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UNIVALENT FUNCTIONS OF GIVEN TRANSFINITE

DIAMETER: A MAXIMUM MODULUS PROBLEM

Robin Cunningham

Trenton State College, Department of Mathematics and Statistics

Hillwood Lakes, CN 4700, Trenton, NJ 08650-4700, U.S.A.

Abstract. A variational method is used to find the maximum of |f(ζ)| for fixed ζ ∈ D as
f ranges over the class of normalized univalent functions which map the unit disk D onto regions
of prescribed transfinite diameter (logarithmic capacity).

0. Introduction

Let S be the usual class of functions f(z) = z + a2z
2 + · · · that are analytic

and univalent in the unit disk D . We say f ∈ SR if f ∈ S and the image f(D)
of the unit disk under f has transfinite diameter R . We consider the following
problem: given a point ζ ∈ D and a transfinite diameter R (1 < R < ∞), find the
maximum of

∣∣f(ζ)
∣∣ among all functions f ∈ SR . In the solution to this problem,

it turns out that the extremal function has as its range one of five geometrically
distinct types. In each case, the boundary of the range lies in a trajectory of a
determined quadratic differential. Depending on R and ζ , the extremal values
of
∣∣f(ζ)

∣∣ are given either explicitly or parametrically in terms of complete elliptic
integrals. For each choice of R and ζ , the extremal function is unique. The proof
uses a special variational method devised by Duren and Schiffer [6] in their recent
paper on a related problem.

For basic facts about transfinite diameter, see Goluzin [7, Chapter VII], Hille
[8, Chapter 16], Pólya–Szegő [10, Part IV, Chapter 2] or Tsuji [14]. Here we note
only that if R > 0 is the transfinite diameter of a compact set E in the complex
plane and if

g(w) = g(w,∞) = log |w| + γ + O
( 1

w

)

is Green’s function (with pole at infinity) for the unbounded component of the
complement of E , then R = e−γ , the logarithmic capacity of E . A set E with
R < ∞ is clearly bounded.
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1. Existence of solution

Given R (1 < R < ∞) and ζ ∈ D , we wish to determine the maximum of∣∣f(ζ)
∣∣ for f ∈ SR . Without loss of generality we may assume that 0 < ζ < 1,

since other values ζ may then be treated via rotations of D . In order to employ a
variational method, we must first prove the existence of an extremal function. It
is easily seen that SR is a normal family. Although various pinching constructions
suggest that SR is not compact, Duren and Schiffer [6] have shown that the

larger family ŜR = ∪Q≤RSQ is a compact normal family. This ensures that the

continuous functional
∣∣f(ζ)

∣∣ attains a maximum over the class ŜR . Since the

extremal values for
∣∣f(ζ)

∣∣ will be shown to be increasing with R , the maximum

of
∣∣f(ζ)

∣∣ over the class ŜR is actually attained within the subclass SR . Thus we
are assured of the existence of an extremal function within the class SR itself.

2. The Duren–Schiffer variation

A special variation devised by Duren and Schiffer to preserve the class SR

will be used to find the extremal functions. First an interior variation will be used
to determine

(
p′(w)

)2
, where p(w) is the analytic completion of Green’s function

for the complement of f(D). Consider the perturbation

(1) w∗ = w +

3∑

j=1

εj
w

w − wj
,

where w1, w2, w3 /∈ f(D) are all distinct and the εj are small complex parameters.
For ε ≡ maxj |εj | sufficiently small, it is easily seen that

(2) f∗(z) = f(z) +

3∑

j=1

εj
f(z)

f(z) − wj
=

∞∑

n=1

a∗
nzn

is univalent in D . Notice that

a∗
1 = 1 −

3∑

j=1

εjw
−1
j ;

therefore, in order to ensure that f∗ ∈ S , we set

(3)

3∑

j=1

εjw
−1
j = 0.
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Now, using the method of interior variation, one may calculate an expression
for Green’s function g∗(w,∞) of the complement of f∗(D). Hence one deter-
mines the following relation between R and the transfinite diameter R∗ of the
region f∗(D) :

R∗ = R

(
1 − Re

{ 3∑

j=1

εjwjp
′(wj)

2

})
+ O(ε2).

(See [13] for a derivation of this formula.) For the above expression, p(w) =
p(w,∞) is the multiple-valued analytic completion of g(w,∞) , Green’s function
of the complement of f(D). We wish to ensure that R∗ = R , so we set

(4)

3∑

j=1

εjwjp
′(wj)

2 = 0

and modify (1) by a term of order ε2 (cf. Duren and Schiffer [6]).
Without affecting (3) and (4) we may replace εj in (1) by ̺eiθεj , where ̺ > 0

and θ is an arbitrary real constant. Modifying the variation (2) accordingly, we
obtain f ∈ SR and

f∗(ζ) = f(ζ)

(
1 + ̺eiθ

3∑

j=1

εj

f(ζ) − wj

)
+ O(̺2).

It follows that

log f∗(ζ) = log f(ζ) + ̺eiθ
3∑

j=1

εj

f(ζ) − wj
+ O(̺2).

For any extremal function f , we know log
∣∣f∗(ζ)

∣∣ ≤ log
∣∣f(ζ)

∣∣ , which implies

Re

{
̺eiθ

3∑

j=1

εj

f(ζ) − wj
+ O(̺2)

}
≤ 0.

