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Abstract. Let g generate a nondiscrete convergence group in the 2 -sphere S2 . We show
that then there exists a homeomorphism f of S2 onto itself such that (f−1◦g◦f)(z) equals e2πiαz
or e2πiα/z̄ where α is an irrational number. In combination with known results this implies that
every sense-preserving cyclic convergence group in S2 is topologically conjugate to a group of
Möbius transformations. Further, we prove that any abelian nondiscrete convergence group on S2

is topologically conjugate to a Möbius group.

1. Introduction and results

1.1. The essential topological properties of uniformly quasiconformal groups
are captured by the notion of a convergence group, defined by Gehring and Martin
in [4, p. 335]. We say that a group G of homeomorphisms of the n -dimensional
sphere Sn onto itself is a convergence group if it has the following convergence

property : every sequence of elements of G contains a subsequence, say gj , such
that

(i) gj → g and g−1
j → g−1 uniformly on Sn , where g is a homeomorphism; or

(ii) there are x0, y0 ∈ Sn (possibly x0 = y0 ) such that gj → x0 and g−1
j → y0

locally uniformly on Sn \ {y0} and Sn \ {x0} , respectively.

Any group of K -quasiconformal, or, for n = 1, of K -quasisymmetric functions,
for a fixed K ≥ 1, is a convergence group. A group G is discrete if it does
not contain a sequence of distinct elements converging to the identity mapping
uniformly on Sn ; otherwise, G is nondiscrete.

We say that the group G (or the function g ) is topologically conjugate to a
Möbius group (or to a Möbius transformation) if there is a homeomorphism f of
Sn onto itself such that f−1 ◦G ◦ f (or f−1 ◦ g ◦ f ) is a Möbius group (or trans-
formation). Of course, a Möbius group is any group of Möbius transformations,
and we allow the elements of G as well as Möbius transformations to be sense-
reversing. We denote the identity mapping by Id and write g0 = Id, gj = g ◦gj−1

and g−j = (g−1)j for j ≥ 1.
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1.2. We consider under what circumstances a cyclic convergence group G
on Sn generated by g 6= Id is topologically conjugate to a Möbius group, or,
equivalently, the question of when such a function g is conjugate to a Möbius
transformation. Suppose first that n = 1. If G is discrete then g is conjugate to
an elliptic, parabolic, hyperbolic or orientation reversing Möbius transformation
of S1 . If G is nondiscrete then g is also conjugate to a Möbius transformation h
which we may take to be an irrational rotation z 7→ e2πiαz where α is an irrational
number. For these results, see [5] and [21].

Suppose then that n ≥ 2, and let G be discrete. Gehring and Martin ([4,
p. 340]) classified the functions g that can occur as generators into three classes:

(i) g is called elliptic if g has finite order;
(ii) g is parabolic if g has a unique fixed point x0 and then gj(x) → x0 as j → ∞

or j → −∞ locally uniformly on Sn \ {x0} ;
(iii) g is loxodromic if g has exactly two fixed points x1 and x2 and then, say,

gj(x) → x1 and g−j(x) → x2 as j → ∞ , locally uniformly on Sn \ {x2} and
Sn \ {x1} , respectively.

When n ≥ 3, we refer to [4, pp. 354–356] for discussion and references.
Suppose that n = 2. Kerékjártó [14] proved that a sense-preserving loxodromic
function is topologically conjugate to the Möbius transformation h(z) = 2z . The
same proof applies to sense-reversing loxodromic functions and shows that they
are conjugate to h(z) = 2z̄ . Furthermore, a result of Sperner [20] and Kerékjártó
[13] shows that a sense-preserving parabolic mapping is topologically conjugate to
h(z) = z + 1. In [6], it was proved that a sense-reversing parabolic function is
conjugate to h(z) = z̄ + 1.

A theorem due in part to Brouwer, Kerékjártó, and Eilenberg [3] shows that an
elliptic element g in S2 is topologically conjugate to an orthogonal transformation,
and thus, to h(z) = cz or h(z) = c/z̄ where c is a root of unity.

1.3. The question remains of what can be said in the situation that g gen-
erates a nondiscrete convergence group. This is settled by the following theorem,
which is one of our main results.

Theorem 1. Let g generate a nondiscrete convergence group in S2 . Then

there is a homeomorphism f of S2 onto itself such that

(1.1) (f−1 ◦ g ◦ f)(z) = e2πiαz

if g is sense-preserving, while

(1.2) (f−1 ◦ g ◦ f)(z) = e2πiα/z̄

if g is sense-reversing, where α is an irrational number.
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Thus such a sense-preserving g is conjugate to an irrational rotation.
All of the above together yields the following consequence.

Corollary 1. If g generates a convergence group in S2 , then g is topologi-

cally conjugate to a Möbius transformation.

It follows that among the homeomorphisms of S2 , the functions topologically
conjugate to Möbius transformations are exactly the ones that generate cyclic
groups with the convergence property expressed in the definition of a convergence
group, which is analogous to the characteristic property of normal families of
analytic functions.

We note that in spite of this result for cyclic groups, not every discrete con-
vergence group in S2 containing only sense-preserving elements is topologically
conjugate to a Möbius group, as has been pointed out in [4, Theorem 7.31, p. 356].
For various results on noncyclic discrete convergence groups on S2 , see [16].

Our second main result is the following extension of Theorem 1.

Theorem 2. Let G be an abelian nondiscrete convergence group on S2 .

Then there is a homeomorphism f of S2 onto itself such that f−1 ◦ G ◦ f is a

Möbius group.

Let G be a (not necessarily cyclic) nondiscrete convergence group on S2 . We
say that x ∈ S2 is in the limit set L∗(G) of G if and only if there is y ∈ S2

(possibly y = x) and a sequence gj ∈ G such that gj → x locally uniformly in
S2 \ {y} as j → ∞ . (Note that the more usual definition of L∗(G) by means
of properly discontinuous action would lead to L∗(G) being always equal to S2 .)
The proof of [4, Theorems 4.5 and 4.9] shows that either L∗(G) = S2 , or L∗(G)
is a perfect nowhere dense subset of S2 , or L∗(G) consists of at most two points.
In the last case we say that G is elementary. By Theorem 1, a nondiscrete cyclic
convergence group has an empty limit set and is thus elementary.

In general one might ask what can be said about the structure of an elementary
convergence group G . If L∗(G) consists of exactly one point, then the example in
[4, p. 356] shows that G need not be topologically conjugate to a Möbius group if G
is discrete. A simple modification of that same example, obtained by replacing the
Fuchsian group acting on the unit disk by the group of all Möbius transformations
of the unit disk onto itself, gives a counterexample for nondiscrete groups.

However, it seems to us that when L∗(G) is empty or consists of two points,
positive conjugacy results might be obtained by means of introducing a certain
metric on S2 that is invariant under G . As the development of the theory of this
metric involves a lot of detailed work, we will postpone it to another paper.

Throughout the paper, we denote the complex plane by C and identify S2

with C = C ∪ {∞} , whenever convenient. We denote by H(S2) the group of all
homeomorphisms of S2 onto itself. We write B(z0, r) = {z ∈ C : |z − z0| < r} ,
B(r) = B(0, r) , S(z0, r) = {z ∈ C : |z − z0| = r} and S(r) = S(0, r) whenever



208 A. Hinkkanen and G. J. Martin

z0 ∈ C and r > 0. We also write S1 for S(0, 1). We denote the real axis by R

and write R for the extended real axis R ∪ {∞} . The set of integers is denoted
by Z .

We next note the following result.

Theorem 3. Let G be a closed abelian subgroup of H(S2) with only sense-

preserving elements and with the convergence property. Then G is isomorphic as

a topological group to one of the following:

(1) R , R2 , R ⊕ Z , R ⊕ Zm , C \ {0} , S1 , S1 ⊕ Z , or

(2) Z , Z2 , Zm , Z⊕ Zm , Z2 ⊕ Z2 ,

the group operation being multiplication on C \ {0} , S1 , and the S1 -part of

S1 ⊕ Z , and addition otherwise. The possibilities in (1) occur if and only if G is

nondiscrete.

Here Zm = Z/(mZ) , where m ≥ 2. The group Z2⊕Z2 , also denoted by D2 ,
is the Vierergruppe. For example, {z 7→ λz : λ > 0} is isomorphic to the additive
group R . Not all closed nondiscrete abelian subgroups of H(S2) are convergence
groups. One example of this is

G =
{
(x, y) 7→ (sx, ty) : s, t ∈ R \ {0}

}
.

To prove Theorem 3, we note that if G is as in Theorem 3, then G is topo-
logically conjugate to a Möbius group. If G is nondiscrete, this follows from
Theorem 2 above, and if G is discrete, the same follows by combining [4, Theo-
rem 5.15, p. 343], and [16, Theorem 4.3, p. 397]. Considering what kind of closed
abelian sense-preserving Möbius groups there can be, we arrive at the list given
in (1) and (2). For discrete groups, all possibilities (up to conjugacy by a Möbius
transformation, which does not affect the conclusion of Theorem 3) are listed in
[2, pp. 84–90]. Note that all abelian Möbius groups are elementary ([2, pp. 69,
70, 83]). For nondiscrete groups, the possibilities can be gathered from the proof
of Theorem 2. Alternatively, they may be obtained from the description of ele-
mentary Möbius groups with only sense-preserving elements as given in [2, p. 84],
considering the possibilities that can occur when the group is, in addition, abelian
and closed. This proves Theorem 3.

In the proof of Theorem 2, we shall make use of a result of Kerékjártó ([12,
p. 115]) that states the following. If ht is a one-parameter family of sense-
preserving homeomorphisms of S2 onto itself, all of them, other than the identity,
fixing the same point and no other point, then there is a homeomorphism f of C

such that (f−1◦ht◦f)(z) = z+t for all real t . Later on in the proof of Theorem 2,
we shall need a similar result for a one-parameter family of loxodromic mappings.
As it seems to us that this result has not been obtained in previous literature, we
shall prove it here. We state it separately for possible later reference.
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Theorem 4. Let ht be a one-parameter family of loxodromic mappings

of S2 . Thus each ht (for t ∈ R) is a sense-preserving homeomorphism of S2

onto itself, each ht for t 6= 0 can be topologically conjugated to a loxodromic or

hyperbolic Möbius transformation, and ht+u = ht◦hu for all real t and u . Further,

the mapping of R into H(S2) taking t onto ht is a continuous function of t . Then

there is a homeomorphism f of S2 onto itself such that (f ◦ ht ◦ f
−1)(z) = etz

for all z ∈ C = S2 and all real t .
If each ht commutes with every rotation z 7→ cz , where |c| = 1 , then we may

choose f so that f also commutes with every such rotation.

The proof of Theorem 4 will be given in Subsection 6.13.
Finally, we want to observe the following two interesting corollaries of our

work here, suggested by the referee.

Corollary 2. There is a neighbourhood U of the identity mapping in H(S2)
such that no nontrivial convergence group of S2 is contained in U .

Thus every convergence group has the “no small subgroups” property. It is
clear that in order to establish the result it is enough to consider only cyclic groups.
A nondiscrete cyclic group is necessarily a conjugate of an irrational rotation by
Corollary 1. The sphere is then foliated by invariant topological circles, one of
which must have large diameter. It is not too difficult to see that the result
follows by consideration of the nearly transitive action of the cyclic group on this
circle. If the cyclic group is discrete and either parabolic or loxodromic the result
is immediate. There remains only the case that the cyclic group has finite order.
Again however the existence of an invariant foliation by topological circles, since
the map is topologically conjugate to a rotation, leads directly to a proof. Indeed
we see that the neighbourhood U can be taken to be of the form

U =
{
f ∈ H(S2) : sup

{
q
(
x, f(x)

)
: x ∈ S2

}
< ε

}

for some suitable ε > 0 where q(x, y) denotes the chordal distance between x
and y .

The following result is a consequence of a group having no small subgroups
(see [10, Theorem 6, p. 95]).

Corollary 3. Any closed nondiscrete convergence group of S2 contains a

nontrivial one-parameter subgroup.

We would like to thank the referee for his detailed comments. In particular, he
suggested the argument given in Subsection 6.7, which is perhaps simpler than our
original argument for this case, he pointed out a difficulty in our original argument
for Case II in Section 6, which prompted us to provide the present proof, and he
suggested the previous two corollaries.

We would also like to thank Pekka Tukia for useful suggestions.
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2. Outline of the proof of Theorem 1

2.1. As the proof of Theorem 1 involves several steps that sometimes require
lengthy proofs, we formulate two lemmas that essentially imply Theorem 1. Then
we prove these lemmas in the sections that follow. We assume throughout that g
generates a nondiscrete convergence group G on S2 .

Lemma 1. Suppose that g is topologically conjugate to the function z 7→
e2πiαz for some irrational α whenever g is sense-preserving. Then g is topologi-

cally conjugate to z 7→ e2πiα/z̄ for some irrational α whenever g is sense-reversing.

In view of Lemma 1, we may assume from now on that g is sense-preserving.
One of the most difficult auxiliary results we need to prove is the following.

Lemma 2. If g is as in Theorem 1 and is sense-preserving, then there is no

sequence mj → ∞ such that gmj → x0 and g−mj → y0 uniformly on compact

subsets of S2 \ {y0} and S2 \ {x0} , respectively.

Thus any sequence of iterates of g contains a subsequence, say gkj , such that

gkj → h and g−kj → h−1 uniformly on S2 where h is a homeomorphism.

2.2. Recall that H(S2) is the group of all homeomorphisms of S2 onto itself.
For x, y ∈ S2 we write q(x, y) for the chordal distance of x and y induced by the
Euclidean metric in R3 . For f1, f2 ∈ H(S2) we set

d(f1, f2) = sup
{
q
(
f1(x), f2(x)

)
: x ∈ S2

}
.

The metric d induces the topology of uniform convergence on S2 , the usual topol-
ogy of H(S2) .

Following Kerékjártó, we say that h ∈ H(S2) is regular at x ∈ S2 if for
each ε > 0 there is δ > 0 such that if q(x, y) < δ then q

(
hn(x), hn(y)

)
< ε

for all integers n . Kerékjártó proved in [14, p. 250], that if h is a nonperiodic
sense-preserving homeomorphism of S2 that is regular at each point of S2 , then
h is topologically conjugate to a rotation z 7→ e2πiαz , where α is irrational. To
complete the proof of Theorem 1, it thus suffices to show that g is regular on S2 .

If g is as in Theorem 1 and is sense-preserving, pick x ∈ S2 and ε > 0. If g
is not regular at x , then there is a sequence of points yk with q(x, yk) → 0 and
of integers mk with |mk| → ∞ such that

q
(
gmk(x), gmk(yk)

)
≥ ε

for all k . By Lemma 2, we may pass to a subsequence without changing notation
and assume that gmk → h uniformly on S2 where h is a homeomorphism. But
then gmk(x) → h(x) and gmk(yk) → h(x) , which gives a contradiction. Thus g
is regular at x . This proves Theorem 1, subject to Lemmas 1 and 2.
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Remark. It appears that well-known results of Montgomery and Zippin on
compact connected transformation groups in R3 (and S2 ), such as [17, Theo-
rem 6.7.1, p. 260], do not directly apply here, for even if Lemma 2 implies that
the closure of G in H(S2) is compact, there seems to be no obvious way to prove
that it is also connected. In retrospect, of course, it is seen that this closure is
indeed connected.

