding, and ẽ = ηζ on A1 ∩ Z .

Proof. We first verify that ẽ is defined as a function. Let H = e−1gD . Since
e[Bn(a) rBn(1/2)] ⊂ gBn(b) , we have ηA ⊂ H . Hence, ẽ|A1 rH = hη|A1 rH
is defined.

Let H1 = A1 ∩ H . From ζhH1 ⊂ ζD = D it follows that k = gζh|H1 is
defined. Let R1 = k−1eA ⊂ H1 .

Since ζhR1 ⊂ hH , the embedding ηh−1ζh|R1 is defined and maps R1 to
ηH ⊂ ηA ⊂ H . Thus, ẽ|R1 = hηh−1ζh|R1 is defined.

Finally, ẽ|H1 rR1 = ζh|H1 rR1 is defined.
From kH1 ⊃ gζ[DrBn(b)] = g[DrBn(1/3)] ⊃ gSn−1(3/4)∪eSn−1(1/2) ⊂

eA it follows that R1 is the closure of the domain whose boundary compo-
nents are the (n − 1)-spheres S1 = k−1gSn−1(3/4) = h−1Sn−1(3/4) and S2 =
k−1eSn−1(1/2) = h−1ζ−1hSn−1(1/2). Further, R2 = cl (A1 rH) is the closure of
the domain whose boundary components are Sn−1 and S1 . Since Sn−1(a) ⊂ H1

and kSn−1(a) ⊂ gζBn(b) = gBn(1/3) ⊂ R
n

r eA , we conclude that R3 =
cl (H1 rR1) is the closure of the domain whose boundary components are S2 and
Sn−1(a) .

Since ζ = id near hS1 = Sn−1(3/4) and η = id near h−1ζhS2 = Sn−1(1/2),
we have that ẽ = hη near R2 and that ẽ = ζh near R3 . Thus, ẽ is locally a
C-embedding. To compare the images of the three closed sets R1 , R2 , and R3 ,
note that for the images of their boundary components we have

ẽSn−1 = hηSn−1, ẽS1 ⊂ hη[intA], ẽS2 = hηSn−1(1/2);

ẽS2 = hSn−1(1/2) ⊂ R
n

rBn(1/3), ẽSn−1(a) ⊂ ζBn(b) = Bn(1/3).

This implies that ẽ is injective and, thus, a C-embedding.
By (d), h and thus ẽ , too, respect Y and Z . By (e), h|h−1Y is a C′-

embedding. Therefore ẽ|ẽ−1Y is locally and thus also globally a C′-embedding.
We finally verify that ẽ = ηζ on A1 ∩ Z . By (f), h = id on H ∩ Z =

D ∩A ∩ Z . Consider x ∈ A1 ∩ Z . Suppose first x /∈ H . Then ẽ(x) = hη(x) and
1/2 < |η(x)| ≤ a < 3/4. Hence, ẽ(x) = η(x) . We have ζ(x) = x , for otherwise
a ≤ |x| < 3/4 implying x = e−1g(x) ∈ H . Thus, ẽ(x) = ηζ(x) . Suppose now
x ∈ R1 . Then ẽ(x) = hηh−1ζh(x) and x ∈ H . We get consecutively h(x) = x ,
|ζ(x)| ≤ 3/4, h−1ζ(x) = ζ(x) , |ηζ(x)| < a , and hηζ(x) = ηζ(x) . Hence,
ẽ(x) = ηζ(x) . Suppose finally x ∈ H1 r R1 . Then ẽ(x) = ζh(x) = ζ(x) . Since
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|ζ(x)| ≤ 3/4, we have ζ(x) = gζh(x) /∈ eA∩Z = A∩Z , and therefore |ζ(x)| < 1/2.
Hence, ẽ(x) = ηζ(x) .

The embedding ẽ acts in the same way on Sn−1(a) as on Sn−1 ; more pre-
cisely,

ẽ(x) = hη(x) = h(ax) if x ∈ Sn−1,(6)

ẽ(x) = ζh(x) = h(x)/3b if x ∈ Sn−1(a).(7)

Note that here 3b > 1.
Let A∗ = ηζA1 . Then A∗ = η[Bn

rBn(a/3b)] = Bn(a)rBn(a/3b) as a < b
and a/3b < 1/3. The C-embedding e∗ = ẽζ−1η−1: A∗ → R

n respects Y and Z ,
is a C′-embedding on A∗ ∩ Y , and the identity on A∗ ∩ Z . Further, e∗ acts in
the same way on Sn−1(a/3b) as on Sn−1(a) ; more precisely,

(8) e∗(x) = h(x) = 3b e∗(x/3b) if x ∈ Sn−1(a) .