But this is true for arbitrary θ , so

(5)

3∑

j=1

εj

f(ζ) − wj
= 0.

(Equation (5) may also be obtained merely by comparing
∣∣f∗(ζ)

∣∣ with
∣∣f(ζ)

∣∣ and
making a judicious choice of θ .)

Equations (3), (4) and (5) provide three linear homogeneous equations in ε1 ,
ε2 and ε3 with a nontrivial solution. This implies the vanishing of a determinant:
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(6)

∣∣∣∣∣∣

w−1
1 w−1

2 w−1
3(

f(ζ) − w1

)−1 (
f(ζ) − w2

)−1 (
f(ζ) − w3

)−1

w1p
′(w1)

2 w2p
′(w2)

2 w3p
′(w3)

2

∣∣∣∣∣∣
= 0.

Every extremal function f satisfies this condition, which remains valid for any
choice of distinct points wj /∈ f(D). Setting w1 = w and expanding the determi-
nant (6) along the first column, we get

λ1w
−1 + λ2

(
f(ζ) − w

)−1
+ λ3wp′(w)2 = 0.

Since w2 6= w3 , we see that λ3 6= 0, so we have

(7) p′(w)2 = aw−2 +
b(

f(ζ) − w
)
w

.

Now, since p(w) is the analytic completion of Green’s function, it has the form

p(w) = log w + c0 + c1w
−1 + c2w

−2 + · · ·

near infinity; therefore,

(8) p′(w)2 = w−2 − 2c1w
−3 + · · · .

After a short calculation comparing (7) and (8), we obtain a = b + 1 and

(9) p′(w)2 =
(b + 1)B − w

w2(B − w)
,

where B = f(ζ) .
From the fact that p(w) is the analytic completion of Green’s function, we

know that Re
{
p(w)

}
= 0 for w in the boundary of f(D). As we shall see later,

the boundary of f(D) consists of analytic arcs so that p′(w) has an extension to
the boundary. This implies that

[
p′(w)2w′(t)2

]
< 0 on the boundary of f(D),

which suggests that the “outer boundary” of f(D) is composed of arcs w = w(t)
lying on trajectories of the quadratic differential

(10)
(b + 1)B − w

(w − B)w2
dw2 > 0.

As we shall see, the entire boundary of f(D) consists of arcs w = w(t) which
satisfy (10). To prove this we shall apply a special boundary variation developed
by Duren and Schiffer [6] which preserves the class SR . This additional variation is
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necessary partly because p(w) will not detect any internal boundary components
of f(D) (e.g., internal spires) since Green’s function for the complement of f(D)
is independent of such boundary components.

Let Γ be the boundary of f(D) . Choose an arbitrary w0 ∈ Γ and two distinct
arbitrary points w1, w2 /∈ f(D). We modify the standard boundary variation (see
[12] or [15, Chapter 10])

w∗ = w +
a̺2w

w0(w − w0)
+ O(̺3)

by including two additional terms to produce the variation

(11) w∗ = V̺(w) = w +
a̺2w

w0(w − w0)
+

ε1w

w − w1
+

ε2w

w − w2
+ O(̺3),

where ε1 , ε2 are of order ̺2 and will be specified later. We make the further
assumption that a(̺) is bounded away from 0; the reason for this will be made
evident later. The variation (11) is analytic and univalent off the union of a small
subcontinuum of Γ and two small disks about w1 and w2 respectively. If we let
f∗ ≡ V̺ ◦ f , then f∗ is analytic and univalent on D and f∗(0) = 0. By requiring
that V ′

̺(0) = 1, we ensure that f∗ ∈ S . Thus we require that

(12) a̺2w−2
0 + ε1w

−1
1 + ε2w

−1
2 = 0.

Using the method of interior variation to determine the change in Green’s
function [12], we calculate the transfinite diameter of R∗ in terms of R :

R∗ = R
[
1 − Re

{
ε1w1p

′(w1)
2 + ε2w2p

′(w2)
2
}]

+ O(̺3).

We also require that R∗ = R , so we set

(13) ε1w1p
′(w1)

2 + ε2w2p
′(w2)

2 = 0

and modify (11) by a term of order ̺3 (see [6]) to produce a variation with the
properties R∗ = R and f∗ ∈ S . Thus we have f∗ ∈ SR .

Combining equations (9), (12) and (13), we arrive at the equation

(14) a̺2w−2
0 = b

[
ε1B

w1(B − w1)
+

ε2B

w2(B − w2)

]
.

Since w0 6= ∞ and since we have assumed a 6= 0, we see from (14) that b 6= 0.
Also, we see from (11) that

(15) log f∗(ζ) = log B +
a̺2

w0(B − w0)
+

ε1

B − w1
+

ε2

B − w2
+ O(̺3).
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After some calculation involving (12), (14) and the fact that b 6= 0, we infer from
(15) that

log f∗(ζ) = log B +
a̺2

b

[
(b + 1)B − w0

w2
0(B − w0)

]
+ O(̺3).

If f is extremal, then Re
{

log f∗(ζ)
}
≤ Re{log B} , which implies

Re

{
a̺2

b

[
(b + 1)B − w0

w2
0(B − w0)

]
+ O(̺3)

}
≤ 0.

We now invoke Schiffer’s theorem (see [5, p. 297]) to conclude that Γ consists of
analytic arcs lying on trajectories of the quadratic differential

(16)
1

b

[
(b + 1)B − w

w2(B − w)

]
dw2 > 0.