3. Proof of Lemma 1

Let the assumptions of Lemma 1 be satisfied, and let g be sense-reversing.
We may perform a preliminary conjugation and assume that g2(z) = e2πiαz where
α is irrational. Then g commutes with e2πiαz so that

(3.1) g(cz) = cg(z) for all z ∈ C

whenever c = e2πinα for some integer n , and thus, by continuity, whenever |c| = 1.
Thus g maps each circle S(r) onto a circle S

(
u(r)

)
where u is a homeomorphism

of (0,∞) onto itself. Also u ◦ u = Id since g2(z) = e2πiαz .

If u is increasing, then (3.1) implies that g is sense-preserving, which is a
contradiction. Thus u is strictly decreasing and has a unique fixed point t on
(0,∞) . We let v be any increasing homeomorphism of [t,∞) onto [1,∞) so that
v(t) = 1. For 0 < r < t , we set v(r) = 1/v

(
u(r)

)
. Thus v is an increasing

homeomorphism of (0,∞) onto itself, and (v ◦ u ◦ v−1)(r) = 1/r for all r > 0.

By (3.1), for all r > 0 there is ψ(r) with |ψ(r)| = 1 such that

g(reiθ) = u(r)ψ(r)eiθ

for all r and θ . Clearly ψ is a continuous function of r on (0,∞) . We have
ψ(r)ψ

(
u(r)

)
= e2πiα for all r > 0 since g2(z) = e2πiαz . In particular, ψ(t)2 =

e2πiα . We define f(0) = 0, f(∞) = ∞ , f(reiθ) = v(r)eiθ for 0 < r ≤ t , and

f(reiθ) = v(r)ψ(r)ψ(t)eiθ for t < r <∞,

so that f is a homeomorphism of S2 onto itself. One can verify that

(f ◦ g ◦ f−1)(z) = ψ(t)/z̄.

This proves Lemma 1.
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4. Results from two-dimensional topology

4.1. We shall often need to refer to convergence of continua. Recall that a
subset C of S2 is called a continuum if C is closed and connected and contains
at least two points. If C and Ci for i ≥ 1 are continua in S2 , we say that
Ci converges to C as i → ∞ , and write Ci → C , if any neighbourhood of any
point of C intersects all but finitely many Ci , and if any point outside C has a
neighbourhood that intersects only finitely many Ci . A basic result that can be
found in [22, Theorem 7.1, p. 8 and (9.12), p. 12], states the following.

Lemma 3. Any sequence Ci of continua, contained in a fixed compact subset

of the plane, contains a subsequence converging to a nonempty closed connected

set C . If each Ci has diameter at least ε , for some fixed positive ε , then C is a

continuum of diameter at least ε .

4.2. The next lemma is a purely topological result which is easy to believe
and which should be known, but for which we have not been able to find a direct
reference. Recall that a set Γ is locally connected at z0 ∈ Γ if any neighbourhood
U1 of z0 contains a neighbourhood U2 of z0 such that Γ ∩ U2 is contained in a
single component of Γ ∩ U1 ([22, p. 15]).

When we talk about straight lines on S2 , we are identifying S2 with C .

Lemma 4. Let D be a simply connected domain in S2 , set Γ = ∂D and

suppose that Γ is not locally connected at z0 ∈ Γ . Then Γ contains a continuum

of points ζ , contained in a preassigned neighbourhood of z0 , with the following

properties. There are parallel lines L1 and L2 , which we can choose to inter-

sect a preassigned neighbourhood of ζ , containing ζ in the open strip domain S
determined by them, and there are distinct components Ci of S ∩ Γ such that

the disjoint continua Ci tend to a continuum C containing ζ and such that if

i < j < k , then Cj separates Ci from Ck and from C in S . The continuum C

is contained in the component of S ∩ Γ containing ζ . Each set Ci as well as C

intersects both L1 and L2 . If the coordinate axes are chosen so that L1 and L2

are parallel to the y -axis, then for i ≥ 1 and j = 1, 2 , there are points in Ci ∩Lj
with y -coordinate yij and points in C ∩ Lj with y -coordinate yj such that yij
strictly increases to yj as i→ ∞ , for j = 1, 2 , or such that yij strictly decreases

to yj as i→ ∞ , for j = 1, 2 .

Furthermore, any neighbourhood W0 of ζ contains a neighbourhood W of ζ
such that among the components of W ∩D , there are distinct components Vi for

i ≥ 1 containing points wi that tend to ζ as i→ ∞ .

If D0 is a domain with D0 ⊂ D and ∂D ⊂ ∂D0 , then there are distinct

components Vi of W ∩D with wi ∈ Vi ∩D0 such that wi → ζ as i→ ∞ .

We remark that C need not be the closure of any component C of Γ∩S but
may be larger than any such closure. For instance, Γ ∩ S might be a horizontal
segment while C could contain an additional vertical segment of L1 and/or L2 .
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To get an example, suppose that

Γ =
{
iy : −1 ≤ y ≤ 1

}
∪

{
x+ iy : y = sin(1/x), 0 < x ≤ 1

}

in Lemma 4. Then Γ is not locally connected at the origin. For the lines L1 and
L2 , we may take the horizontal lines y = ±1

2 , so that S is the strip {x + iy :

|y| < 1
2} . Clearly S ∩ Γ has infinitely many components, and they cluster to

C = {iy : |y| ≤ 1
2
} , which is the component of S∩Γ containing the origin. In this

case C happens to be the closure of a component of S ∩ Γ. The continuum of
points ζ referred to in Lemma 4 can be taken to be the closed line segment from
−iy0 to iy0 , where 0 < y0 < 1.

4.3. Let Γ be a continuum. Recall that a point z0 ∈ Γ is called a cut point if
Γ\ {z0} is not connected. We shall need to show that various continua are Jordan
curves. For this purpose, we quote the converse of Jordan’s curve theorem ([22,
Statement (2.4), p. 34]).

Lemma 5. Let Γ be a continuum in S2 . Let D be one of the components

of S2 \ Γ , and suppose that Γ = ∂D . If, in addition, Γ is locally connected at

each of its points and if Γ has no cut points, then Γ is a Jordan curve.

We will use Lemma 4 to prove that a given continuum Γ is locally connected.
It is also necessary to have a criterion that guarantees that Γ has no cut points.

Lemma 6. Let Γ be a continuum in S2 , and let D and E be distinct

components of S2 \ Γ . If Γ = ∂D = ∂E then Γ has no cut points.

Note that S2 \Γ might have more than two components, and yet Γ might be
the boundary of each of them (cf. Lakes of Wada [8, p. 143]).

Proof of Lemma 6. Let z0 be a cut point of Γ, and let x and y be points in
distinct components of Γ\{z0} . We apply [23, Theorem IV.5.6, p. 112], taking the
closed set F in that theorem to be {z0} . We conclude that there is a continuum
γ ⊂ D ∪ {z0} that separates x and y . Since x, y ∈ ∂E , there are points of E in
two distinct components of S2 \ γ . Thus E , being connected, intersects γ , which
is impossible since γ ⊂ D ∪ {z0} . Hence Γ has no cut points, and Lemma 6 is
proved.

4.4. Proof of Lemma 4. Let the assumptions of Lemma 4 be satisfied. Then
Γ is not locally connected, and in particular, Γ is a continuum (rather than a point
or the empty set). We shall assume that z0 6= ∞ , leaving the simple modifications
required in the case z0 = ∞ to the reader.

By [22, Theorem 10.2, p. 13], there is a disk neighbourhood U of z0 contained
in a preassigned neighbourhood of z0 , and an infinite sequence C′

i of distinct
components of Γ ∩ U converging to a nondegenerate limit continuum C′ which
contains z0 and is disjoint from each C′

i . We have C′ ⊂ Γ, and indeed C′ is
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contained in the component of Γ ∩ U containing z0 . Note that there are points
z′i ∈ C′

i with z′i → z0 as i→ ∞ .

In the rest of the proof, we shall make various assumptions about the exis-
tence of limits that can be justified by passing to subsequences. For the sake of
convenience, we shall assume that this is done automatically but without changing
notation. Also we may say that certain statements that are true for all large i ,
are true for all i .

Since Γ is connected, we have C′
i ∩ ∂U 6= ∅ for all i . We find ζ ′i ∈ C′

i ∩ ∂U
with ζ ′i → ζ ′ ∈ C′ ∩ ∂U as i → ∞ . Let L1 and L2 be parallel lines orthogonal
to the line segment from z0 to ζ ′ such that z0 and ζ ′ are outside S and indeed
lie in distinct components of C \ S , where S is the open strip domain bounded
by L1 and L2 . Each C′

i intersects both L1 and L2 . Let Ci be a component of
C′
i ∩ S whose closure intersects both L1 and L2 . Note that Ci → C where C is

contained in a component of C′ ∩ S , and that the continuum C intersects both
L1 and L2 . Without loss of generality, we assume that L1 and L2 are vertical.
For j = 1, 2, let yij be the y -coordinate of a point in Ci ∩ Lj . Then yij → yj
as i→ ∞ , where yj is the y -coordinate of a point in C ∩ Lj . For any distinct i
and k , we have

(yi1 − y1)(yi2 − y2) > 0 and (yi1 − yk1)(yi2 − yk2) > 0

since C′
i , C

′
k and C′ are disjoint. Thus we may assume, for example, that yi1

and yi2 are strictly decreasing sequences.

For a point ζ that is to have the properties specified in Lemma 4, we could
take any point in C ∩ S ⊂ S ∩ Γ, and so it is clear that there is a continuum of
such points. Given ζ and a neighbourhood W0 of ζ , which we may assume to be
a disk, we can replace L1 and L2 by some other vertical lines to ensure that they
intersect W0 , and we still obtain continua Ci with all of the above properties.
We assume that this has been done without changing notation. It is now obvious
that if i < j < k , then Cj separates Ci from Ck and from C in S .

There are points ζi ∈ Ci with ζi → ζ as i → ∞ . Let Ui = B(ζi, ̺i) be a
neighbourhood of ζi disjoint from Γ \Ci , where ̺i → 0. Since ζi ∈ ∂D0 , there is
a point αi ∈ Ui ∩D0 .

Now W = W0 ∩ S is a neighbourhood of ζ contained in W0 , and αi, ζi ∈W
for all i .

We claim that if k > n , then α2n and α2k lie in distinct components of
W ∩D . If not, we can join α2n and α2k by a polygonal arc in S ∩D . But this
arc must intersect C2n+1 , which is a contradiction. Thus W ∩ D has distinct
components Vi for i ≥ 1 with wi = α2i ∈ Vi ∩ D0 and α2i → ζ . This proves
Lemma 4.
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5. Proof of Lemma 2

5.1. To prove Lemma 2, suppose that gmj → x0 and g−mj → y0 locally
uniformly on S2 \ {y0} and S2 \ {x0} , respectively. Since g is sense-preserving,
it follows from [15, Statement 12.1, p. 157], that g has at least one fixed point
z0 in S2 . One can verify that z0 = x0 or z0 = y0 , and by replacing g by g−1 ,
if necessary, we may assume that g(x0) = x0 . Recall that there is a sequence
nj → ∞ such that gnj → Id and g−nj → Id uniformly on S2 .

5.2. As the rest of the proof of Lemma 2 is rather complicated, it is convenient
to first outline the proof, stating intermediate results as sublemmas. After that
we proceed to prove the sublemmas.

Sublemma 1. If U is a nonempty proper open subset of S2 and if p is a

positive integer, then we cannot have gp(U) ⊂ U .

Sublemma 2. We have x0 = y0 , and x0 is the unique fixed point of g .

Similarly, x0 is the only fixed point of gq for any nonzero integer q . If gkj is

another sequence with kj → ∞ such that gkj → x1 and g−kj → y1 locally

uniformly on S2 \ {y1} and S2 \ {x1} , respectively, then x1 = y1 = x0 .

5.3. Our eventual aim is to find a Jordan curve Γ containing x0 such that
gk(Γ) = Γ for some positive integer k . Suppose that such a curve Γ has been
found, and let h be a homeomorphism of S2 = C onto itself taking Γ onto R

with h(x0) = ∞ . Then g̃ = h ◦ gk ◦ h−1 generates a nondiscrete convergence
group, maps R onto itself, and fixes ∞ . Since x0 is the unique fixed point of gk ,
it follows that g̃ has no fixed points on R . Thus either g̃(x) > x for all x ∈ R ,
or g̃(x) < x for all x ∈ R . In either case,

(5.1) g̃ n(x) → ∞

as n→ ∞ , for each real x .
Since gnj → Id, we have gknj = (gnj )k → Id, and so g̃ nj → Id as j → ∞ .

This contradicts (5.1), and it follows that the assumption that gmj → x0 must
have been false. This then proves Lemma 2.

The curve Γ will arise as the common boundary of certain domains. To
define the relevant open sets, we first need some more terminology and preliminary
results.

5.4. The orbit Gx of x ∈ S2 is defined as the set Gx =
{
gn(x) : n ∈ Z

}
.

The sets G+x =
{
gn(x) : n ≥ 0

}
and G−x =

{
gn(x) : n ≤ 0

}
are called half

orbits. We may assume that x0 = ∞ and also consider g as a homeomorphism of
C onto itself. Then by a result of Homma and Kinoshita ([9, Theorem 5, p. 370]),
there is a point x1 ∈ S2 \ {x0} (and, indeed, an everywhere dense set of such
points x1 ) for which G+x1 is not dense in S2 .
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Sublemma 3. No point x ∈ S2 has a dense orbit under G .

The following technical result is necessary.

Sublemma 4. If U ⊂ S2 \{x0} is a nonempty open set with g(U) = U , then

x0 ∈ ∂U . If U has only finitely many components U1, . . . , Un , then x0 ∈ ∂Ui for

all i .

5.5. Choose x1 ∈ S2 \ {x0} and suppose that x2 6= x0 and x2 /∈ Gx1 . By
conjugating g by a Möbius transformation, if necessary, we may assume that x2

and x0 are antipodal points so that q(x0, x2) = 2. For any y ∈ S2 we write

̺(y) = sup
{
q
(
x0, g

n(y)
)

: n ∈ Z
}
≥ q(x0, y).

The choice of x1 and x2 implies that ̺(x1) < 2. Choose r so that ̺(x1) < r < 2.
We define V =

{
y ∈ S2 : ̺(y) > r

}
and E =

{
y ∈ S2 : q(x0, y) > r

}
.

Sublemma 5. The set V is a nonempty open set, and in fact

(5.2) V = g(V ) =
∞⋃

n=−∞

gn(E).

Furthermore, V has only finitely many components, and they are of the form

Vi = gi−1(V1) for 1 ≤ i ≤ N

for some N ≥ 1 , where V1 is the component of V containing E and gN (V1) = V1 .

We have x0 ∈ ∂Vi for all i . Furthermore, we have ̺(x) = r for all x ∈
∂V \ {x0} .

Sublemma 6. The set W = S2 \ V is a nonempty open set. If W1 is

a component of W then gM (W1) = W1 for some M ≥ 1 , and x0 ∈ ∂W1 .

Furthermore, any such component W1 is simply connected. We have ∂W1 ⊂
∂W ⊂ ∂V .

Choose such a component W1 of W , and write Γ1 = ∂W1 . Then Γ1 is a
continuum containing x0 , and gM(Γ1) = Γ1 . Next let V be the component of
S2 \W 1 containing V1 , and let W be the component of S2 \ V containing W1 .