To see this, let x ∈ Sn−1(a) . Then ζ−1η−1(x) = x/a ∈ Sn−1 , which implies
e∗(x) = ẽ(x/a) = h(x) by (6), and ζ−1η−1(x/3b) = x , which implies e∗(x/3b) =
ẽ(x) = h(x)/3b by (7). Thus, (8) obtains. Then it is also clear that 0 belongs to
the bounded component of R

n
r e∗A∗ .

Now by (8) we can uniquely extend e∗ to an embedding e′: Bn(a) → R
n

such that e′(0) = 0 and such that e′(x) = (3b)−je∗
(

(3b)jx
)

if x ∈ Bn(a) r {0}
and if j ≥ 0 is an integer for which (3b)jx ∈ A∗ . Obviously, e′ respects Y and
Z , and e′|Bn(a) ∩ Z = id. By (8), im e′ ⊂ D and ge′ = e on Sn−1(a) . We thus
obtain a homeomorphism

ê = ge′ ∪ (e|A1): B
n → G.

Then ê respects Y and Z , is the identity on Bn ∩Z , and extends e|A0 . As some
of the above equalities actually hold on larger sets, we have

e′(x) = h(3bx)/3b for each x near Sn−1(a/3b),(9)

ê = e near Sn−1(a).(10)

We now verify that e′ is a C-embedding whenever C 6= TOP. If C = LIP,
then e∗ is L-BL for some L ≥ 1 as A∗ is compact. Hence, e′|(3b)−jA∗ is L-
BL for each j ≥ 0. It easily follows that e′ is L-Lipschitz. Choose r > 0 with
Bn(r) ⊂ im e′ . Then e′−1|Bn(r) is L-Lipschitz, which implies that e′−1 is locally
L-Lipschitz (in fact, e′−1 is easily seen to be even L-Lipschitz). Thus, e′ is LIP.
If C = LQC, then e′ is LQC on A2 = Bn(a) r Bn

(

a/(3b)2
)

by (9), thus K-
QC for some K ≥ 1 by compactness and [V1, 34.7]. It follows that e′ is K-QC
outside 0. Hence, e′ is K-QC by [V1, 17.3].

By (10) it follows that ê is a C-embedding.
A similar proof shows that ê|Bn∩Y is a C′-embedding. Only the verification

that e′|Bn(a) ∩ Y is LQC whenever C′ = LQC and dimY = 1 needs a separate
argument. First, e′ is QS on each component of A2 ∩ Y by (9) and [L2, 2.2].
Hence, e′|Bn(a) ∩ Y is QS by [L2, 2.4 and 2.5]. Thus, ê satisfies Theorem 3.
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11. Definitions. Let Mn be the family of all non-empty closed topological
submanifolds of R

n . For a non-empty subfamily V ⊂ Mn define V ∩ = {
⋂

W |
∅ 6= W ⊂ V } r {∅} , V ∂ = { ∂V | V ∈ V } r {∅} , and V ′ = V ∩ ∪ V ∂ ⊃ V . We
call V admissible if we can inductively define families V (j) ⊂ Mn for all j ≥ 0
by setting V (0) = V and V (j+1) = (V (j))′ for j ≥ 0.

Suppose that V ⊂ Yn is an admissible family. (We do not know whether
every non-empty family V ⊂ Yn is admissible.) Then V (j+1) = V (j) for some
j ≥ 0. Let V ∗ = V (j) and XV =

⋂

V ∗ ∈ V ∗ . On the other hand, let X∗

V
=

X1 × · · · ×Xn ⊂ R
n where Xi = R

1 if Vi = R
1 for each V = V1 × · · · × Vn ∈ V

and Xi = R
0 otherwise. Then XV ⊃ X∗

V
, and obviously XV is a linear subspace

of R
n if and only if XV = X∗

V
.