We note here that our assumption that a is bounded away from 0 goes beyond
the hypothesis of Schiffer’s theorem. However, Schiffer’s result is actually stronger
than the statement of his theorem indicates, because the proof goes through with-
out modification if we assume a 6= 0 (see [5, p. 297–302]. Since Γ consists of
analytic arcs, the quadratic differentials (10) and (16) must both be positive on
the outer boundary of f(D) . Thus b < 0 for every choice of ζ and R and we have
established that the entire boundary of f(D) consists of arcs lying on trajectories
of (10).

3. Analysis of the quadratic differential

The quadratic differential (10) has a simple zero at w = (b + 1)B , a double
pole at the origin and infinity, and a simple pole at w = B . (Note that b 6= 0
implies (b + 1)B 6= B .)

It is not hard to see that the trajectories of (10) are symmetric in the real
axis. First, symmetry in the line w = Bt can be seen by making the substitution
w = Bω and recognizing the resulting symmetry in the real axis of the ω -plane.
Next, note that f ′(0) = 1 and consider the image under f of the curve z = ζt ,
(0 ≤ t ≤ 1). This image curve has positive direction at the origin and contains
B . A symmetry argument enables us to conclude that the image curve is in fact
the line segment joining the origin with B in the ω -plane. Therefore the line
w = Bt , whose tangent direction is of course a constant, must lie in the real axis.
We now see that B is real and positive and that all trajectories are symmetric in
the real axis. We are now able to show the trajectories for (10) in Figures 1, 2,
and 3 below. (See Chapter 8 in [11] for the local trajectory structure of quadratic
differentials.)

Note that of the trajectories pictured, only those surrounding B and the origin
may form boundaries of the images of extremal functions f . All the candidate
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Figure 1. Sketch of trajectories of (10) for −1 < b < 0 .

Figure 2. Sketch of trajectories of (10) for b = −1 .

solution regions pictured do in fact occur as boundaries of extremal functions for
suitable values of R and ζ .

We now parametrize Γ by w(t) = f(eit) and use (10) to obtain

(18) F (z) =
z2f ′(z)2

f(z)2

[
(b + 1)B − f(z)

]

B − f(z)
≥ 0, |z| = 1.

Since f ∈ S , it is clear that F is analytic in D except for a removable singularity
at z = 0 and a simple pole at z = ζ with residue

a−1 =
−bζ2f ′(ζ)

f(ζ)
.
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Figure 3. Sketch of trajectories of (10) for b < −1 .

In order to arrive at a convenient expression for F (z) , one shows that F (z) is
analytic and non-vanishing on |z| = 1 except for at most one double zero when
Γ has an internal spire or a corner. (The proof for this follows just as in [6,
Section 3]). Then by the Schwarz reflection principle, F (z) has a meromorphic
extension to the Riemann sphere satisfying F (1/z̄) = F (z) . Therefore F (z) has
the form

(19) F (z) =
A(z − z0)(1 − zz0)

(z − ζ)(1 − ζz)

where f(z0) = (b + 1)B when w = (b + 1)B is inside Γ. When w = (b + 1)B
lies on Γ, we have z0 = 1. A symmetry argument shows that the point z0 in
(19) is real and negative. Therefore we may conclude from the Schwarz reflection
principle that A is real. The point (b+1)B is in f(D) for each of the trajectories
above which represent possible solutions.

As suggested by the illustrations above, our work breaks into three cases which
we handle in the order (i) b = −1; (ii) −1 < b < 0; (iii) b < −1.

4. The case b = −1 : ellipses

In this case, (b + 1)B = 0 and z0 = 0 so that (19) becomes

(20) F (z) =
Az

(z − ζ)(1 − ζz)
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and (10) becomes

(21)
dw2

w(B − w)
≥ 0.

The trajectories of (21) are ellipses with foci w = 0 and w = B [4, p. 309–310].
A comparison of the equations (18), (20) and (21) establishes the relation

(22)

∫ B

0

dw√
w(B − w)

=
√

A

∫ ζ

0

dz√
z(ζ − z)(1 − ζz)

.

An elementary calculation shows that the left-hand integral is equal to π , while
the substitution u =

√
z/ζ shows that the right-hand side is equal to 2

√
AK(ζ)

where

K(k) =

∫ 1

0

du√
(1 − u2)(1 − k2u2)

, 0 < k < 1,

is the normal complete elliptic integral of the first kind. Thus (22) allows us to
evaluate A = 1

4π2 · K(ζ)−2 . On the other hand, a comparison of (18) and (20)
gives

lim
z→0

F (z)

z
= −A

ζ
= − 1

B
.

Consequently, for the case b = −1, we conclude that

(23) B =
4ζK(ζ)2

π2
.

This expression is independent of R because, as we shall see, the ellipse case
(b = −1) occurs for only one value of R for each choice of ζ .

By calculating G(w) , the analytic completion of Green’s function for the
complement of the solution ellipses, we shall now obtain a relation between R and
B which determines for which values of R the ellipse solution may occur.

Let w0 = f(−1) (w0 < 0 by symmetry considerations), and define

(24) G0(w) ≡
∫ w

w0

dw√
w(w − B)

=

∫ w

0

dw√
w(w − B)

−
∫ w0

0

dw√
w(w − B)

≡ I1−I2.