Sublemma 7. The domains V and W are simply connected and have the

same boundary Γ . We have x0 ∈ Γ and gMN (Γ) = Γ . The continuum Γ has no

cut points. We have Γ ⊂ Γ1 ⊂ ∂V so that ̺(x) = r for all x ∈ Γ \ {x0} .

The sole purpose of taking the complement so many times to obtain the sets
W , V and W from V has been to ensure that we get two domains with the same

boundary.
With the aid of Lemma 5, we now show that Γ is a Jordan curve. Since

gMN (Γ) = Γ, the proof of Lemma 2 can then be completed as explained in Sub-
section 5.3 above.
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Sublemma 8. The continuum Γ is locally connected at each of its points.

Thus Γ is a Jordan curve.

This completes the proof of Lemma 2, subject to Sublemmas 1–8.

5.6. Proof of Sublemma 1. Suppose that U is a nonempty proper open subset
of S2 and that p is a positive integer such that F = gp(U) ⊂ U . Then F is a
fixed compact proper subset of U , and for m ≥ 2, we have gpm(U) ⊂ F ⊂ U .
But gpnj → Id uniformly on S2 while gpnj (U) ⊂ F , which is a contradiction.
This proves Sublemma 1.

5.7. Proof of Sublemma 2. Recall that g(x0) = x0 . If x0 6= y0 , let U be a
spherical disk centred at x0 such that y0 /∈ U . Since gmj → x0 , there is j0 such
that if j ≥ j0 and p = mj then Γ = gp(∂U) ⊂ U . Let the components of S2 \ Γ
be D1 and D2 where D1 ⊂ U . By Sublemma 1, we cannot have gp(U) = D1 .
Thus gp(U) = D2 and so x0 = gp(x0) ∈ D2 .

Since y0 ∈ S2 \ U , we have, with p = mj ,

(5.3) g−p(S2 \ U) ⊂ g−p(S2 \D1) = g−p(D2) = U.

Since S2 \ U is a compact subset of S2 \ {x0} , we have g−mj → y0 uniformly on
S2 \ U . This contradicts (5.3), and it follows that y0 = x0 .

Thus if z0 6= x0 , then gmj (z0) → x0 . So we cannot have g(z0) = z0 , and it
follows that x0 is the unique fixed point of g .

Since gk is a homeomorphism for any k ≥ 1 and gk(x0) = x0 , we have
gk(z0) 6= x0 if z0 6= x0 . Fix q ≥ 2 and write mj = qkj + rj where 0 ≤ rj ≤ q− 1.
If z0 6= x0 and gq(z0) = z0 , then gmj (z0) = grj (z0) so that gmj (z0) belongs to a
finite set not containing x0 . Thus gmj (z0) does not tend to x0 . This contradiction
shows that x0 is the unique fixed point of gq for any q ≥ 1 and hence for any
nonzero q .

If gkj → x1 and g−kj → y1 then at least one of x1 and y1 must be equal
to x0 . If, for example, x1 = x0 , we argue as above to deduce that y1 = x0 also.
This proves Sublemma 2.

5.8. Proof of Sublemma 3. Recall that there is a point x1 ∈ S2 \ {x0} such
that the half orbit G+x1 is not dense in S2 . Suppose that x2 ∈ S2 and that Gx2

is dense in S2 . Since Gx0 = {x0} , we have x2 6= x0 . We may or may not have
x2 = x1 . Since Gx2 is dense, we have aj = gkj (x2) → x1 while aj 6= x1 for each
j , for some sequence kj with kj → ∞ or kj → −∞ . Similarly, given any x3 ∈ S2 ,
we have bj = gℓj (x2) → x3 and bj 6= x3 , for some sequence ℓj . Choose x3 so that
x3 6= x0 and so that G+x1 fails to intersect some neighbourhood U of x3 . For
each j , choose qj = np(j) − kj + ℓj where p(j) is chosen so that p(j + 1) > p(j)
and qj → ∞ . Since gnp(j) → Id, we have gqj(aj) = gnp(j)(bj) → x3 .

By passing to a subsequence and using the definition of a convergence group
together with Sublemma 2, we may assume that gqj → h uniformly on S2 , where
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h is a homeomorphism, or that gqj → x0 locally uniformly in S2 \ {x0} . The
latter alternative cannot occur since aj → x1 6= x0 and gqj (aj) → x3 6= x0 . Thus
gqj → h , which implies that gqj (x1) → h(x1) and that gqj (aj) → h(x1) . Hence

h(x1) = x3 and so x3 ∈ G+x1 , which gives a contradiction. It follows that Gx is
not dense for any x and Sublemma 3 is proved.

5.9. Proof of Sublemma 4. If U is as in Sublemma 4, pick x ∈ U and
note that gmj (x) ∈ U and gmj (x) → x0 . Thus x0 ∈ U and so x0 ∈ ∂U . If U
has only the components U1, . . . , Un , note that g maps each Ui onto some Uj .
Thus the Ui can be partitioned into cycles of components with the following
property. If U1, . . . , Uk , for example, is such a cycle, and if the components have
been renumbered in a suitable way, then gi−1(U1) = Ui for 1 ≤ i ≤ k , and
gk(U1) = U1 .

If x0 /∈ U1 then

x0 /∈ U1 ∪ · · · ∪ Uk =
∞⋃

j=−∞

gj(U1),

which is impossible since gmj → x0 in some disk contained in U1 . Thus x0 ∈ ∂U1

and so x0 ∈ ∂Ui for 1 ≤ i ≤ k . The same argument applies to all the other cycles,
and we deduce that x0 ∈ ∂Ui for 1 ≤ i ≤ n . This proves Sublemma 4.

5.10. Proof of Sublemma 5. The definition of ̺ readily implies that V is
equal to the right hand expression in (5.2), and this representation of V shows
that g(V ) = V . Thus (5.2) holds. Let the components of V be denoted by Vi for
i ≥ 1, and let V1 be the component of V containing E .

Since g(V ) = V , it follows that g maps any Vi onto some Vk . Clearly
any Vi is contained in, and thus coincides with, gk(V1) for some k . Recall
that g±nj → Id. As V1 is open and g±nj → Id, if nj is large enough, then
g±nj (V1) intersects V1 and thus g±nj (V1) = V1 . Therefore V has only finitely
many components, say V1, . . . , VN , which we may number so that Vj = gj−1(V1)
for 1 ≤ j ≤ N while gN (V1) = V1 . Note that if q is the smallest positive integer
such that g−q(V1) = V1 , then the components V1, g

−1(V1), . . . , g
−(q−1)(V1) are

distinct, and gq(V1) = gq
(
g−q(V1)

)
= V1 . Thus q = N , and the components

g−1(V1), g
−2(V1), . . . , g

−(q−1)(V1) coincide with gN−1(V1), g
N−2(V1), . . . , g(V1) .

By Sublemma 4, we have x0 ∈ ∂Vi for 1 ≤ i ≤ N .
Suppose that x ∈ ∂V \ {x0} . Then x /∈ V so that ̺(x) ≤ r . Since x ∈ ∂V ,

there are points wn ∈ V tending to x with ̺(wn) > r . For each n , there is
gkn such that q

(
x0, g

kn(wn)
)
> r . We pass to a subsequence, apply Sublemma 2,

and find that gkn → h uniformly on S2 , where h is a homeomorphism, since we
cannot have gkn → x0 uniformly in a neighbourhood of x . Thus gkn(wn) → h(x)
and so q

(
x0, h(x)

)
≥ r . Therefore q

(
x0, g

kn(x)
)
→ r , and consequently ̺(x) ≥ r .

Hence ̺(x) = r , as required. This proves Sublemma 5.
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5.11. Proof of Sublemma 6. Clearly W = S2 \ V is open. To show that W
is nonempty, it suffices to prove that x1 ∈W . Since ̺(x1) < r , we have x1 /∈ V .
By the last statement of Sublemma 5, we also have x1 /∈ ∂V . Thus x1 ∈ W .

Since g(V ) = V by Sublemma 4, we have g(V ) = V and so g(W ) = W .
Thus any gp maps a component of W onto another such component. Let W1 be
a component of W . Since gnj → Id and W1 is open, we have gnj (W1) ∩W1 6= ∅
and thus gnj (W1) = W1 for all large j . Hence there is a smallest positive integer
M such that gM (W1) = W1 , and then the components W1, g(W1), . . . , g

M−1(W1)
are distinct. Applying Sublemma 4 to

U =

M⋃

i=1

gi−1(W1),

we deduce that x0 ∈ ∂gi−1(W1) for 1 ≤ i ≤M . In particular, x0 ∈ ∂W1 for any
component W1 of W .

Since V has N components, the domain W1 is of connectivity at most N . Let
Γ1, . . . ,Γk be the components of ∂W1 , where k ≤ N and x0 ∈ Γ1 . If Γ1 = {x0}
then k ≥ 2 and, since any iterate of gM maps each Γi onto some Γj , it follows
that

gjM (Γ2 ∪ · · · ∪ Γk) = Γ2 ∪ · · · ∪ Γk

for each j ≥ 1. But Γ2 ∪ · · · ∪ Γk is a compact subset of S2 \ {x0} on which
gMkj → x0 for some sequence kj → ∞ . (For if mj = Mkj+ℓj where 0 ≤ ℓj < M
then, since gmj → x0 , we also have gMkj = gmj ◦ g−ℓj → x0 .) This contradiction
shows that Γ1 is a continuum. For the same reason, it follows that Γ2∪· · ·∪Γk = ∅ ,
so that Γ1 = ∂W1 , and W1 is simply connected. Obviously ∂W1 ⊂ ∂W ⊂ ∂V .
This proves Sublemma 6.

5.12. Proof of Sublemma 7. Since W 1 and V are connected, it follows
that V and W are simply connected, being components of the complement of a
connected closed set. Let us write Γ = ∂V . We have x0 ∈ Γ since x0 ∈ ∂V1

(by Sublemma 5) and since x0 ∈ W 1 (by Sublemma 6) so that x0 /∈ V . Clearly
Γ ⊂ ∂W1 = Γ1 .

Since gM(W1) = W1 by Sublemma 6, we have gM(S2 \W 1) = S2 \W 1 . Thus
gM maps V onto a component of S2 \W 1 , and so does gkM for any k ≥ 1. But
V1 ⊂ V and gN(V1) = V1 by Sublemma 5 so that gMN (V1) = V1 also. It follows
that gMN (V ) = V . Therefore gMN (Γ) = Γ, as required.

Since gMN (V ) = V , gM (W1) = W1 , and W1 ⊂ W , we see in the same way
that gMN (W ) = W . Clearly ∂W ⊂ ∂V = Γ. We claim that ∂W = Γ. If not,
pick z0 ∈ Γ \ ∂W . Then z0 has a connected neighbourhood U with U ∩ W = ∅
while U ∩ V 6= ∅ .

Since Γ ⊂ ∂W1 , we have z0 ∈ ∂W1 and so U ∩W1 6= ∅ . But W1 ⊂ W so
that U ∩ W 6= ∅ . Since also U ∩ W = ∅ , we get a contradiction. It follows that
∂W = Γ, as asserted.
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Since V and W are simply connected domains with ∂V = ∂W = Γ, they
are distinct components of S2 \ Γ. Now Lemma 6 implies that Γ has no cut
points. We clearly have Γ = ∂V ⊂ ∂W1 = Γ1 . By Sublemma 6, we further have
∂W1 ⊂ ∂V , and by Sublemma 5, we have ̺(x) = r for all x ∈ ∂V \ {x0} and
hence for all x ∈ Γ \ {x0} . This proves Sublemma 7.

5.13. Proof of Sublemma 8. We apply Lemma 14 with D = V and note
that by Sublemma 7, the continuum Γ has no cut points. Thus Lemma 5 implies
that Γ is a Jordan curve provided that Γ is locally connected at each of its points.
To prove this, it suffices, by [22, Statement 10.4, p. 14], to show that Γ is locally
connected at each point of Γ \ {x0} . To get a contradiction, we now assume that
z1 ∈ Γ \ {x0} and that Γ is not locally connected at z1 .

We may assume that x0 = ∞ ∈ C = S2 . Choose ε ∈
(
0, 1

2
q(x0, z1)

)
and set

W0 =
{
y ∈ S2 : q(z1, y) < ε

}
.

By Lemma 4, there are parallel lines L1 and L2 , which we may assume to be
vertical, intersecting W0 , and distinct components Ci of S ∩ Γ, where S is the
open strip domain between L1 and L2 , with the properties described in Lemma 4.
All the Ci as well as their limit continuum C are contained in a fixed compact
subset E1 of S2 \ {x0} = C . We may and will take E1 to be the cap

E1 =
{
y ∈ S2 : q(x0, y) ≥ ε1

}

where ε1 is sufficiently small and in particular, 0 < ε1 < ̺(x1)/2 < r/2. We
further take ε1 so small that the Ci and C are contained in the smaller set{
y ∈ S2 : q(x0, y) ≥ 2ε1

}
.

We define the set H1 , not necessarily a group, by

H1 =
{
gn, g−n : n ∈ Z and q

(
x0, g

n(z)
)
≥ 1

2ε1 for some z ∈ E1

}
⊂ G.

We claim that there is r2 > 0 such that if h ∈ H1 and z1 ∈ E1 then q
(
x0, h(z1)

)
≥

r2 . If not, then there are gkj ∈ H1 and zj ∈ E1 such that zj → w ∈ E1 and
q
(
x0, g

kj (zj)
)
→ 0. Since for each j there is wj ∈ E1 such that q

(
x0, g

kj(wj)
)
≥

1
2ε1 or q

(
x0, g

−kj (wj)
)
≥ 1

2ε1 , we cannot have gkj → x0 and g−kj → x0 uniformly
on E1 even if we pass to a subsequence. Thus, by Sublemma 2, we may assume that
gkj → h uniformly on S2 where h is a homeomorphism. But h(x0) = x0 = h(w) ,
which gives a contradiction. Thus there is a number r2 with the required property.
We may assume that r2 ≤ ε1/2.

We set E2 =
{
y ∈ S2 : q(x0, y) ≥ r2

}
and claim that H1 is equicontinuous

on E2 with respect to the chordal metric q . If not, there are sequences ai, bi ∈ E2

and gki ∈ H1 , and a positive number ε2 , such that ai → b ∈ E2 and bi → b as
i → ∞ while q

(
gki(ai), g

ki(bi)
)
≥ ε2 for all i . By passing to a subsequence, we
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may assume that gki → h where h is a homeomorphism, since we cannot have
gki → x0 and g−ki → x0 uniformly even on E1 . But then gki(ai) → h(b) and
gki(bi) → h(b) , which gives a contradiction. Hence H1 is equicontinuous on E2 .

So if δ is a given positive number, there is δ′ > 0 such that

(5.4) q
(
ϕ(z), ϕ(w)

)
< 10−2 min{ε1, δ}

whenever z, w ∈ E2 , ϕ ∈ H1 and q(z, w) ≤ δ′ .

Let L3 be the vertical line halfway between L1 and L2 . Choose δ0 > 0 so
small that any two of the sets Li ∩ E2 for 1 ≤ i ≤ 3 have chordal distance not
less than 2δ0 from each other.