12. Theorem. Let n ≥ 1 , let M be R
n or R

n
+ , let V ⊂ Yn ∩ P(M)

be an admissible family such that M ∈ V , that ∂M ∈ V if ∂M 6= ∅ , and that

XV is a non-zero linear subspace of R
n , let A =

(

Bn
r Bn(1/2)

)

∩M , and let

e: A→M be an embedding respecting each V ∈ V such that eA ⊂ G , where G
is the bounded component of M r e[Sn−1 ∩M ] . Then there is a homeomorphism

ê: Bn ∩M → G respecting each V ∈ V such that ê = e on
(

Bn
rBn(3/4)

)

∩M
and such that the following conditions hold for each V ∈ V :

(i) If e|A ∩ V = id , then ê|Bn ∩ V = id .

(ii) If C ∈ {LQC, LIP} and if e|A ∩ V is a C-embedding, then ê|Bn ∩ V is

a C-embedding.

13. Remark. Theorem 12 generalizes Theorem 3 whenever the case Y = R
1
+

is excluded. Theorem 12 applies, in particular, if M = R
n
+ and V = {M, ∂M, Y }

where either Y = R
n,k
+ with 2 ≤ k ≤ n or Y = R

n,k
++ with 3 ≤ k ≤ n . But the

cases Y = R
n,1
+ with n ≥ 2 and Y = R

n,2
++ with n ≥ 2 remain open problems;

here XV = R
0 as also in Theorem 15, which treats the case Y = R

1
+ .

14. Proof of Theorem 12. If n = 1, the theorem reduces to the special
case n = 1 and Y = R

1 of Theorem 3. Suppose n ≥ 2. Only obvious slight
modifications to the proof of Theorem 3 are needed. Since e respects ∂M , it
defines an open embedding intM A → M , which then respects each V ∈ V ∗ and
thus, in particular, XV . The initial normalization now guarantees that e|ArSn−1

similarly respects each V ∈ V ∗ . We may assume that R
1 ⊂ XV .

In Claim A we require that there is an embedding f : Bn ∩M → G which
respects each V ∈ V such that f [Bn ∩M ]∪ e[intM A] = G and such that (i) and
(ii) are true for each V ∈ V when ê|Bn ∩ V is replaced by f |D ∩ V in (i) and by
f |Bn ∩ V in (ii).

In the proof of Claim A (Case 1), we define X = XXV . We choose α with
αV = V if V ∈ V and with α|D = id if e|A ∩X = id. Since {0, 1/2} ⊂ X , we
can choose γ such that γV = V if V ∈ V . Since {y0, p} ⊂ X , we can choose δ

such that δV = V if V ∈ V . Then f̂ , f∗ , and f respect V if V ∈ V . In (i),
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G0 ∩ V = D ∩ V , and so f satisfies (i). Clearly f satisfies (ii).
After Claim A, we choose a LIP embedding ε: D ∩ M → Bn ∩ M which

respects each V ∈ V such that ε|ε−1V = id in (i), that ε[D∩M ]∪f−1e[intM A] =
Bn∩M , and that ε[Bn(1/3)∩M ]∩f−1eA = ∅ . This is possible because Bn∩XV 6⊂
f−1eA and because Bn(1/3) ∩ V ∩ f−1eA = ∅ and

(

Bn
r Bn(1/2)

)

∩ V ⊂
f−1e[intM A] whenever V ∈ V is as in (i).

The rest of the proof now goes as for Theorem 3.

15. Theorem. The modification of Theorem 12 holds where M = R
n
+ with

n ≥ 1 and V = {M, ∂M,R1
+} and where V 6= R

1
+ in (ii) if n = 2 .

Proof. If n = 1, the proof goes as for Theorem 3. If n ≥ 2, the proof is as
for Theorem 12. In the proof of Claim A—Case 1 if n = 2, Case 2 if n ≥ 3—we
require that the embeddings α, γ, f̂ , δ, f∗ , and f respect M and ∂M but not
necessarily R

1
+ . If n = 2, we can choose α(0) = 0 ∈ G0 ; then f respects R

1
+ . If

n ≥ 3, the existence of γ follows from dim ∂M ≥ 2.