It is easily seen that

I1 = log
(
w
√

w(w − B) + 2w − B
)
− log(−B)

where the chosen branch of the logarithm is unimportant since we will be concerned
only with Re

{
G0(w)

}
. Note that by (18) and (20)

I2 =
√

A

∫ −1

0

dz√
z(z − ζ)(1 − ζz)
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and substitute z = (t + 1)/(t − 1), τ = (1 + ζ)/(1 − ζ) to conclude

I2 =
−2

√
A

1 + ζ
K
(1

τ

)
.

Thus (24) takes the form

G0(w) = log 4w − log(−B) +
2
√

A

1 + ζ
K
(1

τ

)
+ O

( 1

w

)
.

Since the boundary of f(D) lies on a trajectory of the quadratic differential (21),

(25) g(w) = Re
{
G0(w)

}
= log |w| − log

B

4
+

2
√

A

1 + ζ
K
(1

τ

)
+ O

( 1

w

)

is harmonic in the complement of f(D) except for a logarithmic singularity at
infinity and is constant on the boundary. But G0(w0) = 0, so g(w) = 0 on the
boundary. This shows that g is Green’s function of the complement of f(D). The
equivalence of transfinite diameter and logarithmic capacity (see Section 0) now
shows by (25) that

(26) R =
B

4
exp

[
2
√

A

1 + ζ
K
(1

τ

)]
=

ζK(ζ)2

π2
exp

[
π

(1 + ζ)K(ζ)
K
(1

τ

)]
.

Thus the ellipse solution may occur only for the single value of R satisfying
(26). This solves the case b = −1. For information on the explicit form of functions
f(z) which map the unit disk conformally onto the interior of an ellipse, see [9,
Chapter VII, Section 3].

5. The case −1 < b < 0

In the case −1 < b < 0, Γ is an analytic Jordan curve surrounding w = 0,
w = B and w = (b + 1)B . In this case we return to (19) in its original form

(19) F (z) =
A(z − z0)(1 − zz0)

(z − ζ)(1 − ζz)

where f(z0) = (b + 1)B and 0 < z0 < ζ . Now upon considering (18) along with
(19) we have four parameters; B , A , b , z0 . To express them in terms of R and
ζ we require four relations among the variables.
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Relation 1. Equate the expressions (18) and (19) for F (z) and let z approach
0 to get

(27) (b + 1) =
Az0

ζ
, (A > 0).

Relation 2. We find the analytic completion H(w) of Green’s function for the
complement of f(D) to establish a relation among R , b , B and ζ . If w1 = f(1),
then

H(w) = G(w) − G(w1)

where

G(w) =

∫ w

B

√
w − (b + 1)B

w − B

dw

w
.

A calculation now reveals that

(28) G(w) = log w + log
−4

bB
+

√
b + 1 log

(
1 −

√
b + 1

1 +
√

b + 1

)
+ O

(
1

w

)

and

(29) G(w1) =

∫ w1

B

√
w − (b + 1)B

w − B

dw

w
=

∫ 1

ζ

√
A(z − z0)(1 − z0z)

(z − ζ)(1 − ζz)

dz

z
.

We may substitute t = (z−1)/(z+1), τ = (1+ζ)/(1−ζ) and t0 = (1+z0)/(1−z0)
in (29) to obtain

G(w1) =
√

A
2(1 + z0)

1 + ζ

∫ 0

−1/τ

(t2 − t−2
0 ) dt

(t2 − 1)
√

(t2 − t−2
0 )(t2 − τ−2)

.

Now let ω = −τt . This gives

(30) G(w1) =
√

A

[
2(1 − z0)t

2
0

1 + ζ
K

(
t0
τ

)
− 8z0

(1 − z0)(1 + ζ)
Π

(
1

τ2
,
t0
τ

)]
,

where

Π(α2, k) =

∫ 1

0

dt

(1 − α2)
√

(1 − t2)(1 − k2t2)
,

the normal complete elliptic integral of the third kind. Therefore,

H(w) = log w + log
−4

bB
+
√

b + 1 log

(
1 −

√
b + 1

1 +
√

b + 1

)
− G(w1) + O

(
1

w

)
.
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An argument similar to that used for the ellipse case shows that Re
{
H(w)

}
is

Green’s function for the complement of f(D). Thus if G(w1) is given by (30),
then

(31) log R = log
−bB

4
+

√
b + 1 log

(
1 +

√
b + 1

1 −
√

b + 1

)
+ G(w1).

Relation 3. We use the equality

(32)

∫ B

(b+1)B

√
(b + 1)B − w

w − B

dw

w
=

∫ ζ

z0

√
A(z − z0)(1 − z0z)

(ζ − z)(1 − ζz)

dz

z
.

The left side of (32) is easily seen to be π(1 −
√

b + 1 ) while the right side is an
elliptic integral. We refer to formulas 253.00, 253.11, 253.12 and 340.01 in [3] to
conclude that the right side of (32) is equal to

(33)
2
√

A

z−1
0 − ζ

[(
1

ζ
−ζ

)
Π(α2, k)+

(
ζ− 1

ζ

)
Π

(
α2

ζ2
, k

)
+

(
1

z0
+z0−

1

ζ
−ζ

)
K(k)

]
,

where

α2 =
ζ − z0

ζ−1 − z0
, k2 = α2 · 1 − ζ−1z0

1 − ζz0
.