We now choose δ so small that

(5.5) q
(
ϕ(z), ϕ(w)

)
< 10−2 min{ε1, δ0}

whenever z, w ∈ E2 , ϕ ∈ H1 and q(z, w) ≤ δ , and then we pick δ′ accordingly so
that δ′ < ε1 and so that also (5.4) holds. We further assume that δ + r < 2, the
diameter of S2 in the chordal metric.

5.14. Suppose that ζ1, ζ3 ∈ Li ∩ E1 and ζ2 ∈ Lj ∩ E1 , where i 6= j and
i, j ∈ {1, 2, 3} . Suppose that gkj ∈ H1 and that gkj → h uniformly on S2 as
j → ∞ , where h is a homeomorphism. We claim that

(5.6) q
(
h(ζ1), h(ζ2)

)
≥ δ.

If, in addition, q(ζ1, ζ3) ≤ δ′ , then

(5.7) q
(
h(ζ1), h(ζ3)

)
≤ 10−2 min{ε1, δ} = δ1,

say.

To prove (5.6), suppose that it does not hold. Then q
(
gkj (ζ1), g

kj(ζ2)
)
< δ

for all large j . Since ζ1, ζ2 ∈ E1 , we have gkj (ζi) ∈ E2 for i = 1, 2. Since
gkj ∈ H1 , we also have g−kj ∈ H1 , by the definition of H1 . Now (5.5), applied
to z = gkj (ζ1) , w = gkj (ζ2) and ϕ = g−kj , gives q(ζ1, ζ2) < 10−2δ0 , which
contradicts the definition of δ0 . This proves (5.6).

If q(ζ1, ζ3) ≤ δ′ , then by (5.4), we have

q
(
gkj (ζ1), g

kj (ζ3)
)
< δ1

for all j . This gives (5.7) as j → ∞ .
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5.15. Fix i . There is a component ∆i of S \ (Ci−1 ∪ Ci+1) containing Ci .
The domain ∆i is simply connected, being a component of the complement of the
connected set L1∪L2 ∪Ci−1 ∪Ci+1 . Also ∆i is bounded since Ci separates Ci−1

from Ci+1 in S .
Since Ci ⊂ ∆i and Ci ∩ Lj 6= ∅ , we have Lj ∩ ∂∆i 6= ∅ for j = 1, 2. We

claim that for all large i , we have

(5.8) q(Lj ∩ ∂∆i) < δ′ for j = 1, 2,

where q(E) denotes the diameter of the set E in the chordal metric. Suppose that
j = 1. By Lemma 4 and symmetry, we may assume, without loss of generality,
that there are points ζi ∈ Ci ∩L1 with y -coordinate yi1 strictly decreasing to y1
as i → ∞ , where y1 is the y -coordinate of a point in C ∩ L1 . Then y1 is the
maximal y -coordinate of any point in C ∩ L1 (since C and the Ci are disjoint
and contained in S and since Ci → C ). Furthermore, if ti is the maximal y -
coordinate of any point in Ci ∩ L1 then ti → y1 also as i → ∞ , since Ci → C .
Now if ui is the minimal y -coordinate of any point in Ci∩L1 , then by the above,
we have ti−1 − ui+1 → 0 as i → ∞ . Clearly L1 ∩ ∂∆i is contained in the closed
interval of L1 lying between the points of L1 with y -coordinates ti−1 and ui+1 .
This proves (5.8) for j = 1, and the proof for j = 2 is similar.

If j ≥ i+ 2, then ∆i ∩∆j = ∅ . For if not, then ∆i ∪∆j is connected so that
Ci and Cj can be joined in ∆i ∪ ∆j and hence in S \ Ci+1 . This is impossible
since Ci+1 separates Ci from Cj in S , by Lemma 4. Thus ∆i ∩ ∆j is empty.

5.16. Pick a point zi ∈ Ci ∩ L3 , so that zi ∈ ∆i . Since zi ∈ Γ, we have
̺(zi) = r by Sublemma 7. Choose a sequence gkj such that q

(
x0, g

kj (zi)
)
→ r .

By Sublemma 2, we may assume that gkj → hi and g−kj → h−1
i uniformly on

S2 , where hi is a homeomorphism. Then q
(
x0, hi(zi)

)
= r while q

(
x0, hi(z)

)
≤ r

for all z ∈ Γ. Since zi ∈ E1 and r > ε1/2, we have gkj ∈ H1 for all large j .
Fix i so large that (5.8) holds. For j = 1, 2, there is ζj ∈ Lj ∩ ∂∆i with

ζj ∈ Ci . Hence ζj ∈ Γ∩E1 also. Suppose that ζ ′j ∈ Lj ∩∂∆i . Then q(ζj, ζ
′
j) < δ′

by (5.8). Also ζ ′j ∈ E1 since δ′ < ε1 . By (5.7), we obtain

(5.9) q
(
hi(ζj), hi(ζ

′
j)

)
≤ δ1 ≤ 10−2δ.

Next, by (5.6) we have

(5.10) q
(
hi(zi), hi(ζ

′
j)

)
≥ δ

for any such point ζ ′j , and in particular if ζ ′j = ζj . We define

E3 =
{
y ∈ S2 : q(x0, y) ≤ r or q

(
hi(ζ1), y

)
≤ δ1 or q

(
hi(ζ2), y

)
≤ δ1

}
.
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Then hi(zi) ∈ ∂E3 by (5.9) and (5.10). Since ∂∆i \ (L1 ∪L2) ⊂ Ci−1 ∪Ci+1 ⊂ Γ,
we further have hi(∂∆i) ⊂ E3 .

Recall that δ + r < 2 = q(x0, x2) and define E4 =
{
y ∈ S2 : q(x2, y) <

2 − δ − r
}

. Then E4 ⊂ S2 \ E3 . Since hi(∂∆i) ⊂ E3 , we thus have either
S2 \ E3 ⊂ hi(∆i) or (S2 \ E3) ∩ hi(∆i) = ∅ . Since hi(zi) ∈ hi(∆i) ∩ ∂E3 , the
open set hi(∆i) must intersect S2 \ E3 , and so S2 \ E3 ⊂ hi(∆i) . We conclude
that the set E4 , which is independent of i , is contained in hi(∆i) , and therefore
h−1
i (E4) ⊂ ∆i ⊂ E1 for all large i .

For each i , there is some iterate of g , say gpi , such that q
(
gpi(y), h−1

i (y)
)
<

2−i for all y ∈ S2 . In particular, gpi(E4) ⊂ E2 for all large i . By passing to a
subsequence and using Sublemma 2, we may assume that gpi → ψ uniformly on
S2 , where ψ is a homeomorphism. Then h−1

iℓ
→ ψ uniformly on S2 , for some

sequence iℓ that tends to infinity as ℓ→ ∞ . By passing to a further subsequence,
we may assume that iℓ+1 − iℓ ≥ 2 for all ℓ so that ∆iℓ and ∆im are disjoint for
all distinct ℓ and m . In particular, if Uℓ = h−1

iℓ
(E4) then Uℓ ∩ Um = ∅ whenever

ℓ 6= m .

We claim that ψ(x2) ∈ Uℓ for all large ℓ . This gives a contradiction and
completes the proof of Sublemma 8. If the claim is false, we may pass to another
subsequence and assume that ψ(x2) /∈ Uℓ for any ℓ .

Recall that x0 = ∞ , and let γ be a circle in E4 ⊂ C centred at x2 . Then

δ2 = min
{
q
(
ψ(x2), ψ(y)

)
: y ∈ γ

}
> 0,

and so by uniform convergence,

min
{
q
(
ψ(x2), h

−1
iℓ

(y)
)

: y ∈ γ
}
> δ2/2

for all large ℓ . Thus the Jordan curve γℓ = h−1
iℓ

(γ) then lies outside the disk

E5 =
{
y ∈ S2 : q

(
ψ(x2), y

)
< δ3

}
⊂ C

if 0 < δ3 < δ2/2 and δ3 < q
(
ψ(x2), x0

)
. We note that ψ(x2) 6= ψ(x0) = x0 =

h−1
iℓ

(x0) /∈ γℓ .

Let E6 be the open disk containing x2 with ∂E6 = γ . Then ψ(x2) /∈
h−1
iℓ

(E6) ≡ U ′
ℓ ⊂ Uℓ . Since U ′

ℓ coincides with one of the components of S2 \γℓ , we

deduce that U ′
ℓ ∩ E5 = ∅ . Thus h−1

iℓ
(x2) /∈ E5 for all large ℓ . Since h−1

iℓ
(x2) →

ψ(x2) as ℓ → ∞ , we obtain a contradiction. Hence ψ(x2) ∈ Uℓ for all large ℓ ,
as asserted. This proves Sublemma 8, and also completes the proof of Lemma 2.
Thus the proof of Theorem 1 is also complete.
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6. Proof of Theorem 2

6.1. Let G be an abelian nondiscrete convergence group on S2 . We denote
by G the closure of G in H(S2) so that h ∈ G if and only if there is a sequence
gn ∈ G such that gn tends to the homeomorphism h uniformly on S2 . Clearly
G is a group, and it is nondiscrete if G is. As in [5, Lemma 5, p. 93], we see that
G is a convergence group if G is. It clearly suffices to find a function f such that
f−1 ◦ G ◦ f is a Möbius group. On the other hand, if f−1 ◦ G ◦ f is a Möbius
group, then so is f−1 ◦ G ◦ f , so that we are not putting any extra restrictions
on f by considering G . Therefore we may and will assume that G is closed, that
is, G = G . In view of Theorem 1 and the above, we may assume that G is not
contained in the closure of a cyclic group.

We write fix(g) for the set of fixed points of g ∈ G . Since g ◦ h = h ◦ g and
h−1 exists for g, h ∈ G , it is easily seen that for all g, h ∈ G ,

(6.1.1) fix(g) = h
(
fix(g)

)
.

We divide the argument into two cases as follows:

I. There is a parabolic element g in G ; and
II. There is no parabolic element in G .

6.2. Case I. We may assume that fix(g) = {∞} , identifying S2 and C . If
h ∈ G then h fixes ∞ by (6.1.1). Let H denote the index one or two subgroup of
sense-preserving elements of G . If h ∈ G and if h has at most two fixed points,
then since fix(h) = g

(
fix(h)

)
by (6.1.1), it follows that fix(h) = {∞} also. By

Corollary 1, this is true whenever h 6= Id and h is not conjugate to c/z̄ where
|c| = 1, and in particular whenever h ∈ H \{Id} . Thus each function in H \{Id} is
parabolic. So if h1, h2 ∈ H and h1(z) = h2(z) for some z ∈ C then h−1

1 ◦h2 ∈ H
and (h−1

1 ◦ h2)(z) = z so that h−1
1 ◦ h2 = Id, and hence h1 = h2 . We shall often

make use of this fact.
If h1, h2 ∈ G \H then h1 ◦ h

−1
2 ∈ H . Thus either G = H or

(6.2.1) G = H ∪
{
h ◦ h1 : h ∈ H

}

for a fixed but arbitrary h1 ∈ G \H .
First we prove that H is topologically conjugate to a Möbius group. Clearly

H is nondiscrete and locally compact. Also H contains no small subgroups, that
is, Id has a neighbourhood U in H such that {Id} is the only subgroup of H
contained in U . For example, we may take

U =
{
h ∈ H : d(h, Id) < 1

}
,

where the metric d is as defined in Subsection 2.2, noting that the diameter of S2

in the chordal metric q is equal to 2. For if J 6= {Id} is a subgroup of H and
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h ∈ J \ {Id} , then h is parabolic with fixed point at infinity so that for all large
n ,

d(hn, Id) ≥ q
(
hn(0), 0

)
> 1.

Thus hn /∈ U , so that J is not contained in U .
By [10, Theorem 6, p. 95], the group H contains a nontrivial one-parameter

family of elements. That is, corresponding to each real number t there is a function
ht ∈ H such that ht ◦hu = ht+u for all real t and u , and the mapping that takes
t onto ht is a continuous function of the real axis R into H(S2) . Also, ht 6= Id
for some t . Obviously, h0 = Id and h−t = (ht)

−1 .
We now claim that ht 6= Id whenever t 6= 0, which then immediately implies

that ht 6= hu whenever t 6= u . For suppose that ht = Id for some t 6= 0. Then
(ht/n)

n = ht = Id. Thus ht/n cannot be parabolic, and so ht/n = Id. It follows
that hrt = Id for each rational number r . The continuity of the map u 7→ hu now
implies that hu = Id for all u , which is a contradiction. Thus ht 6= Id for t 6= 0
and ht 6= hu if t 6= u .

We next note that if gn ∈ H and gn → x0 and g−1
n → y0 locally uniformly in

C \ {y0} and C \ {x0} , respectively, then x0 = y0 = ∞ . Since each gn fixes ∞ ,
it follows that at least one of x0 and y0 is ∞ . Replacing gn by g−1

n , if necessary,
we may assume that x0 = ∞ . Suppose that y0 6= ∞ . Then if t 6= 0, ε > 0 and
ε is small enough we have gn → ∞ uniformly in ht

(
B(y0, ε)

)
since ht(y0) 6= y0 .

But since for z ∈ B(y0, ε) , we have

ht
(
gn(z)

)
= gn

(
ht(z)

)
→ ∞ as n→ ∞ ,

it follows that gn → ∞ uniformly in B(y0, ε) . But g−1
n → y0 uniformly in

B(y0, ε) . Thus
Id = gn ◦ g

−1
n → ∞ as n→ ∞

uniformly in B(y0, ε) , which is a contradiction. Thus y0 = ∞ , as required, and
so x0 = y0 = ∞ .

6.3. Next we verify that the ht satisfy a continuity condition considered by
Kerékjártó [12]. For z ∈ C , define Γ(z) =

{
ht(z) : t ∈ R

}
. If Γ(z) ∩ Γ(w) 6= ∅

then ht(z) = hu(w) for some t, u ∈ R , so that hs(z) = hs+u−t(w) for all s ∈ R .
Thus Γ(z) ⊂ Γ(w) and similarly Γ(w) ⊂ Γ(z) so that Γ(z) = Γ(w) . So two sets
Γ(z) are disjoint unless they coincide.

Suppose that zn → w ∈ C as n → ∞ . We want to prove that then
Γ(zn) → Γ(w) uniformly in the chordal metric. Then it will follow from a re-
sult of Kerékjártó ([12, p. 115]) that there is a homeomorphism f1 of C such that
f−1
1 ◦ ht ◦ f1 = Tt for all real t , where Tt(z) = z + t for all complex t and z .

Obviously, f1(∞) = ∞ .
Set

δn = sup
({
q
(
x,Γ(w)

)
: x ∈ Γ(zn)

}
∪

{
q
(
x,Γ(zn)

)
: x ∈ Γ(w)

})
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where q
(
x,Γ(w)

)
= inf

{
q(x, y) : y ∈ Γ(w)

}
. We claim that δn → 0 as n → ∞ .

If not, we may pass to a subsequence and assume that there are real numbers tn
such that

(6.3.1) q
(
htn(zn), y

)
≥ ε > 0

for all n and for all y ∈ Γ(w) , or that

(6.3.2) q
(
htn(w), yn

)
≥ ε > 0

for all n and for all yn ∈ Γ(zn) , and further that the sequence tn converges,
possibly to ∞ or −∞ . If tn → u ∈ R , we have htn → hu uniformly on C so that
htn(zn) → hu(w) ∈ Γ(w) . This contradicts (6.3.1). If |tn| → ∞ , write tn = kn+θn
where kn ∈ Z and 0 ≤ θn < 1. We may assume that θn → θ ∈ [0, 1] so that
hθn

→ hθ . Since hkn
= hkn

1 and h1 fixes ∞ and is conjugate to the translation
z 7→ z + 1, we have hkn

(z) → ∞ and so htn(z) → ∞ locally uniformly in C . But
then q

(
htn(zn), htn(w)

)
→ 0, which contradicts (6.3.1) since htn(w) ∈ Γ(w) . We

deal with (6.3.2) in the same way. This proves that δn → 0 as n→ ∞ .