16. Quantitative versions. The following theorem is a quantitative version
of Theorem 3. There we construct extensions ê whose maximal dilatation or bi-
Lipschitz constant has an upper bound which depends only on n and the respective
constant of e . The theorem is a respectful version of the quantitative quasiconfor-
mal Schoenflies theorem [TV2, 5.4] and of the quantitative bi-Lipschitz Schoenflies
theorem [TV2, 5.10]. To prove it we modify the proofs of these two theorems; in
particular, we follow the proof of [TV2, 5.3] simplifying it in our special case. The
idea of the proof is after a normalization to glue e to a modification of the exten-
sion u given by Theorem 3 for an embedding e0 which belongs to a fixed finite set
of embeddings satisfying the same assumptions as e and which is close enough to
e . The modification is done by composing u with the extension of e−1

0 e given by
the respectful quantitative (canonical) Schoenflies theorem for embeddings near
id proved in [L1, 2.13]. In [TV2] the auxiliary result used is the non-elementary
deformation theorem of Sullivan. The finite set is found by the solidity of the
set of all embeddings in question. In Theorem 19 we give quantitative versions of
Theorems 12 and 15. In Theorem 21 the case eSn−1 = Sn−1 is considered by the
aid of a respectful quasiconformal extension result of the author in [L3].

17. Theorem. To Theorem 3 with C = C′ = TOP we can add any one of

the following conditions:

(a) Let L ≥ 1 and e be L-BL . Then ê is L̂-BL with L̂ = L̂(n, L) ≥ 1 .

(b) Let n ≥ 2 , L ≥ 1 , and e be locally L-BL . Then ê is locally L̂-BL with

L̂ = L̂(n, L) ≥ 1 .

(c) Let n ≥ 2 , K ≥ 1 , and e be K-QC . Then ê is K̂-QC with K̂ =
K̂(n,K) ≥ 1 .

(c ′ )As (c) but let, in addition, (c1) e be LIP or (c2) e|A∩Y be LIP or (c3)
λ ≥ 1 and e|A∩Y be locally λ-BL , or (c4) λ ≥ 1 and e|A∩Y be λ-BL . Then, in
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addition and respectively, (c1) ê is LIP or (c2) ê|Bn ∩Y is LIP or (c3) ê|Bn ∩Y

is locally λ̂-BL , or (c4) ê|Bn ∩Y is λ̂-BL with λ̂ = λ̂(n,K, λ) ≥ 1 , provided that

in (c3) and (c4) we allow K̂ to depend also on λ .

(d) If n = 1 , η ∈ H , and e is η-QS , then ê is η̂-QS with η̂ ∈ H depending

only on η .

(d ′ )As (d) but let, in addition, (d1) e be LIP or (d2) e|A ∩ Y be LIP , or

(d3) λ ≥ 1 and e|A∩Y be locally λ-BL . Then, in addition and respectively, (d1)

ê is LIP or (d2) ê|BB1∩Y is LIP , or (d3) ê|BB1∩Y is λ̂-BL with λ̂ = λ̂(η, λ) ≥ 1 ,

provided that in (d3) we allow η̂ to depend also on λ .

Proof. We begin by applying Theorem 3 with 3/4 replaced by 2/3. This is
possible by choosing a radial BL homeomorphism σ: R

n → R
n with σA = A

and σSn−1(3/4) = Sn−1(2/3) and by replacing initially e by σ−1eσ|A and finally
ê by σêσ−1|Bn . Thus, let U = Bn

r Bn(2/3), and let e∗ in place of ê be the
extension of e|U that Theorem 3 gives if (C,C′) is (LIP,TOP) in (a), (b), (c1),
and (d1), (LQC,TOP) in (c) and (d), and (LQC,LIP) in (c2)–(c4) and (d2)–(d3).
We may assume that e∗(0) = 0. In fact, this is the case if Z 6= ∅ or if Y = R

1
+ .

Otherwise, letting X denote R
n , Y , or ∂Y whenever Y is, respectively, ∅ , R

k ,
or R

k
+ , we have y = e∗(0) ∈ X ; then by replacing initially e by e− y and e∗ by

e∗−y and finally ê by ê+y we may assume that y = 0. In (c)–(c2) and (d)–(d2)
we may assume also in the case Z = ∅ that e(4/5) = 4/5 by replacing initially
e by αe and e∗ by αe∗ and finally ê by α−1ê for a suitable linear similarity
α: R

n → R
n respecting Y . In (c3), (c4), and (d3) we may assume that Y 6= ∅ .

We let C denote the set of all the 11 conditions (a)–(d3). We may allow L̂ , K̂ ,

η̂ , and λ̂ to depend also on Y and Z .