A special addition formula for elliptic integrals of the third kind ([3, 117.01]) allows
us to simplify (33) to

2
√

A

z−1
0 − ζ

[
2

(
1

ζ
− ζ

)
Π(α2, k) +

(
1

z0
+ z0 −

2

ζ

)
K(k)

]
− π

2

√
Az0

ζ
.

Now equality in (32) tells us that

(34)
√

b + 1 =
π

2

√
z0

ζ

(
1

z0
− ζ

)[
2

(
1

ζ
− ζ

)
Π(α2, k) +

(
1

z0
+ z0 −

2

ζ

)
K(k)

]−1

,

where (27) has been used. Equation (34) enables us to express b (and thus A) in
terms of z0 and ζ .

Relation 4. We now have three equations (27), (31) and (34) relating the
parameters B , A , b , z0 to R and ζ . For a final fourth relation, we use the fact
that f ′(0) = 1 along with the equality of the integrals,

∫ (b+1)B

f(ε)

√
(b + 1)B − w

B − w

dw

w
=

√
Az0

ζ

∫ z0

ε

√
(z0 − z)(z−1

0 − z)

(ζ − z)(ζ−1 − z)

dz

z
.
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For small ε > 0 the left side of this equation is calculated to be

√
b + 1 log

−4(b + 1)B

bf(ε)
+ log

1 −
√

b + 1

1 +
√

b + 1
+ O(ε).

The right integral is equal to

√
Az0

ζ

(
Jε + log

z0

ε

)
+ O(ε),

where

Jε =

∫ z0

ε

(√
(z0 − z)(z−1

0 − z)

(ζ − z)(ζ−1 − z)
− 1

)
dz

z
.

Let ε → 0 in both sides and recall that

lim
ε→0

f(ε)

ε
= 1,

to obtain the final fourth relation,

(35) log B = − 1√
b + 1

log
1 −

√
b + 1

1 +
√

b + 1
+ log

−bz0

4(b + 1)
+ J0.

The elliptic integral J0 will be left in open form for simplicity.
We now prove that the three relations (31), (34) and (35) give a well-defined

relation between R , ζ and B . To do this we show that for fixed ζ , R and B
both depend monotonically on z0 for values of z0 between 0 and ζ .

First, the relationship between R and B must be monotone as proven in the
following lemma.

Lemma. Suppose f ∈ SR and
∣∣f(ζ)

∣∣ ≥
∣∣g(ζ)

∣∣ for all g ∈ SR . Then

for each ε > 0 there exist δ satisfying 0 < δ < ε , and f∗ ∈ SR+δ such that∣∣f∗(ζ)
∣∣ >

∣∣f(ζ)
∣∣ .

Since ζ is positive we have B = f(ζ) > 0. We now choose a particular
variation of the type found in (7) to preserve S while increasing R slightly. First
select the points w0 , w1 and w2 in (7) so that w1 > B > 0 and w0 < 0. After
choosing ε1 = −̺2 and ε2 = 0 in (7), it is easily verified that for arbitrarily small
̺ > 0, we may choose a(̺) such that:

(a) equation (8) is satisfied, thus S is preserved,
(b) the transfinite diameter R∗ of the function f∗ = V̺ ◦ f satisfies

R < R∗ < R + ε ;
(c) Re

{
log f∗(ζ)

}
> Re

{
log f(ζ)

}
.

Note that (c) is satisfied using (11). This proves the lemma.
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Next we divide both sides of (32) by
√

b + 1 =
√

Az0/ζ and differentiate with
respect to z0 to obtain

(36)
∂b

∂z0
> 0.

Equation (35) may now be used along with (36) to show that log B and thus B
has positive derivative with respect to z0 . Therefore both R and B are monotone
with respect to z0 .

This monotonicity indicates that the case −1 < b < 0 may occur only for
values of R and ζ corresponding to 0 < z0 < ζ . Since z0 = 0 corresponds to
R = 1 and z0 = ζ corresponds to the ellipse case (b = −1), we see that the case
−1 < b < 0 may occur only in the sub-region of the R, ζ half-strip (

{
(R, ζ) : R >

1, 0 < ζ < 1
}

) lying below the curve (26). Further, the monotonicity of R with
respect to z0 shows that when the extremal function falls only into this case, the
extremal function is unique.

6. The case b < −1

Here there are two subcases:

Subcase α : Γ consists of a Jordan curve passing through w = (b+1)B along
with a slit

[
(b + 1)B, η

]
on the real axis (the slit may have length zero).

Subcase β : Γ is an analytic Jordan curve surrounding w = 0, w = B and
w = (b + 1)B .

We handle the former subcase first. In Subcase α , F as given by (18) and
(19) has a double zero on the unit circle so that (19) becomes

(37) F (z) =
A(z + 1)2

(z − ζ)(1 − ζz)
.

Upon considering (18) along with (37) we have three parameters; A , B , b . To
express them in terms of R and ζ we require three relations among the variables.
Evaluating limz→0 F (z) in each of the expressions (18) and (37) gives us the first
relation:

(38) b + 1 =
−A

ζ
.

For the second relation we calculate G(w) :

G(w) =

∫ w

(b+1)B

√
w − (b + 1)B

w − B

dw

w

= log w + log
4

bB
+ 2

√
A

ζ
arg

(√
A

ζ
+ i

)
+ O

(
1

w

)
,
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where the fundamental function element is chosen and (38) has been used. Since
Re
{
G(w)

}
is Green’s function for the complement of f(D), we see that

(39) log R = log
−bB

4
+ 2

√
A

ζ
arg

(√
A

ζ
+ i

)
.