6.4. Define H1 = f−1
1 ◦ H ◦ f1 and T1 = {Tt : t ∈ R} ⊂ H(S2) . Then

T1 ⊂ H1 . If H1 = T1 , it follows that H is topologically conjugate to a group
of translations. So we may and will now assume that H1 6= T1 . We say that
g1, g2 ∈ H1 are equivalent if g1 = Tt ◦ g2 for some real t . Clearly this defines an
equivalence relation, and the equivalence classes form an abelian group Γ. The
group Γ acts on R as follows. If h ∈ Γ, h′ ∈ H1 and h′ is a representative
of h , we set h(t) = Imh′(it) for t ∈ R , and h(∞) = ∞ . Clearly h is then a
well-defined function on R , continuous on R . If Imh′(it) = Imh′(iu) , and if
s = Re

{
h′(it) − h′(iu)

}
, then, since H1 is abelian, we have

h′(iu+ s) = h′(iu) + s = Reh′(it) + i Imh′(it) = h′(it)

so that iu+ s = it since h′ is a homeomorphism. Thus s = 0 and hence h′(it) =
h′(iu) and so t = u . Therefore h is one-to-one. We have |h(t)| → ∞ as t→ ±∞
since

C = h′(C) =
{
h′(it+ u) : t, u ∈ R

}
=

{
h′(it) + u : t, u ∈ R

}
.

Thus h defines a homeomorphism of R onto itself, and we denote the group of
such homeomorphisms by J . Since H1 6= T1 , the group J is not trivial.

Alternatively, we may note that each g1 ∈ H1 commutes with Tt for all real t
and therefore maps each horizontal line onto another such line. Identifying every
horizontal line with its y -coordinate, we obtain the group action of Γ on R . Two
elements of H1 give rise to the same element of the resulting group J if and only
if they differ by Tt for some real t .
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We claim that J is a convergence group on R , which we identify with S1 . For
if gn ∈ J , we may choose the corresponding sequence of representatives g1n ∈ H1

of the classes in Γ that give rise to the gn , so that Re g1n(0) = 0, and pass to a
subsequence such that g1n → ĝ ∈ H1 uniformly on C , or g1n → ∞ and g−1

1n → ∞
locally uniformly in C as n → ∞ , since H has the corresponding property and
f1(∞) = ∞ . In the former case, gn → g̃ given by g̃(t) = Im ĝ(it) , and in the
latter case, gn → ∞ , locally uniformly on R . The same argument shows that J
is closed.

If h ∈ J and h(t) = t for some t ∈ R then there is h′ ∈ H1 with h′(it) = a+it
for some real a . Then

it = (T−a ◦ h
′)(it)

so that T−a ◦ h
′ = Id, the only element of H1 that has a finite fixed point. Thus

h′ = Ta so that Imh′(it) = t and h(t) = t for all real t . Hence h = Id, and so
the elements of J \ {Id} have no finite fixed points.

6.5. Now J is an abelian convergence group on R with parabolic elements
only (note that J may or may not be discrete), so that by [5, Theorem 1, p. 88],
there is a homeomorphism F2 of R fixing infinity such that F−1

2 ◦ J ◦ F2 is a
group of translations. Now define a homeomorphism f2 of C by

f2(t+ iu) = t+ iF2(u) when t, u ∈ R

and by f2(∞) = ∞ . If g1 ∈ H1 then

(f−1
2 ◦g1 ◦f2)(t+ iu) = t+Re g1(iu)+ i(F−1

2 ◦h◦F2)(u) = t+Re g1(iu)+ i(u+a),

say, where h ∈ J corresponds to the equivalence class of g1 and F−1
2 ◦h◦F2 = Ta .

Thus if H2 = f−1
2 ◦H1 ◦f2 , then the action of each element of H2 in the direction

of the imaginary axis amounts to a translation. Note that

f−1
2 ◦ Tt ◦ f2 = Tt for all real t,

so that T1 ⊂ H2 .

Since J2 = F−1
2 ◦ J ◦ F2 is a closed group of translations, it is cyclic unless

it is equal to T , the group of all translations of R . In either case, if g1, g2 ∈ H2

correspond to the same element of J2 then g2 = Tt ◦g1 for some real t . Thus each
element of H2 can be uniquely represented in the form Tt ◦ ϕu for some suitable
t ∈ R and ϕu ∈ H2 , where the map x 7→ x + t lies in J2 , Reϕu(0) = 0, and
Imϕu(0) = u , hence Imϕu(z) = u+ Im z for all z . We have ϕu ◦ ϕv = Tt ◦ ϕu+v

where t = t(u, v) ∈ R depends on u and v only.
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6.6. Since ϕu commutes with each Tt and increases the imaginary part of
the variable by u , we may write

(6.6.1) ϕu(x+ iy) = x+ ψu(y) + i(y + u)

where the real-valued function ψu is continuous in y with ψu(0) = 0. We look
for a homeomorphism f3 of C fixing ∞ of the form

(6.6.2) f3(x+ iy) = x+Q(y) + iy,

where Q is a real-valued continuous function of y , that would conjugate H2 to a
group of translations. Clearly f−1

3 ◦ Tt ◦ f3 = Tt for all t ∈ R , no matter how Q
is chosen.

We have

{
f−1
3 ◦ ϕu ◦ f3

}
(x+ iy) = x+Q(y) + ψu(y) −Q(y + u) + i(y + u),

which is a translation if and only if

(6.6.3) Q(y + u) −Q(y) = ψu(y) +K(u)

where K(u) depends on u only and not on y .
If J2 6= T , we may assume that J2 is generated by the map x 7→ x + 1.

Then ϕn = Tt(n) ◦ ϕ
n
1 for all n ∈ Z where t(n) ∈ R , so that H2 is generated T1

and ϕ1 . We choose K(1) = 0 and define Q(y) = ψ1(0)y for 0 ≤ y ≤ 1. Then the
condition

Q(y + 1) −Q(y) = ψ1(y) for all y ∈ R

extends Q to a continuous function on R . We conclude that H2 is conjugate to
a group of translations in this case.

6.7. Suppose that J2 = T . The following argument, which is perhaps simpler
than our original one for this case, was suggested by the referee. We first claim
that for any g ∈ H2 there is a unique h ∈ H2 with h2 = g . For if g ∈ H2 then g
is given by g(t+ iu) = t+ Re g1(iu) + i(u+ a) for some real a and some g1 ∈ H1

that are related as in Subsection 6.5. Since J2 = T , there is g2 ∈ H1 such that
F−1

2 ◦ η ◦ F2 = Ta/2 where η ∈ J corresponds to the equivalence class of g2 . We

define h ∈ H2 by h(t+ iu) = t+b+Re g2(iu)+ i(u+ 1
2a) where the real parameter

b is still at our disposal. We find that

h2(t+ iu) = t+ 2b+ Re g2(iu) + Re g2
(
i(u+ 1

2
a)

)
+ i(u+ a).

We choose b so that

Re g1(0) = 2b+ Re g2(0) + Re g2(
1
2
ai).
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Then h2(0) = g(0) so that g−1 ◦ h2 ∈ H2 fixes the origin. But then g−1 ◦ h2 = Id
since H2 is a topological conjugate of H and H has this property, and so g = h2 ,
as required.

Next, if h2
1 = g also for some h1 ∈ H2 then the translation in J2 correspond-

ing to h1 must be Ta/2 , the same as for h . Thus there is a real number c such
that the maps h and Tc◦h1 agree at the origin and hence everywhere in the plane.
Thus g = h2 = T2c ◦ h

2
1 = T2c ◦ g , and so c = 0 and h = h1 . Hence the solution

h ∈ H2 to g = h2 is unique.
As we noted after (6.2.1), H is locally compact and contains no small sub-

groups, so that the topological conjugate H2 of H has the same properties. We
shall show that any neighbourhood of {Id} in H2 contains an element not in T1 .
Then by [10, Lemma 40, p. 129] (see [10, Theorem 7, p. 95], for the definition of the
set K in Lemma 40), there is a (compact) neighbourhood U of {Id} in H2 with
the following property: the set of points of the form X(1), where X(t) defines
a one-parameter subgroup of H2 such that {X(t) : |t| ≤ 1} ⊂ U , is a (closed)
neighbourhood of {Id} in H2 . Choosing such a point X(1) ∈ U \ T1 , we find a
nontrivial one-parameter family X(t) in H2 that {X(t) : t ∈ R} ∩ T1 = {Id} .
For if t 6= 0 and X(t) = Tu then by the existence and uniqueness of square roots
just proved we see that X(rt) is a translation in T1 for all dyadic rational num-
bers r . By continuity, this is then true for all real r , which gives a contradiction
when r = 1/t .

Now to show that any neighbourhood of {Id} in H2 contains a function not
in T1 , suppose, to get a contradiction, that some neighbourhood U of {Id} in H2

is contained in T1 . Since T1 6= H1 and hence T1 6= H2 , there is h ∈ H2 \T1 . By

the above, for each k ≥ 1, we can define hk ∈ H2 with h2k

k = h . Since h /∈ T1 ,
we have hk /∈ T1 . It now suffices to show that some subsequence of hk tends to
Id as k → ∞ . Choose a subsequence hkj

satisfying the definition of a convergence
group.

Recall that

hk(x+ iy) =
(
x+ bk(y)

)
+ i(y + 2−ka)

where a ∈ R\{0} is fixed (and depends on h only) and bk is a continuous function
of y . Now in any case, bkj

(y) tends to a limit (either a finite-valued function or the
constant ±∞) locally uniformly in y as j → ∞ . In case of a finite limit function,
say β(y) , we have hk(x+ iy) → (x+ iy)+β(y) ≡ κ(x+ iy) , and since κ ∈ H2 and
κ(0) = Tβ(0)(0), we have κ = Tβ(0) so that β(y) = β(0) for all y . Suppose that
bkj

(0) → b where b ∈ [−∞,∞] . With aj = bkj
(0), we have (hkj

◦ T−aj
)(0) → 0

and hence gkj
≡ hkj

◦ T−aj
tends to a homeomorphism in H2 fixing the origin.

Thus gkj
→ Id . Note that gk(x+ iy) =

(
x + bk(y) − bk(0)

)
+ i(y + 2−ka) . Now

hkj
= Taj

◦ gkj
. Suppose that b 6= 0. (We may have b = ±∞ .) Then

h(0) = h2kj

kj
(0) = (T2kjaj

◦ g2kj

kj
)(0) = 2kjaj + g2kj

kj
(0).
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For 0 ≤ p < 2kj , the points gpkj
(0) have their y -coordinates between 0 and a .

When j is large enough, |bkj
(y) − bkj

(0)| < min{1, |b|/3} for |y| ≤ |a| since
gkj

→ Id, while furthermore |aj| > min{2, 2|b|/3} and aj will have the same sign
as b . It follows that

|Re g2kj

kj
(0)| < 2kj min{1, |b|/3}

so that |Reh(0)| = |Reh2kj

kj
(0)| > 2kj min{1, |b|/3} → ∞ as j → ∞ , which is a

contradiction. Thus b = 0, so that β(y) is finite and β(y) = β(0) = b = 0 for
all y . This shows that hkj

→ Id as j → ∞ . This also completes the proof of the
existence of the subgroup X(t) .

Write ht instead of X(t) . We have h1 /∈ T1 so that a = Imh1(0) 6= 0. By
the argument at the beginning of Subsection 6.7 and by continuity, Imht(0) = at
for all real t . By reparametrization, we may assume that a = 1. Thus if g ∈ H2 ,
there are real t and u such that g(0) = Tt ◦ hu(0) and so g = Tt ◦ hu . Hence (cf.
the end of Subsection 6.5) each element of H2 can be uniquely represented in the
form Tt ◦ hu for some real t and u . We may write

hr(x+ iy) = x+ χ(r, y) + i(y + r).

The condition hr+s = hr ◦ hs implies that

(6.7.1) χ(r + s, y) = χ(r, y) + χ(s, r + y)

for all real y, r, s .
We now define a function f of R2 into itself by

f(x+ iy) = (hy ◦ Tx)(0) = hy(x) = x+ χ(y, 0) + iy.

Clearly f is a homeomorphism of R2 onto itself (and hence extends to a homeo-
morphism of S2 ). The map f commutes with each Tt . We further have

(hu ◦ f)(x+ iy) = hu
(
x+ χ(y, 0) + iy

)
= x+ χ(y, 0) + χ(u, y) + i(y + u).

We define Tiu by Tiu(x+ iy) = x+ i(y + u) . We have

(f ◦ Tiu)(x+ iy) = f
(
x+ i(y + u)

)
= x+ χ(u+ y, 0) + i(u+ y)

= (hu ◦ f)(x+ iy)

since χ(u + y, 0) = χ(y, 0) + χ(u, y) as we see by replacing r, s, y by y, u, 0 in
(6.7.1). Hence f−1 ◦ Tt ◦ f = Tt and f−1 ◦ hu ◦ f = Tiu so that f−1 ◦ H2 ◦ f
is a group of translations, in fact the group of all translations of C . We have
now proved in all cases (arising when considering Case I) that H is topologically
conjugate to a group of translations containing T1 .
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6.8. We remark that an alternative proof in the case J2 = T can be given
along the following lines. This, in fact, was our original proof, and will appear
in [7]. In this case consider ψu(v) defined by (6.6.1). Since ϕu ◦ϕv = ϕv ◦ϕu , we
have

(6.8.1) ψu(s) + ψv(s+ u) = ψv(s) + ψu(s+ v)

for all u, v, s ∈ R , as a calculation shows. Taking s = 0 in (6.8.1) and recalling
that ψu(0) = 0, we get

ψu(v) = ψv(u).

Furthermore, for any C > 0 there is M > 0 such that |ψu(v)| ≤ M whenever
|u| ≤ C and |v| ≤ C ; and ψun

(vn) → 0 whenever un, vn are real sequences with
un → 0 and vn → 0 as n→ ∞ .

Under these assumptions, it is shown in [7] that ψu(v) is of the form

ψu(v) = Q(u+ v) −Q(u) −Q(v)

for some continuous function Q with Q(0) = 0. We may then use Q in the
definition of f3 , and (6.6.3) is obviously satisfied.

6.9. Let us now set f4 = f1 when H1 = T1 and f4 = f1 ◦f2 ◦f3 otherwise so
that H4 = f−1

4 ◦H ◦ f4 is a Möbius group containing T1 . Set G4 = f−1
4 ◦G ◦ f4

so that G4 contains H4 . If G = H , there is nothing else to prove. Otherwise, G
is given by (6.2.1), so that

(6.9.1) G4 = H4 ∪
{
h ◦ g0 : h ∈ H4

}

for some g0 ∈ G4 \H4 .