Let F be the set of all embeddings f : Bn → R
n respecting Y and Z such

that f |Bn ∩ Z = id and f(0) = 0. We define a set Fν ⊂ F for each (ν) ∈ C as
follows. For L ≥ 1 we let Fa = { f ∈ F | f |U is L-BL, f is BL } if n ≥ 1 and
Fb = { f ∈ F | f |U is locally L-BL, f is BL } if n ≥ 2. For n ≥ 2, K ≥ 1,
and λ ≥ 1 we let Fc0 = { f ∈ F | f |U is K-QC, f is QC } , Fc = { f ∈ Fc0 |
f(4/5) = 4/5 } , Fc1 = { f ∈ Fc | f is LIP } , Fc2 = { f ∈ Fc | f |Bn ∩ Y
is LIP } , Fc3 = { f ∈ Fc0 | f |U ∩ Y is locally λ-BL, f |Bn ∩ Y is BL } , and
Fc4 = { f ∈ Fc3 | f |U ∩ Y is λ-BL } . For n = 1, η ∈ H , and λ ≥ 1 we let
Fd0 = { f ∈ F | f |U is η-QS, f is QS } , Fd = { f ∈ Fd0 | f(4/5) = 4/5 } ,
Fd1 = { f ∈ Fd | f is LIP } , Fd2 = { f ∈ Fd | f |BB1 ∩ Y is LIP } , and
Fd3 = { f ∈ Fd0 | f |U ∩ Y is locally λ-BL, f |B1 ∩ Y is BL } . For each (ν) ∈ C

we define Gν = { f |U | f ∈ Fν } . Then e∗ ∈ Fν and hence e|U ∈ Gν in each
(ν) ∈ C .

We now show that Gν is solid for each (ν) ∈ C . If g ∈ Ga , then g is L-
BL and gU ⊂ Bn(2L) ; thus, Ga is solid by Ascoli’s theorem. If g ∈ Gb , then
g is (Lπ/2)-Lipschitz, gU ⊂ Bn(Lπ) , and g|T is LT -BL for each compact set
T ⊂ U with LT = LT (n, T, L) ≥ 1 by [TV2, 2.17]; thus, Gb is solid by Ascoli’s
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theorem. If g ∈ Gc , then g is K-QC and omits 0 and ∞ , g(4/5) = 4/5, and
d
(

gSn−1(4/5)
)

≥ 4/5; thus, Gc and hence Gc1 and Gc2 , too, are solid by [V1,

19.3, 20.5, and 21.9]. If g ∈ Gc3 and T = Bn(4/5) r Bn(3/4), then g is K-
QC and omits 0 and ∞ , g|T is η-QS with η ∈ H depending only on (n,K)
by [V2, 2.7], g|[ 3/4, 4/5 ] is L-BL with L = L(k, λ) ≥ 1 by [TV2, 2.17], and
|g(3/4)| ≤ d(gT ) ≤ 2η

(

|(−4/5)− 3/4|/|4/5− 3/4|
)

|g(4/5)− g(3/4)| ≤ η(31)L/10;
thus, Gc3 and hence Gc4 , too, are solid by [V1, 19.3, 20.5, and 21.9] again. If
g ∈ Gd , then g is η-QS and g(−3/4) < 0 < g(3/4) < g(4/5) = 4/5; thus, Gd

and hence Gd1 and Gd2 , too, are solid by [TV1, 3.4, 3.6, and 3.7]. Finally, if
g ∈ Gd3 , then g is η-QS, |g(3/4)| ≤ |g(−3/4)− g(3/4)| ≤ η(30)|g(4/5)− g(3/4)|
and |g(4/5)− g(3/4)| ≤ λ/20; thus, Gd3 is solid by [TV1, 3.4, 3.6, and 3.7] again.

Choose numbers 2/3 < r′2 < r′1 < 3/4 < r1 < r2 < 1 independently of n , let
Ri = Bn(ri) r Bn(r′i) for i = 1, 2, and let B1 = Bn(r1) . We apply, as we may,
[L1, 2.13] with the radii 1/3, 2/3, 1 replaced by r′1 , 3/4, r1 , respectively; let P

be the neighbourhood of id in E(R1;R
n) and ϕ: P → E(B1;R

n) the continuous
map thus obtained. Choose ε > 0 with ε ≤ d(R1,R

n
r R2) such that the set

N = {h ∈ E(R1;R
n)

∣

∣ |h(x) − x| < ε if x ∈ R1 } is contained in P .
Consider a condition (ν) ∈ C . Since Gν is solid, there is δ > 0 such that

|g(x) − g(y)| ≥ δ whenever g ∈ Gν , x, y ∈ RR2 , and |x − y| ≥ ε . Furthermore,
there is a finite set Uν ⊂ Fν such that the sets Nu = { g ∈ Gν