To establish a third relation we use the equality of the integrals,

∫ B

f(ε)

√
w − (b + 1)B

B − w

dw

w
=

√
A

∫ ζ

ε

z + 1√
(ζ − z)(1 − ζz)

dz

z
.

Upon calculation it is clear that the first integral is

−i log
b

2i
√

−(b + 1) + b + 2
−
√

−(b + 1) log
bf(ε)

4(b + 1)B
+ O(ε),

while the second integral is

−
√

A

ζ
log

(1 − ζ)2

4ζ
ε + O(ε).

Since the two integrals are equal for all small ε > 0, we let ε approach zero and
use the fact that f ′(0) = 1 to conclude

(40)

√
ζ

A
arg

b

2i
√

−(b + 1) + b + 2
= log

[
b

(b + 1)B
· ζ

(1 − ζ)2

]
.

Employing (39) to eliminate B and (38) to eliminate b we find
(41)

log R = log
ζ

(1 − ζ)2
+log

(
A

ζ
+2+

ζ

A

)
+2

(√
A

ζ
−
√

ζ

A

)
arg

(√
A

ζ
+ i

)
− log 4.

A calculation reveals that this expression for log R is monotone with respect to
A . Thus (41) determines A for given values of R . Therefore, equations (39) and
(41) determine B parametrically in terms of R and ζ for Subcase α .

To determine for which values of R and ζ Subcase α may occur, we will
determine for what values of R the “no-slit” domain described above has inner
radius r ≥ 1. If r = 1, then the “no-slit” domain possibly corrresponds to an
extremal function. If r > 1 the “no-slit” domain can be modified by the addition
of a horizontal radial slit of suitable length to reduce the inner radius of the domain
to exactly 1. For r < 1 this subcase may not occur.
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Our work will be simplified by obtaining an explicit expression for A in terms
of ζ alone for the “no-slit” region. To do this we make use of a special contour
integral. In the w -plane, let Γε be the union of the two line segments

[
(b + 1)B,

f(−ε)
]
,
[
f(ε), B

]
and the lower semicircle joining w = f(−ε) to w = f(ε) . Note

that f(−ε) = −f(ε)+O(ε2) so the semicircle construction will remain valid when
we allow ε to approach zero later. In the z -plane let γε be the union of the
segments [−1,−ε] , [ε, ζ] and the lower semicircle joining z = −ε to z = ε . Then
the semicircle in the w -plane is path-homotopic to the image under f of the
prescribed semicircle in the z -plane. Since f(−1) = (b + 1)B for the “no-slit”
region, it is clear that

∫

Γε

√
(b + 1)B − w

w − B

dw

w
=

√
A

∫

γε

z + 1√
(ζ − z)(1 − ζz)

dz

z
.

A calculation reveals that the first and second integrals are

π +
√
−(b + 1)πi + O(ε)

and

2

√
A

ζ
log

1 −
√

ζ

1 +
√

ζ
+

√
A

ζ
πi + O(ε),

respectively. Now by letting ε approach zero and comparing imaginary parts, we
again obtain (38), while a comparison of real parts tells us that

(42) A =
π2ζ

4

[
log

(
1 −

√
ζ

1 +
√

ζ

)]2 .

We define

(43) Ψ(ζ) =
π

2 log

(
1 +

√
ζ

1 −
√

ζ

)

and combine (39) and (42) to establish the relation

(44) B =
4R

Ψ(ζ)2 + 1
e−2Ψ(ζ) arg(Ψ(ζ)+i).

The same calculation as that used to obtain (40) tells us for the “no-slit”domain
that √

ζ

A
arg

b

2i
√

−(b + 1) + b + 2
+ log

(b + 1)B

b
· (1 − ζ)2

ζ
= log r.
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Using (44) we see that r ≥ 1 exactly when

(45) log R ≥ log
ζ

(1 − ζ)2
+ log

(
Ψ(ζ)2 + 1

)2

4Ψ(ζ)2
+ 2

Ψ(ζ)2 − 1

Ψ(ζ)
arg
(
Ψ(ζ) + i

)
.

Thus the extremal function can have the form of Subcase α only if R satisfies
(45). If R does not satisfy (45), then the extremal function takes the form of
Subcase β or one of the cases b = −1, b > −1. Note that when, in Subcase α ,
the solution region has no slit, then

B =
ζ

(1 − ζ)2

[
Ψ2 + 1

Ψ2
e−(2/Ψ) arg(Ψ+i)

]
,

which compares favorably with the Koebe distortion theorem since the term in
square brackets takes values between 0 and 1 for all ζ ∈ (0, 1). This is easily
proven by noting that the expression in brackets has limits 1 and 0 at ζ = 1,
respectively; while it is monotone with respect to ζ between those two values.
Note that letting ζ approach zero in (45) leads to the inequality R ≥ ε2π2/64,
which agrees with previous work in [6]. This completes Subcase α .

In Subcase β , as in the case b > −1, both R and B will be expressed in
terms of a third parameter z0 ; further, the solutions will involve the use of elliptic
integrals. Note that work in the previous cases and Subcase α above implies that
Subcase β certainly occurs for values of R and ζ lying between the curve (26)
and the curve obtained by taking equality in (45).

Again F (z) is given by (18) and (19) so

(46) b + 1 =
Az0

ζ
.