Recall that T1 = {Ts : s ∈ R} and write T2 = {Ts : s ∈ C} . Since H4 is
closed, it is clearly equal to T1 or T2 , or is generated by T1 and Tiα for some
positive α . If g0 fixes β ∈ C then, since H4 is abelian, g0 fixes Ts(β) whenever
Ts ∈ H4 .

If H4 = T2 then g0(s) = g0(s + 0) = s + g(0) for all s ∈ C so that g0 is
sense-preserving, which is a contradiction. Thus H4 6= T2 .

By Corollary 1, the function g0 is conjugate to z̄ + 1 or 2z̄ or c/z̄ where
|c| = 1. Thus, if fix(g0) contains at least three points, then fix(g0) is a Jordan
curve. So if H4 = T1 then either fix(g0) = {∞} and g0 is conjugate to z̄ + 1, or
fix(g0) is a horizontal line and g0 is conjugate to 1/z̄ , hence to z̄ . If H4 6= T1

and fix(g0) 6= {∞} , then fix(g0) contains infinitely many horizontal lines, which
is impossible. Thus if H4 6= T1 then fix(g0) = {∞} and g0 is conjugate to z̄+ 1.



232 A. Hinkkanen and G. J. Martin

6.10. If H4 = T1 and fix(g0) is a horizontal line, we may assume that
fix(g0) = R . Set U = {z : Im z > 0} and L = {z : Im z < 0} . Since g0 is
sense-reversing, g0 interchanges U and L . Also g0(z+ t) = g0(z)+ t for all z ∈ C

and t ∈ R . So if we define

f5(z) = z when z ∈ L ∪R

and

f5(z) = g0(z̄) when z ∈ U ,

then f5 is a homeomorphism of C that fixes ∞ . Since g0 is conjugate to z̄ , we
have g2

0 = Id. Thus f−1
5 (z) = z for z ∈ L ∪ R and f−1

5 (z) = g0(z) for z ∈ U .
Now one can verify that

(f−1
5 ◦ g0 ◦ f5)(z) = z̄

and

(f−1
5 ◦ Ts ◦ f5)(z) = z + s

for all z ∈ C and all s ∈ R . Hence f−1
5 ◦ G4 ◦ f5 is a Möbius group, and so is

f−1
6 ◦G ◦ f6 where f6 = f4 ◦ f5 .

6.11. If g0 is conjugate to z̄ + 1, set

Γt =
{
g0(z) : Re z = t

}
for t ∈ R

so that the Γt are disjoint open Jordan arcs whose union is C . Since g0 commutes
with Tt , it follows that

Γt =
{
z + t : z ∈ Γ0

}
for all real t.

Thus Γ0 has a unique point of intersection with each horizontal line, and the map
t 7→ Im g0(it) is a homeomorphism of R onto itself. Since g0 is sense-reversing and
the curves Γt move to the right as t increases, the map Im g0(it) is a decreasing
function of t and therefore has a fixed point. Hence there are t, u ∈ R such that
g0(it) = u+ it . But then T−u ◦g0 ∈ G4 \H4 fixes it and hence fixes each point on
a line and is conjugate to z̄ . We may use (6.9.1) with g0 replaced by any element
of G4 \H4 , in particular by T−u ◦ g0 . Now the argument above shows that G4 is
conjugate to a Möbius group when H4 = T1 .

Finally, if H4 6= T1 but G4 6= H4 , we have found an element of G4 \ H4

that fixes each point on a line, which contradicts what was said about the case
H4 6= T1 at the end of Subsection 6.9.

This completes the proof of Theorem 2 in Case I.
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6.12. Case II. We reduce Case II to Case I by means of a suitable transfor-
mation. We essentially conjugate G by the exponential function but we need to
be careful about the technical details. Let H be the index one or two subgroup
of G consisting of the sense-preserving elements of G . Note that H is a closed
nondiscrete abelian convergence group. We first consider the problem of conju-
gating H to a Möbius group. Pick g0 ∈ H \ {Id} . Then g0 is conjugate to 2z
or cz where |c| = 1, and has therefore exactly two fixed points, which we may
assume to be 0 and ∞ . We claim that each g ∈ H fixes 0 and ∞ . If not, then by
(6.1.1), g interchanges 0 and ∞ . Thus fix(g) = {a, b} where a, b /∈ {0,∞} . Now
any h ∈ H \ {Id} fixes or interchanges each of the pairs a, b and 0,∞ . Since a
hyperbolic or loxodromic map fixes two points and interchanges no pairs of points,
h must be elliptic. Since h2 fixes each of 0,∞, a and b , and h2 is elliptic, we have
h2 = Id. If gn is a sequence of distinct functions in H with gn → Id uniformly
on S2 then for all large n , we cannot have gn(0) = ∞ . Thus gn fixes 0 and ∞ .
Similarly, gn fixes a and b . But since gn is elliptic, we have gn = Id. This
contradiction shows that each function in H \{Id} fixes both 0 and ∞ and hence
fixes no other point.

We say that an element of H \ {Id} is elliptic if it can be topologically conju-
gated to an elliptic Möbius transformation, which is therefore of finite order unless
it is an irrational rotation. An element is hyperbolic (loxodromic, respectively)
if it can be topologically conjugated to a hyperbolic (loxodromic, respectively)
Möbius transformation. Thus each element of H \ {Id} is elliptic or hyperbolic or
loxodromic.

We note that if g1, g2 ∈ H \ {Id} are elliptic then also g−1
1 and g1 ◦ g2 are

elliptic (or g1 ◦g2 = Id). This is clear for g−1
1 . Concerning g1 ◦g2 , we may assume

that a preliminary conjugation has been performed which takes g1 to an elliptic
Möbius transformation, and so we assume that g1 actually is an elliptic Möbius
transformation. If gn1 = gm2 = Id then (g1 ◦ g2)

mn = Id since H is abelian so
that g1 ◦ g2 is elliptic. So we may assume that one of g1 and g2 , say g1 , is an
irrational rotation, say g1(z) = cz where c = e2πiβ for some irrational number β .
Since g1 and g2 commute, it follows as in (3.1) that g2 , and hence g1 ◦ g2 , maps
every circle centred at the origin onto itself. Thus g1 ◦ g2 cannot be hyperbolic,
loxodromic (or parabolic, which is ruled out by membership in H anyway), and
is therefore elliptic. Thus the elliptic elements together with Id form a subgroup
of H , which we denote by E .

Suppose that H = E . We shall show that then H contains a function g that
is topologically conjugate to an irrational rotation. Suppose that this is not the
case. Then every element of H \{Id} is of finite order. Since H is nondiscrete and
hence infinite, it follows that the orders of the elements of H must be unbounded.
To see this, it suffices to show that for any positive integer N , the subgroup
HN of H generated by all the elements of H of order N , is finite. We note
that by the commutativity on H , if g = g1 ◦ . . . ◦ gk ∈ HN where gNj = Id,
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then gN = gN1 ◦ . . . ◦ gNk = Id so that the order of g is at most N . Now to
get a contradiction, suppose that HN is infinite. Then there is a sequence hn
of distinct elements of HN satisfying the definition of a convergence group. If
hn → h where h is a homeomorphism, then the functions gn = hn+1 ◦ h

−1
n ∈ HN

tend to Id uniformly on S2 while each gn has order at most N . But by a
theorem of Newman [18], there is ε = ε(N) > 0 such that for each n , we have
q
(
xn, gn(xn)

)
> ε for some xn ∈ S2 . This gives a contradiction. Thus there must

be points x0, y0 ∈ S2 such that hn → x0 and h−1
n → y0 locally uniformly in

S2 \ {y0} and S2 \ {x0} , respectively. Since each hn fixes 0 and ∞ , we have
{x0, y0} = {0,∞} , say x0 = ∞ and y0 = 0. However, hn(1) is bounded. To see
this, note that by the uniform convergence on {z : |z| = 1} , if hn(1) → ∞ , then
hn({z : |z| = 1}) → ∞ . Thus, as hn(0) = 0, hn(∞) = ∞ , for all sufficiently large
n , the image hn

(
B(1)

)
contains the unit disk B(1) as a relatively compact subset.

So if µn is a homeomorphism fixing 0 and ∞ such that µ−1
n ◦ hn ◦ µn = vn is a

rotation about the origin, say vn(z) = cz where c is a root of unity, we see that
there is a compact set Kn = µn(B(1)) , which is the closure of a Jordan domain
containing the origin, such that Kn is contained in the interior of vn(Kn) . This is
seen to be impossible, considering any point of Kn which is at a maximal distance
from the origin among all points of Kn . So hn(1) is bounded, which contradicts
the fact that also hn(1) → x0 = ∞ . We conclude that HN is finite, as asserted,
and so the orders of the elements of H are unbounded.

Choosing elements hn of H of order at least n and replacing hn by a suit-
able iterate of hn that has the same order as hn , if necessary, without changing
notation, we find a sequence hn such that if hn is topologically conjugate to a
rotation around the origin by the angle 2παn then αn → α as n→ ∞ where α is
an irrational number. Then hn(1) is bounded away from {0,∞} . This follows by
considering rotations µ−1

n ◦hn◦µn = vn as in the previous paragraph. Therefore by
passing to a subsequence we may assume that hn converges to a limit, uniformly
on the entire sphere, which will necessarily be a homeomorphism g and g ∈ H = E
as H is closed. Now g must be elliptic and not of finite order. To see this last
claim we let us suppose that g is elliptic of finite order, say N . Because of the
uniform convergence it is clear that gn = hNn → Id as n→ ∞ . Now each gn is the
topological conjugate of a finite order rotation through angle 2Nπαn → 2Nπα 6≡ 0
(mod 2π ). Choose η ∈ (0, 1) so that η ≡ Nα (mod 1). Choose the smallest in-
teger m so that mη > 1. Then for all n the points

{
hjn(1) : 0 ≤ j ≤ m

}
lie on

an invariant Jordan curve for hn winding once around the origin (for instance the
image of a round circle under the topological conjugacy) and as mη > 1 the sum
of the angular displacements

∠
(
1, 0, gn(1)

)
+ ∠

(
gn(1), 0, g2

n(1)
)

+ . . .+ ∠
(
gm−1
n (1), 0, gmn (1)

)
> 2π.

Thus at least one of the angular displacements is greater than 2π/m .
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We have shown that there is a number m such that for every n there is an
integer j with 0 ≤ j ≤ m such that the angular displacement ∠

(
gjn(1), 0, gj+1

n (1)
)

is at least 2π/m . But the uniform convergence to the identity mapping should
imply that this displacement tends uniformly to 0, which is not the case. Hence
g , as claimed above, has infinite order.

We may then assume, in view of Theorem 1, that a preliminary conjugation
has been performed so that g(z) = c0z where c0 = e2πiα for some irrational
number α . Since H is closed, it follows that the map Rc given by Rc(z) = cz
belongs to H for every complex number c with |c| = 1. Now if h ∈ H then, since
g ◦ h = h ◦ g , we have, as in (3.1), h(cz) = ch(z) whenever |c| = 1. Thus h maps
each circle S(r) centred at the origin onto some such circle S

(
u(r)

)
. Here u(r)

is a homeomorphism of (0,∞) onto itself so that u is strictly increasing since h
fixes 0 and ∞ . If u(r) > r or u(r) < r for some r > 0 then clearly we cannot
have hnj → Id for any sequence of integers nj → ∞ , so that h cannot be elliptic.
Thus u(r) = r for all r > 0. It follows that |h(z)| = |z| and h(z) = zh(|z|)/|z|
for all z ∈ S2 \ {0,∞} . In particular, if h(1) = a then |a| = 1 so that the map
Ra belongs to H . But (Ra ◦ h)(1) = 1 so that Ra ◦ h = Id, and hence h = Ra ,
so that h is a Möbius transformation. Thus, after the preliminary conjugation,
we have made H into a Möbius group, as required. This completes our treatment
of the case H = E . For future reference, we note that the above argument in
this paragraph also shows that if E contains all rotations Rc then E contains no
other functions.

Suppose then that H 6= E . Suppose first that E is not a finite cyclic group.
We claim that E contains a function topologically conjugate to an irrational ro-
tation. If not, then E contains functions of arbitrarily large finite order, by the
argument that we used in the case H = E . Choosing elements hn of E of order
at least n and replacing hn by a suitable iterate of hn that has the same order
as hn , if necessary, without changing notation, we find a sequence hn such that
if hn is topologically conjugate to a rotation around the origin by the angle 2παn
then αn → α as n → ∞ where α is an irrational number. As before, we see
that hn(1) is bounded away from 0 and ∞ . By passing to a subsequence we
may therefore assume that hn → h ∈ H where h is a homeomorphism. Now it
is seen by the same argument as in the case H = E above, that if h ∈ E then
h is topologically conjugate to an irrational rotation. If h /∈ E then h is loxo-
dromic and hk(1) → ∞ , say, as k → ∞ . For each k there is n = n(k) such that
q
(
hkn(1), hk(1)

)
< 1/k so that hkn(k)(1) → ∞ . But hkn(k) ∈ E is conjugate to a

rotation around the origin (by the angle 2πkαn(k) ). Hence, by the same argument

as before, we see that hkn(k)(1) remains bounded away from 0 and ∞ , which gives
a contradiction. This shows that indeed h ∈ E .

Thus we may perform a preliminary conjugation of H and assume that H
contains an irrational rotation so that E contains and therefore, as noted before,
coincides with the group of all rotations.



236 A. Hinkkanen and G. J. Martin

Suppose that H also contains a sequence of distinct loxodromic elements
tending to the identity. Now H contains no small subgroups. For if g ∈ H \ {Id}
is not elliptic then g fixes 0 and ∞ and g is topologically conjugate to the
Möbius transformation z 7→ 2z , by the theorem of Kerékjártó [14] referred to
in the introduction. Hence gn(1) → ∞ as n → ∞ or as n → −∞ , and so
the subgroup of H generated by g cannot be contained in the neighbourhood
U =

{
h ∈ H : d(h, Id) < 1/2

}
of the identity. If g is elliptic then g is an elliptic

Möbius transformation fixing 0 and ∞ so that again it is clear that there is some
fixed neighbourhood U of Id independent of g that does not contain the group
generated by g . Now by [10, Theorem 6, p. 95], H contains a nontrivial one-
parameter family ht , and by [10, Theorem 5, p. 93], we may in fact assume that
some nontrivial ht is loxodromic. Then it clearly follows that ht is loxodromic
whenever t 6= 0.

Since hn = hn1 , the points hn(1) cluster to both 0 and ∞ , so that
{
|ht(1)| :

t ∈ R
}

= {t : t > 0} . We claim that H is generated by E and the maps ht
for t ∈ R . For if h ∈ H then there is c with |c| = 1 and t ∈ R such that
h(1) = cht(1). Since h−1 ◦Rc ◦ht ∈ H fixes the point 1 /∈ {0,∞} , it follows that
h = Rc ◦ ht .

By the last statement of Theorem 4, there is a homeomorphism f of S2 onto
itself that conjugates each rotation Rc onto itself, and conjugates each ht to the
dilation z 7→ etz . Hence f−1 ◦H ◦ f is a Möbius group.