∣

∣ |g(x)− u(x)| < δ
if x ∈ R1 } for u ∈ Uν cover Gν . In (a) and (b) we choose L0 = L0(Uν) ≥ L
such that each u ∈ Uν is L0-BL. In (c)–(c4) we choose K0 = K0(Uν) ≥ K
such that each u ∈ Uν is K0-QC. In (d)–(d3) we choose η0 ∈ H depending
only on Uν such that each u ∈ Uν is η0-QS. In (c3), (c4), and (d3) we choose
λ0 = λ0(Uν) ≥ λ such that u|Bn ∩ Y is λ0-BL for each u ∈ Uν .

Let (ν) ∈ C , and let e satisfy the assumptions of (ν) . We now construct
ê satisfying the conclusions of (ν) . Choose u ∈ Uν with e|U ∈ Nu . Since
d(uR1, u[∂RR2]) ≥ δ , we get that eR1 ⊂ uR2 . Setting h = u−1e|R1 we thus obtain
an embedding h: R1 → R2 , which belongs to N and hence to P . This yields
an embedding h1 = ϕ(h): B1 → R

n such that h1 = h on B1 r Bn(3/4). We
have that h and hence h1 , too, respect Y and Z , that h|R1 ∩ Z = id, and that,
hence, h1|B1 ∩ Z = id. Moreover, in (a), h is L2-BL and h1 thus L1-BL with
L1 = L1(L) ≥ 1; in (b), h is locally L2-BL and h1 thus locally L1-BL with L1

as above; in (c)–(c4), h is K2-QC and h1 thus K1-QC with K1 = K1(n,K) ≥ 1;
in (d)–(d3), h is η′η-QS, where η′ ∈ H satisfies η′(t) = η−1(t−1)−1 for t > 0,
and h1 thus η1-QS with η1 ∈ H depending only on η ; in (c1) and (d1), h and
h1 are LIP; in (c2) and (d2), h|R1 ∩ Y and h1|B1 ∩ Y are LIP; in (c3) and (d3),
h|R1∩Y is locally λ2-BL and h1|B1∩Y thus locally λ1-BL with λ1 = λ1(λ) ≥ 1;
and finally in (c4), h|R1 ∩ Y is λ2-BL and h1|B1 ∩ Y thus λ1-BL with λ1 as
above. We define a homeomorphism ê: Bn → G by

ê(x) =

{

e(x) if x ∈ Bn
rBn(3/4),

u
(

h1(x)
)

if x ∈ B1.
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Then ê respects Y and Z , and ê|Bn ∩ Z = id. Moreover, ê satisfies (ν) : In (a)
and (b), L̂ = L0L1 applies, by the lemma at the end of the proof of [TV2, 3.4]
when (a) is in question; in (c)–(c4), K̂ = K0K1 applies; in (d)–(d3), by [L2, 2.2]
there is η̂ ∈ H depending only on (η, η0η1) such that ê is η̂-QS; in (c1) and (d1),
ê is LIP; in (c2) and (d2), ê|Bn ∩ Y is LIP; and finally in (c3), (c4), and (d3),

λ̂ = λ0λ1 applies.

18. Remarks. 1. In the conditions (b) and (c) of Theorem 17, n = 1 must
really be excluded if being K-QC is interpreted as being K-QS on each component
of A . For example, define for each t > 0 an embedding e: B1

r B1(1/2) → R
1

by e(x) = x − t if x < 0 and by e(x) = x if x > 0. Then e|[−1,−1/2 ] and
e|[ 1/2, 1 ] are isometric. If now ê: BB1 → R

1 is an extension of e|S0 such that ê is
locally L-BL (and thus L-BL) or such that ê is K-QC and, in addition, ê(0) = 0
or ê(3/4) = e(3/4), then neither L nor K can be independent of t .

2. The condition (b) of Theorem 17 easily implies that if in it, in addition,

λ ≥ 1 and e|Sn−1 ∩ Y is λ-BL, then ê|Bn ∩ Y is λ̂-BL with λ̂ = max (L̂, λ) .
3. In the conditions (c) and (c ′ ) of Theorem 17, quasisymmetry can be

substituted for quasiconformality; this follows from (c) and (c ′ ) by [V3, 3.12].