Now let w−1 = f(−1), the point where Γ meets the negative real axis, and
consider

H0(w) =

∫ w

w
−1

√
w − (b + 1)B

w − B

dw

w
= G̃(w) − G̃(w−1),

where

G̃(w) =

∫ w

(b+1)B

√
w − (b + 1)B

w − B

dw

w
.

Since Γ satisfies (10) we see that H0(w) is the analytic completion of Green’s
function for the complement of f(D). Considering (45) and the analysis leading
up to it, we have

log R = log
−bB

4
+ 2

√
−Az0

ζ
arg

(√−Az0

ζ
+ i

)
+ Re

{
G̃(w−1)

}
,
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where (46) has been used. Also, by (19),

G̃(w−1) =

∫ w
−1

(b+1)B

√
w − (b + 1)B

w − B

dw

w
=

√
A

∫ −1

z0

√
(z − z0)(1 − z0z)

(z − ζ)(1 − ζz)

dz

z
.

Now a series of substitutions similar to those used to obtain (33) shows that

G̃(w−1) =
√

A
2(1 − z0)

1 + ζ
K

(
t0
τ

)
−
√

A
8z0

(1 + ζ)(1 − z0)
Π

(
t20,

t0
τ

)
,

where as before, K and Π are normal complete elliptic integrals of the first and
third kind, respectively. Hence

(47) log R = log
−bB

4
+ 2

√
−Az0

ζ
arg

(√−Az0

ζ
+ i

)
+ G̃(w−1).

We now establish a third relation that will determine A (and thus b by (46))
in terms of z0 and ζ . Let T be the unit circle and as usual, let Γ be the boundary
of f(D) . Then the equivalence of (18) and (19) implies that

(48)

∫

T

√
A(z − z0)(1 − z0z)

(ζ − z)(1 − ζz)

dz

z
=

∫

T

√
(b + 1)B − w

w − B

dw

w
.

By calculating the residue at infinity of the integrand in the second integral, we
see that its value is 2π . The first integral, which is elliptic, will be left in open
form after a simplifying substitution. With z = eiθ , the left side of (48) becomes

2

√
−Az0

ζ
J(z0, ζ),

where

(49) J(z0, ζ) =

∫ π

0

√
cos θ − 1

2
(z0 + z−1

0 )
1
2 (ζ + ζ−1) − cos θ

dθ.

Note that J(z0, ζ) is positive for −1 < z0 < 0 and 0 < ζ < 1 and

(50) J(−1, ζ) = 2 log
1 +

√
ζ

1 −
√

ζ
.

Equation (48) implies that

(51) b + 1 =
Az0

ζ
=

−π2

J(z0, ζ)2
.
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We may now view (47) as a relation expressing B in terms of R , ζ and z0 .
To express B parametrically in terms of R and ζ alone we need one further

relation. It is obtained by observing that since (18) and (37) are equivalent,

(52)

∫ B

f(ε)

√
(b + 1)B − w

w − B

dw

w
=

∫ ζ

ε

√
A(z − z0)(1 − z0z)

(ζ − z)(1 − ζz)

dz

z
.

After dividing both sides by

√
−(b + 1) =

√
−Az0

ζ
,

the left side of this expression may be rewritten as

∫ 1

f(ε)/B

(√
1 − w(b + 1)−1

1 − w
− 1

)
dw

w
− log f(ε) + log B,

while the right side is equal to

log ζ − log ε +

∫ ζ

ε

(√
(z − z0)(z − z−1

0 )

(ζ − z)(ζ−1 − z)
− 1

)
dz

z
.

We now let ε approach 0 and use the fact that f ′(0) = 1 to see that

(53)

log B =

∫ ζ

0

(√
(z − z0)(z − z−1

0 )

(ζ − z)(ζ−1 − z)
− 1

)
dz

z
+ log ζ

−
∫ 1

0

(√
1 − w(b + 1)−1

1 − w
− 1

)
dw

w
.

Together, equations (53) and (47) indicate that R and B are related parametri-
cally in terms of z0 for a fixed value of ζ .

The solution to the problem will be complete once it is shown that R varies
monotonically with z0 . This monotonicity will imply that the extremal function
is unique when it falls into Subcase β . Further it will imply that all the cases we
have described actually occur and the solution is unique in each case.

To prove monotonicity, it is sufficient in view of the lemma in Section 5 to
show that ∂B/∂z0 < 0. Toward this end we differentiate with respect to z0 in
(53) to obtain

(54)

∂ log B

∂z0
= 1

2
(z−2

0 − 1)

∫ ζ

0

dz√
q̃(z)

− 1
2

∂b

∂z0

∫ 1

0

dw
[
− (b + 1)

]3/2√
(1 − w)(w − b + 1)

,
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where

q̃(z) = (ζ − z)

(
1

ζ
− z

)
(z − z0)

(
z − 1

z0

)
.

Although we could now obtain an expression for ∂b/∂z0 directly from (51), our
calculations will be facilitated if we instead use the following relation,

∫ f(−ε)

(b+1)B

√
w − (b + 1)B

B − w

dw

w
=

∫ −ε

z0

√
A(z − z0)(1 − z0z)

(ζ − z)(1 − ζz)

dz

z
.

We proceed just as with (52) above to obtain

(55)

log B = −
∫ 0

z0

(√
(z − z0)(z − z−1

0 )

(ζ − z)(ζ−1 − z)
− 1

)
dz

z
+ log

z0

b + 1

+

∫ 0

b+1

(√
1 − w(b + 1)−1

1 − w
− 1

)
dw

w
.