Suppose that H does not contain a sequence of distinct loxodromic elements
tending to the identity. (We are still assuming that H 6= E and that E is the
group of all rotations.) Now if h ∈ H \ E then, since g ◦ h = h ◦ g , we have,
as in (3.1), h(cz) = ch(z) whenever |c| = 1. Thus h maps each circle S(r)
centred at the origin onto some such circle S

(
u(r)

)
. Here u(r) = uh(r) is a

homeomorphism of (0,∞) onto itself so that u is strictly increasing since h fixes
0 and ∞ . For different choices of h we get different values for uh(1) and at least
one of h and h−1 gives a value of uh(1) > 1. Some h = h0 gives the smallest
value of uh(1) > 1 as otherwise there is a sequence of distinct loxodromic elements
tending to the identity. For the same reason the set of values of uh(1) > 1 has
no finite limit point. We further note that if h, k ∈ H and if there is r > 0 such
that uh(r) = uk(r) then h = Rc ◦ k for some c with |c| = 1 so that uh = uk .
Otherwise, we have either uh(r) < uk(r) for all r > 0, or uh(r) > uk(r) for all
r > 0. Similarly, if h ∈ H \ E , we have uh(r) > r for all r > 0, or uh(r) < r for
all r > 0.

Denote the map uh for h = h0 by u0 . We shall now prove that every possible
value of uh(1) is of the form un0 (1) for some integer n where un0 denotes the nth

iterate of u0 . Concerning the values of uh(1) > 1, suppose that the first N (where
N ≥ 1) have been proved to be of the form un0 (1) where 1 ≤ n ≤ N . Let the
next value be ug(1) where g ∈ H . By definition, uN0 (1) < ug(1) ≤ uN+1

0 (1). If
ug(1) < uN+1

0 (1), note that uN0 (r) < ug(r) < uN+1
0 (r) for all r > 0, and consider
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κ = g ◦ h−N0 ∈ H . We have uκ = ug ◦ u
−N
0 , and ug and u0 commute. Hence

1 < uκ(1) < u0(1), which is a contradiction. We deduce that ug(1) = uN+1
0 (1),

as required.

We claim that every element h of H is of the form Rc◦h
n
0 for some integer n .

Choose n so that uh(1) = un0 (1) and hence uh = un0 . As noted above, there is c
with |c| = 1 such that h(1) = chn0 (1). Consequently, h = Rc ◦ h

n
0 , as required.

There is an increasing homeomorphism k of (0,∞) onto itself such that
(k−1 ◦ u0 ◦ k)(x) = ax where a > 0 and a 6= 1 (we may take a = 2, in fact).
Define f(reiθ) = k(r)eiθ , and let f fix 0 and ∞ . Then f is a homeomorphism of
S2 onto itself that conjugates each Rc to itself and satisfies (f−1◦h0◦f)(z) = acz
for some c with |c| = 1. Thus f−1 ◦H ◦ f is a Möbius group.

Suppose then that H 6= E and that E is a finite cyclic group. Now clearly H
contains no small subgroups (and is locally compact), and so, by [10, Theorem 6,
p. 95], H contains a nontrivial one-parameter family ht . Since H is nondiscrete,
it must contain a sequence of distinct loxodromic elements tending to the identity.
Now by [10, Theorem 5, p. 93], we may in fact assume that some nontrivial ht is
loxodromic. Then it clearly follows that ht is loxodromic whenever t 6= 0. By our
Theorem 4, still to be proved, we may perform a preliminary conjugation of H
and assume that ht(z) = etz for all real t . However, we prefer to change notation
and assume that for all real positive t , the mapping ht(z) = tz belongs to H .

Suppose now that g ∈ H \ {ht : t > 0} . Since g(tz) ≡ tg(z) for all t > 0,
it follows that g maps rays (from 0 to ∞) onto rays. Hence g determines a
homeomorphism k of the circle S1 onto itself via k(eiθ) = eiψ if and only if
g({teiθ : t > 0}) = {teiψ : t > 0} . We claim that the mappings of S1 so obtained
when g goes through all elements of H , form a convergence group on S1 . (Note
that if g = ht then k = Id.) Clearly the set K of these maps k is a group. Note
that if k fixes a point so that g maps some ray onto itself then there is z 6= 0,∞
such that g(z) = tz for some t > 0. Then t−1g ∈ H fixes z so that t−1g = Id
and g = ht . Thus k = Id. So every element of K \ {Id} is elliptic.

Suppose that kn ∈ K and that gn ∈ H gives rise to kn . We may replace
gn by tgn for any t > 0 without changing kn . Thus we may choose t depending
on n so that |gn(1)| = 1. Since H is a convergence group, we may pass to a
subsequence without changing notation and assume that gn converges to g . Since
gn fixes 0 and ∞ and |gn(1)| = 1, it follows that the limit function g must
be a homeomorphism to which gn converges uniformly on the sphere, and then
g ∈ H since H is closed. Thus g gives rise to k ∈ K and clearly kn → k
uniformly on S1 . Every element of K is topologically conjugate to a Möbius
transformation by [5], for example, and as we have seen above, every such Möbius
transformation must be elliptic or the identity. Since H is abelian, so is K .
Thus K is nondiscrete or finite, and in both cases there is a homeomorphism p
of S1 onto itself such that K ′ = p−1 ◦K ◦ p is again a group of elliptic Möbius
transformations, by [5]. Since H and K are abelian, so is K ′ . Thus all the



238 A. Hinkkanen and G. J. Martin

elements of K ′ , when viewed as Möbius transformations of the unit disk, have the
same fixed point in the disk, and by choosing p in an appropriate way (replacing p
by p◦M for a suitable Möbius transformation M of the unit disk, if necessary), we
may assume that this fixed point is the origin. Hence each element k′ of K ′ is of
the form k′(eiθ) = ceiθ where |c| = 1. The group K ′ , being a closed abelian group
of rotations, is either a finite cyclic group, or contains every rotation Rexp(2πiα)

given by Rexp(2πiα)(z) = e2πiαz .
We claim that K ′ is a finite cyclic group on the basis that E is a finite cyclic

group. To get a contradiction, suppose that K ′ contains all rotations around the
origin. Suppose that every element of E has order at most N , and consider an
element k′ of K ′ of order 2N , say. Then the corresponding element k of K
has order 2N , and if g ∈ H corresponds to k , then g2N fixes every ray so that
g2N = ht for some t > 0. Set h(z) = g(z)/t1/(2N) so that h ∈ H . Then, since
H is abelian, we have h2N = Id while clearly hj 6= Id if 1 ≤ j < 2N . Thus h is
elliptic of order 2N , which is a contradiction. It follows that K ′ , and hence K ,
is a finite cyclic group.

Now define a homeomorphism f1 of the sphere onto itself fixing 0 and ∞ by
f1(re

iθ) = rp(eiθ) . Then f−1
1 ◦ ht ◦ f1 = ht for all t > 0. Further, if g ∈ H gives

rise to k ∈ K and if (p−1 ◦ k ◦ p)(eiθ) = ceiθ where |c| = 1, then

(6.12.1) (f−1
1 ◦ g ◦ f1)(re

iθ) = creiθ
∣∣g

(
p(eiθ)

)∣∣.

Now H ′ = f−1
1 ◦ H ◦ f1 contains every ht , and each element of H ′ fixes 0

and ∞ , and no element of H ′ \ {Id} has any other fixed points.
Suppose then that K ′ is a finite cyclic group generated by Rexp(2πi/n) corre-

sponding to a function g′ = f−1
1 ◦ g ◦ f1 ∈ H ′ where g ∈ H . Then c = e2πi/n in

(6.12.1). We note that now H is generated by g and the dilations ht for t > 0.
For if h ∈ H then the action of h on rays is the same as for some gj . Thus g−j ◦h
maps each ray onto itself so that g−j ◦h = ht for some t > 0. Next, gn fixes each
ray so that gn = ht for some t > 0. Replacing g by g ◦ hu and hence replacing
g′ by g′ ◦ hu where un = 1/t , we may assume that gn = (g′)n = Id.

We define f(reiθ) = F (θ)reiθ and choose F (θ) > 0 for 0 ≤ θ ≤ 2π/n so that
f will define a homeomorphism of the sector {reiθ : r > 0, 0 ≤ θ ≤ 2π/n} onto
itself satisfying

∣∣g′
(
rF (0)

)∣∣ =
∣∣g′

(
f(r)

)∣∣ = rF (0)
∣∣g

(
p(1)

)∣∣ = rF (2π/n)

for all r > 0. That is, we require that F (2π/n) = F (0)
∣∣g

(
p(1)

)∣∣ . We use the
equation

F (θ + 2π/n) = F (θ)
∣∣g

(
p(eiθ)

)∣∣

to extend the definition of F to all θ . This leads to the requirement that

F (0) = F (2π) = F (0)

n−1∏

j=0

∣∣g
(
p(e2πij/n)

)∣∣,
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which reads

(6.12.2) 1 =
n−1∏

j=0

∣∣g +
(
p(e2πij/n)

)∣∣.

Applying (6.12.1) n times starting with reiθ = 1, we obtain (6.12.2) since (g′)n =
Id. Now f conjugates each ht onto itself while f−1 ◦ g′ ◦ f = Rexp(2πi/n) . Thus
we find an f such that f−1 ◦H ′ ◦ f is a Möbius group. This completes the proof
that we can conjugate H to a Möbius group.

6.13. Proof of Theorem 4. Let the assumptions of Theorem 4 be satisfied.
We may assume that every ht fixes 0 and ∞ , and then for any t 6= 0, the function
ht has no fixed points in C \ {0} . For any z ∈ C \ {0} , all the points ht(z) are
distinct. For if not, then there are real distinct t and u with ht(z) = hu(z) .
But then hu−t fixes z , a contradiction. Hence {ht(z) : t ∈ R} is an open
Jordan arc. We claim that this arc has the endpoints 0 and ∞ . As n → ∞ ,
the points hn(z) = hn1 (z) tend to 0 or ∞ , say to ∞ . We want to show that
limt→∞ ht(z) = ∞ . Suppose that t(j) = n(j) + ε(j) → ∞ where n(j) ∈ Z and
0 ≤ ε(j) < 1. To get a contradiction, suppose that ht(j)(z) does not tend to ∞ .
By passing to a subsequence, we may assume that ht(j)(z) → α ∈ C and that
ε(j) → ε ∈ [0, 1] . By the assumptions of Theorem 4, we have hε(j) → hε uniformly
on S2 . Hence

ht(j)(z) = hε(j)
(
hn(j)(z)

)
→ hε

(
lim
j→∞

hn(j)(z)
)

= hε(∞) = ∞

as j → ∞ , which gives a contradiction. It follows that limt→∞ ht(z) = ∞ .
Similarly, limn→−∞ hn(z) = 0 and so limt→−∞ ht(z) = 0.

Now define a family of mappings on C as follows. Suppose that z ∈ C .
Then the points ht(e

z) for t ∈ R define a Jordan arc through ez = h0(e
z) .

There is a unique arc of points kt(z) in the plane such that k0(z) = z and
ekt(z) = ht(e

z) for all real t . This defines kt(z) . Let m be any integer. Then
the curves ht(e

z) and ht(e
z+2πim) are the same, and it follows from the definition

above that kt(z + 2πim) = kt(z) + 2πim for all t . It easily follows from the
definition that for any fixed real t , the map kt is continuous in z . The map kt
is one-to-one, for if kt(z) = kt(w) then ht(e

z) = ht(e
w) so that ez = ew and

so z = w + 2πim for some integer m . But then kt(z) = kt(w) + 2πim so that
m = 0 and so z = w , as required. Also kt(C) = C . For if w ∈ C then there is
ζ ∈ C \ {0} such that ht(ζ) = ew . Choose any z ∈ C with ez = ζ . Then

{
kt(z + 2πim) : m ∈ Z

}
= {w + 2πin : n ∈ Z}

so that w ∈ kt(C) , as required. Thus each kt is a homeomorphism of C onto
itself, and clearly k0 = Id.
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If t 6= 0, z ∈ C , m ∈ Z , and kt(z) = z+ 2πim , then by the definition above,
we have

ht(e
z) = ekt(z) = ez+2πim = ez,

which is a contradiction. In particular, taking m = 0, we see that kt has no finite
fixed points when t 6= 0. Further if t , u are distinct real numbers and z ∈ C then
kt(z) 6= ku(z) . For if kt(z) = ku(z) then ht(e

z) = hu(e
z) , a contradiction. Hence

the points kt(z) for t ∈ R form a Jordan arc γ(z) .
We claim that kt+u = kt ◦ ku for all real t and u . For this purpose, pick

z ∈ C , denote γ(z) by γ , and write

Γ(ez) =
{
ht(e

z) : t ∈ R
}

=
{
ekt(z) : t ∈ R

}
.

Now ku(z) ∈ γ , and hu(e
z) = eku(z) ∈ Γ(ez) . But now Γ

(
hu(e

z)
)

= Γ(ez) .

Hence kt
(
ku(z)

)
is obtained from ku(z) by lifting an inverse image (under ez ) of

Γ
(
hu(e

z)
)

going through ku(z) . But this must be the arc γ itself. Thus kt
(
ku(z)

)

is the unique point w on γ with ew = ht
(
eku(z)

)
. But kt+u(z) ∈ γ and

ekt+u(z) = ht+u(e
z) = ht

(
hu(e

z)
)

= ht
(
eku(z)

)
.

It follows that kt+u(z) = kt
(
ku(z)

)
, and so kt+u = kt ◦ku , as claimed. This shows

that the set G = {kt : t ∈ R} is a group, and in fact, an abelian group.
If tn ∈ R and tn → ∞ or tn → −∞ , it is now seen that ktn → ∞ locally

uniformly in C . If tn → t ∈ R then clearly ktn → kt locally uniformly in C .
Thus G is an abelian closed convergence group, and every element of G \ {Id} is
parabolic. Furthermore, since kt(z + 2πim) ≡ kt(z) + 2πim , it follows that the
group G′ generated by G and the mappings z 7→ z + 2πim for m ∈ Z , is also
an abelian closed convergence group, and by the property kt(z) 6= z + 2πim (for
m ∈ Z and t 6= 0) established above, every element of G′ \ {Id} is parabolic.

It cannot be the case that Re kt(z) = Re z for some t 6= 0 and all z with
Re z = r for some fixed real r . For suppose that this identity holds. Then
|ht(e

z)| = |ekt(z)| = eRe kt(z) = eRe z = |ez| for this t and all such z . Then
|ht(w)| = |w| whenever |w| = er . This contradicts the assumption that ht is
loxodromic so that the orbit of any point ez under the iterates of ht clusters to
0 and ∞ . This proves our assertion. In particular, if t 6= 0, we cannot have
kt(z) ≡ z + 2πim for any integer m .

For any z ∈ C , we have
{
Re kt(z) : t ∈ R

}
= R . By continuity, this follows

as soon as
{
Re kt(z) : t ∈ R

}
is unbounded above and below. This is the case

since eRe kn(z) = |hn(e
z)| and since hn(ez) for n ∈ Z clusters to 0 and ∞ .

By the part of Theorem 2 for groups with only parabolic elements, which we
have proved already without any reference to Theorem 4, there is a homeomor-
phism f1 of C fixing infinity such that each element of G0 = f−1

1 ◦G′ ◦ f1 , other
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than the identity, is a parabolic Möbius transformation fixing infinity, that is, a
translation. Since kt+u = kt ◦ ku for all real t and u , we may clearly choose f1
so that f−1

1 ◦ kt ◦ f1 = Tt for all real t where Tt(z) = z + t as before. Write
g = f−1

1 ◦T2πi ◦ f1 ∈ G0 . Then g commutes with Tt for all real t while gm is not
equal to Tt for any real t , for any nonzero integer m . Thus g = Ta where a is a
nonreal complex number.