19. Theorem. To Theorems 12 and 15 with n ≥ 2 we can add any one of

the conditions (a), (b), and (c) of Theorem 17.

Proof. With the following changes the proof is otherwise essentially the same
as that of Theorem 17. Let V0 = {V ∈ V

∣

∣ e|A ∩ V = id } . Let V1 = {V ∈ V
∣

∣

e|A ∩ V is LIP } ; however, if n = 2 and V1 = {R1
+} , redefine V1 = ∅ . We may

allow L̂ and K̂ to depend also on V0 and V1 . Replace every occurring subset
of R

n by its intersection with M . Let e∗ be the extension of e|U given by the
pertinent one of Theorems 12 and 15. If XV = R

0 or V0 6= ∅ , then e∗(0) = 0;
otherwise, y = e∗(0) ∈ XV , and by replacing (e, e∗, ê) by (e− y, e∗ − y, ê+ y) we
may assume that y = 0. In Theorem 12 we may assume that 4/5 ∈ XV . Thus,
in (c) we may assume that e(4/5) = 4/5 by replacing (e, e∗, ê) by (αe, αe∗, α−1ê)
for a suitable linear similarity α: M → M respecting each V ∈ V . Let C =
{(a), (b), (c)} .

Let F be the set of all embeddings f : Bn ∩M →M respecting each V ∈ V

such that f |Bn ∩V = id for each V ∈ V0 , that f |Bn ∩V is LIP for each V ∈ V1 ,
and that f(0) = 0. Define Fν and Gν for (ν) ∈ C as earlier; then e∗ ∈ Fν and
e|U ∈ Gν in each (ν) ∈ C . In the case M = R

n
+ , if g ∈ Gb or g ∈ Gc , then the

extension Bn
rBn(2/3) → R

n of g by reflection is again, respectively, locally L-
BL or K-QC; hence, it can be proved as earlier that Gν is solid in E(U ;M) for
each (ν) ∈ C .

We let P be the neighbourhood of id in E(R1;M) and ϕ: P → E(B1;M)
the continuous map given by [L1, 2.13]. We have that ê satisfies (ν) . Moreover,
ê respects each V ∈ V , ê|Bn ∩ V = id for each V ∈ V0 , and ê|Bn ∩ V is LIP
for each V ∈ V1 ; hence, ê satisfies the pertinent one of Theorems 12 and 15.
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20. Remark. Concerning the assumption n ≥ 2 in Theorem 19, note that
the quantitative version of the case M = R

1 of Theorem 12 is already included
in Theorem 17 and that, as it is easy to see, in the case M = R

1
+ neither (a) nor

(d) can be added to Theorem 15.

21. Theorem. Let n ≥ 3 , let Y = R
k with 1 ≤ k ≤ n or Y = R

k
+

with 2 ≤ k ≤ n , let K ≥ 1 , let 0 < r < 1 , and let f : Bn
r Bn(r) → Bn be

a K-QC embedding respecting Y such that fSn−1 = Sn−1 . Then there is a

K1-QC homeomorphism g: Bn → Bn respecting Y and extending f |Sn−1 with

K1 = K1(n,K) ≥ 1 .

Proof. All closures are taken in RR
n . Let Y1 = RR

n,k
+ if Y = R

k and

Y1 = RR
n,k
++ if Y = R

k
+ . Choose Möbius transformations ϕ and ψ of RR

n

such that ϕBn = ψBn = RR
n
+ , that ϕ[Bn ∩ Y ] = ψ[Bn ∩ Y ] = Y1 , and that

ϕfψ−1(∞) = ∞ . Since ϕfψ−1|ψ[Bn
r Bn(r)] is K-QC and respects Y1 , its

restriction f1: R
n−1 → R

n−1 is K-QC by [G] and respects Y1 . Hence, by [L3,
3.1] there is a K1-QC homeomorphism g1: RR

n
+ → RR

n
+ extending f1 and respect-

ing Y1 with K1 = K1(n,K) ≥ 1. Then g = ϕ−1g1ψ: Bn → Bn is the desired
homeomorphism.

22. Remark. The absolute case Y = R
n of Theorem 21 is due to Tukia

and Väisälä [TV3, 3.14]. For n = 2, Theorem 21 with K1 = K1(K, r) follows
from Theorem 17, but, as an example of Näätänen [N, 5.11] shows, K1 cannot be
independent of r .
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