After differentiating (55) and comparing the result with (54) we conclude that

∂b

∂z0
=

1

π
(z−2

0 − 1)
[
− (b + 1)

]3/2
∫ ζ

z0

dz√
q̃(z)

.

This in turn allows us to conclude that

(56)
∂ log B

∂z0
= 1

2
(z−2

0 − 1)

[
2

π
arctan

√
−(b + 1)

∫ ζ

z0

dz√
q̃(z)

−
∫ 0

z0

dz√
q̃(z)

]
.

Though an analytic proof is yet to be found, computer calculations have shown
numerically that the expression in (56) is negative over a wide range of values of z0

and ζ . The method of numerical integration used relies upon a modified Newton–
Cotes formula known as Weddle’s rule ([2, Chapter 3]) after a change of variable.
A few sample values are shown in Table 1 below. These data suggest that B and
thus R varies monotonically with respect to z0 in Subcase β . Thus the data also
indicate that the extremal function for all values of R and ζ is unique.

ζ = .9 ζ = .5 ζ = .1

z0 = −.99 −1.7422 −1.1367 −0.3092

z0 = −.9 −0.8747 −0.5450 −0.1408

z0 = −.5 −0.2206 −0.1204 −0.0271

z0 = −.1 −0.0108 −0.0051 −0.0010

z0 = −.01 −0.00012 −0.00005 −0.00001

Table 1. Table entries are numerical values for the bracketed terms in (56) above.
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7. Summary of results

Before stating our results in the form of a theorem, we summarize the five
types of extremal functions which may occur.

I. The extremal function f maps D onto a region bounded by a Jordan curve
which is analytic except for a corner at the point w = (b + 1) ·

∣∣f(ζ)
∣∣ along with

a radial slit from (b + 1) ·
∣∣f(ζ)

∣∣ toward the origin. The length of this slit is
determined by the fact that f ′(0) = 1. Extremal functions of this type are unique
when they occur.

∣∣f(ζ)
∣∣ is given implicitly by (39) and (41). This solution type

may occur only for values of R and ζ lying above the curve (45).

II. The extremal function f maps D onto a region similar to that described
for Type I solutions except that the slit has length zero. Again

∣∣f(ζ)
∣∣ is given by

(39) and (41). This type of solution may occur only for values of R and ζ lying
on (45).

III. The extremal function f maps D onto a region bounded by an analytic
Jordan curve surrounding the point w = (b + 1) ·

∣∣f(ζ)
∣∣ , where b > −1. Extremal

functions of this type are unique when they occur and they may occur only for
values of R and ζ lying below the curve (26).

∣∣f(ζ)
∣∣ is given parametrically in

terms of complete elliptic integrals by equations (31) and (35).

IV. The extremal function f maps D onto the interior of an ellipse with foci
at w = 0 and w =

∣∣f(ζ)
∣∣ . This type of solution occurs only for R and ζ lying on

the curve (26).
∣∣f(ζ)

∣∣ is given directly in terms of complete elliptic integrals by
(30).

V. The extremal function f maps D onto a region bounded by an analytic
Jordan curve surrounding the point w = (b + 1) ·

∣∣f(ζ)
∣∣ , where b < −1.

∣∣f(ζ)
∣∣ is

given parametrically in terms of complete elliptic integrals by (47) and (53).

We have established the following results.

Theorem. Given ζ ∈ D and R ∈ (1,∞) , each function f maximizing
∣∣g(ζ)

∣∣
over the class SR maps D onto a region bounded by arcs lying on trajectories of

the quadratic differential (10) . In (10) the negative parameter b is determined by

R and ζ . For all values of R and ζ , arg f(ζ) = arg ζ . For values of R and ζ lying

below the curve (26) each extremal function is either of Type III or Type V. On

the curve (26) itself each extremal function is of Type IV or Type V. In the region

between the curves (26) and (45) the solution is of Type V. On the curve (45)
the solution is of Type II or Type V. Finally, above the curve (45) the solution is

of Type I or Type V.

As mentioned in Section 6, numerical evidence indicates that extremal func-
tions of Type V may occur only in the region between the curves (26) and (45).
This numerical evidence also suggests that the extremal function is unique for each
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value of R and ζ . For each type of solution, the value of the derivative of the
extremal function at ζ may be obtained using the calculations in Section 3.

It should be mentioned that one can show for values of R and ζ lying on
the curve (26) that the extremal function is of Type IV and is unique. This is
done by defining Rf to be the transfinite diameter of f(D) and then finding the
maximum of ∣∣f(ζ)

∣∣
Rf

over the class S . The extremal functions for this problem all map D onto the
interior of an ellipse.

Figure 4. A graph of the curves (26) and (45) as drawn using Matlab. Roman numerals are used

to indicate which solution types may occur in each region of the (R, ζ) half-strip.

Note added in proof. During the publication process it was brought to the
author’s attention that certain of the results (particularly those established in
Section 2) were previously established by A. Solynin and M. Gavrilyuk in their
article “Moduli estimates for certain classes of univalent functions” in the Russian
language publication Dynamic Problems in Mechanics of a Continuous Medium

63, 1983. Their approach employs the method of extremal lengths. Our approach
is new as are the results involving the distribution of solutions for various values
of R and ζ and the quantitative estimates of solutions.
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