We now define f2(z) = az/(2πi) , f = f1 ◦ f2 , and G′′ = f−1
2 ◦ G0 ◦ f2 =

f−1 ◦G′ ◦ f . Then f−1 ◦ kt ◦ f = T2πit/a while f−1 ◦ T2πi ◦ f = T2πi .
Thus G′′ contains the maps z 7→ z + 2πim for all m ∈ Z , and f satisfies

f(z + 2πim) = f(z) + 2πim for all z ∈ C and all m ∈ Z . We define at ∈ C by
(f−1 ◦ kt ◦ f)(z) ≡ z + at , so that at = 2πit/a . Then at+u = at + au for all real
t and u . We have at ≡ ct where the constant c is not purely imaginary.

Now define a homeomorphism F of C \ {0} onto itself by F (z) = ef(log z) .
This is well-defined, no matter which value of log z is used, and is continuous
by local considerations. It clearly maps C \ {0} onto itself. If F (z) = F (w)
then f(log z) = f(logw) + 2πim = f(logw + 2πim) for some m ∈ Z . But then
log z = logw + 2πim so that z = w . Thus F is one-to-one, and so F defines a
homeomorphism of C \ {0} onto itself. Clearly F extends to a homeomorphism
of S2 onto itself.

Suppose that z ∈ C \ {0} . We have

(F−1 ◦ ht ◦ F )(z) = exp
{
f−1

(
log

[
ht

(
ef(log z)

)])}

= ef
−1(kt(f(log z))) = elog z+at = eatz = ectz.

Write c = c1 + ic2 where c1 and c2 are real. We replace F (z) by the function
F1 defined by F (z) = F1(z) when z ∈ {0,∞} and F1(re

iθ) = F (rc1ei(θ+β(r))) for
z = reiθ ∈ C \ {0} . Here β(r) can be any function satisfying β(etr) − β(r) ≡ c2t
(mod2π) whenever r > 0 and t is real. One possible choice is β(r) = c2 log r . It is
now easy to verify that then (ht◦F1)(z) = F1(e

tz) so that (F−1
1 ◦ht◦F1)(z) = etz .

Suppose finally that each ht commutes with every rotation around the origin.
We claim that then each kt commutes with the translation Tiu for every real u .
To see this, note that if γ = eiu for a fixed real u and if ht(γz) = γht(z) for all
z , then for any fixed z ∈ C , we have

ekt(z)+iu = γekt(z) = γht(e
z) = ht(γe

z) = ht(e
z+iu) = ekt(z+iu)

so that
(
kt(z) + iu

)
− kt(z + iu) = 2πim for some integer m . For t = 0 this

holds with m = 0 so that by continuity with respect to t , for fixed z and u , the
same identity holds with m = 0 for all real t . This shows that kt commutes with
Tiu . If now Re kt(z) = Re z for some t 6= 0 and some z , then Re kt(z + iu) =
Re

(
kt(z) + iu

)
= Re(z + iu) for all real u . As we have seen, this leads to a

contradiction. Hence Tiu ◦ kt has no finite fixed points when (t, u) 6= (0, 0).
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Next we may, in the above proof, replace G′ by the group generated by the
kt and the Tiu for all real t and u . We still find a homeomorphism f1 such that
G0 = f−1

1 ◦ G′ ◦ f1 is a group of translations, while f−1
1 ◦ kt ◦ f1 = Tt for all t .

We pass to G′′ as before using a map f2 , and set f = f1 ◦ f2 . The mappings
f−1 ◦ Tiu ◦ f = qu form a one-parameter family of translations so that they are
given by qu = Tbu for some nonzero complex number b . Since q2π = T2πi , we
have b = i . Hence qu = Tiu and so f−1 ◦ Tiu ◦ f = Tiu . Defining F as before, we
find that for any γ = eiu with |γ| = 1 we have

(F−1 ◦ Rγ ◦ F )(z) = elog z+iu = γz.

If a further transformation is needed and F1(re
iθ) = F (rc1ei(θ+log r)) , then

(Rγ ◦ F1)(z) = F (rc1ei(θ+u+log r)) = F1(re
i(θ+u)) = F1(γz),

as required for F1 to conjugate each Rγ onto itself. This completes the proof of
Theorem 4.

6.14. We return to the proof of Theorem 2 in Case II. We have shown that
the subgroup H of G consisting of the sense-preserving elements of G can be
topologically conjugated to a Möbius group. Let us therefore assume, without
changing notation, that H , in fact, is a Möbius group consisting of mappings
of the form z 7→ cz where c ∈ C \ {0} . Then there is a closed nondiscrete
group J ′ of translations Ta of C , containing T2πin for all integers n , such that
H = {z 7→ eaz : Ta ∈ J ′} .

Since J ′ is closed and nondiscrete, it contains a one-parameter family of
translations. In fact, the set E =

{
g̃(0) : g̃ ∈ J ′

}
is a closed set in C and E is an

additive group which contains points arbitrarily close to 0 as well as all the points
2πin for n ∈ Z . We claim that if E 6= C then

(6.14.1) E =
{
tc1 + nc2 : t ∈ R, n ∈ Z

}

where c1, c2 ∈ C with c1 6= 0 and Re(c̄1c2) = 0. For suppose that an ∈ E \ {0}
and an → 0. If an belongs to line Ln through the origin, we may assume that the
Ln tend to a limit line L . If w ∈ L and ε > 0, there is a line Ln such that the
distance of w from Ln is less than ε/2 and such that |an| < ε/2. Since man ∈ E
for all m ∈ Z , there is β ∈ E with |β − w| < ε . Since ε was arbitrary and E is
closed, we have w ∈ E , and so L ⊂ E (cf. an argument of Baker in [1, p. 285]).
We may write L = {tc1 : t ∈ R} where c1 6= 0. If L 6= E 6= C and c2 ∈ E \ L
then nc2 + tc1 ∈ E for all n ∈ Z and t ∈ R . We may thus only consider those
c2 ∈ E \ L that are perpendicular to L as vectors in R2 , that is, those with
Re(c̄1c2) = 0. These elements c2 of E on the line M through 0 orthogonal to L
either form a discrete set of the form {mc′2 : m ∈ Z} for some c′2 6= 0, or M ⊂ E ,
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in which case E = C . Thus (6.14.1) holds. Note that if E = L then (6.14.1)
holds with c2 = 0.

Thus H consists of mappings Mc where Mc(z) = cz , such that if V is defined
by H = {Mc : c ∈ V } then either V = C \ {0} or

(6.14.2) V =
{
cn3 e

c1t : t ∈ R, n ∈ Z
}

where c3 = ec2 6= 0.

6.15. If G 6= H then G is generated by H and some h ∈ G \H . Also G is
abelian. If V = C \ {0} then

(6.15.1) h(cz) = ch(z) for all z ∈ C and c ∈ V,

and taking z = 1 we see that h is sense-preserving, which is a contradiction.
Let V be as in (6.14.2). Suppose first that |c3| = |ec1 | = 1. Then

V = {c ∈ C : |c| = 1}

since c1 6= 0. Now (6.15.1) is the same as (3.1), so that the proof of Lemma 1
shows that G is topologically conjugate to a Möbius group.

Suppose then that |c3| 6= 1 or |ec1 | 6= 1. Now (6.14.2) and (6.15.1) with z = 1
show that h fixes 0 and ∞ . If c2 = 0 then, since 2πi ∈ E , we have c1 = ib where
b is real. But then |c3| = |ec1 | = 1, which is a contradiction. Thus c2 6= 0, and
in view of the structure of the set E , we may assume first that c1 and c2 are
orthogonal vectors in R2 and then, since c1 can be multiplied by a nonzero real
number without changing E , that c1 = ic2 . Since 2πi ∈ E , there are t0 ∈ R and
n0 ∈ Z such that (n0 + it0)c2 = 2πi , that is,

c2 = 2π(t0 + in0)(t
2
0 + n2

0)
−1.

Replacing c2 by −c2 , if necessary, we may assume that n0 ≥ 0. A calculation
shows that either n0 6= 0 and

(6.15.2) V =
{
ωk exp

[
t(n0 − it0)

]
: t ∈ R, k ∈ Z and 0 ≤ k < n0

}

where ω = exp{2πi/n0} , or n0 = 0 6= t0 and

(6.15.3) V =
{
exp

[
u(n+ it)

]
: n ∈ Z, t ∈ R

}

where u = 2π/t0 . In the latter case, V contains the unit circle (take n = 0), so
that (6.15.1) and the proof of Lemma 1 show that G is topologically conjugate to a
Möbius group. (In fact, it may be that (6.15.3) implies some contradiction but we
need not be concerned about that.) More precisely, to get (6.15.2), note that every
α ∈ E is of the form α = (n+ it)c2 = 2πi(n+ it)/(n0 + it0) . Choose k ∈ Z with
0 ≤ k < n0 so that k ≡ n (mod n0 ). Then choose u = 2π(nt0−tn0)/

(
n0(n

2
0+t

2
0)

)
,

write eα in terms of k and u , and denote u again by t . This gives (6.15.2).
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6.16. So we may assume that V is as in (6.15.2). Since h is sense-reversing
and fixes 0 and ∞ , it follows that the image h

(
S(1)

)
of the unit circle covered

in the positive direction, when projected radially by the map z 7→ z/|z| onto a
path Γ on the unit circle, is homotopic to the circle covered once in the negative
direction. On the other hand, if Γ starts at α = h(1)/|h(1)| , then it goes through
ωα, ω2α, . . . , ωn0−1α in this order since h(ωk) = ωkh(1) by (6.15.1) and (6.15.2).
The part of Γ from α to ωα is homotopic to S(1) covered m times plus an arc of
angular measure 2π/n0 covered in the positive direction. Since h(ωkz) = ωkh(z) ,
it follows by calculating the winding number of Γ around the origin that −1 =
1 + n0m , that is, n0m = −2, so that n0 = 1 or n0 = 2.

We have h2 ∈ H , so h2 = Mc for some c ∈ V . There is d ∈ V with d2 = ±c .
Replacing h by h◦M1/d if necessary, we may assume that h2 = Id or h2 = M−1 ,
the latter case occurring at most when n0 = 2.

6.17. Suppose that h2 = Id, and for r > 0, set D0(r) = B(r)∪ h
(
B(r)

)
, let

U(r) be the unbounded component of C \D0(r), and set D(r) = C \U(r). Then
D(r) is a Jordan domain and Γ(r) = ∂D(r) is a Jordan curve. This is clear if S(r)
and h

(
S(r)

)
have at most one point of intersection, and otherwise follows from a

theorem of Kerékjártó ([11, Hilfssatz I, p. 87]; see also [19, Example, p. 168]) since
Γ(r) is the boundary of one of the components of

C \
{
S(1) ∪ h

(
S(1)

)}
.

Also h maps U(r) and hence Γ(r) and D(r) onto itself. The map h | Γ(r) is sense-
reversing and has exactly two fixed points, say a(r) and b(r) , that divide Γ(r)
into two arcs that are interchanged by h (this follows since h is sense-reversing
and fixes 0 and ∞).

We may write the elements of V as et(1−it0) or ±et(1−it0/2) depending on if
n0 = 1 or n0 = 2. In each case, we may take

(6.17.1) a(r) = rc(r)a(1) and b(r) = rc(r)b(1)

where c(r) = exp
{
−(log r)it0

}
or c(r) = exp

{
−(log r)it0/2

}
so that |c(r)| = 1.

If n0 = 2, we further have b(r) = −a(r) for all r , since h(−z) = −h(z) and
so D(r) = {−z : z ∈ D(r)} . More precisely, if c ∈ V then by (6.15.1) we have
h
(
B(|c|r)

)
=

{
cz : z ∈ h

(
B(r)

)}
and so D(|c|r) =

{
cz : z ∈ D(r)

}
, hence

Γ(|c|r) =
{
cz : z ∈ Γ(r)

}
. This together with (6.15.1) gives (6.17.1).

We now define a homeomorphism f3 of C fixing 0 and ∞ as follows. Let
F be a sense-preserving homeomorphism of Γ(1) onto S(1) with F

(
a(1)

)
= 1

and F
(
b(1)

)
= −1, for example, the boundary value map of a suitable conformal

mapping of D(1) onto B(1). Set Γ1 = F−1
(
S(1) ∩ {w : Im w ≥ 0}

)
and Γ2 =

Γ(1) \ Γ1 . Suppose that z ∈ Γ(r) . If n0 = 1 there is a unique c ∈ V with
|c| = r . If n0 = 2, there are two points, say ±c , that belong to V and have
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modulus r . Then we choose c = exp
{
(log r)(1 − it0/2)

}
. Now z/c ∈ Γ(1). If

z/c ∈ Γ1 , we set f3(z) = |c|F (z/c) . If z/c ∈ Γ2 , we set f3(z) = f3
(
h(z)

)
. Thus

f3 | Γ(r) is a homeomorphism of Γ(r) onto S(r) . We have f3(z) = f3
(
h(z)

)
also

when z/c ∈ Γ1 since then z = h(w) where w/c ∈ Γ2 and since h2 = Id. Thus
(f3 ◦ h ◦ f−1

3 )(z) = z̄ for all z .

Clearly the curves Γ(r) are disjoint and their union is C \ {0} . Thus f3 is
one-to-one and onto, and continuous at 0 and at ∞ . For c0, c ∈ V and z/c ∈ Γ1 ,
we have f3(z) = |c|F (z/c) and

f3(c0z) = |cc0|F
{
(c0z)/(c0c)

}
= |cc0|F (z/c) = |c0|f3(z).

If z/c ∈ Γ2 then f3(z) = f3
(
h(z)

)
while

f3(c0z) = f3
(
h(c0z)

)
= f3

(
c0h(z)

)
= |c0|f3

(
h(z)

)
= |c0| f3

(
h(z)

)
.

Thus f3(c0z) = |c0|f3(z) for all z and so

f3 ◦Mc0 ◦ f
−1
3 = M|c0|.

It follows that f3 conjugates G to a Möbius group.

It follows easily from the definitions that f3 is continuous on C \ {0} also
and hence on C . Since C is compact, f3 is a homeomorphism. Thus G is
topologically conjugate to a Möbius group.

6.18. If h2 = M−1 then z = h2(z) = −z for any fixed point z of h so that
fix(h) = {0,∞} . But we may proceed as above and define

D0(r) =
3⋃

n=0

hn
(
B(r)

)
= D′

0(r) ∪ h
2
(
D′

0(r)
)

where D′
0(r) = B(r) ∪ h

(
B(r)

)
. Let the unbounded component of C \D′

0(r) be

U1(r) so that U1(r) is a Jordan domain as above, and set D1(r) = C \ U1(r)
and D2(r) = D1(r) ∪ h

2
(
D1(r)

)
. Then the unbounded components of C \D0(r)

and C \D2(r) coincide. Thus, if that component is denoted by U(r) , then U(r)
is a Jordan domain and Γ(r) = ∂U(r) is a Jordan curve contained in C \ {0} .
Since h4 = Id, the map h takes each of D0(r) , U(r) and Γ(r) onto itself. Now
h | Γ(r) is sense-reversing and has two fixed points so that h has two fixed points
in C \ {0} , which is a contradiction. Hence the case h2 = M−1 cannot occur.

This proves Theorem 2 in Case II. Thus the proof of Theorem 2 is complete.
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