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Pekka Tukia

University of Helsinki, Department of Mathematics

P.O. Box 4 (Hallituskatu 15), FIN-00014 University of Helsinki, Finland; ptukia@cc.helsinki.fi

Abstract. Let G be a geometrically finite group of the (n+1)-dimensional hyperbolic space
Hn+1 . It is known that the Hausdorff dimension of the limit set L(G) of G is the exponent of
convergence δG of G . Our main result is to make this more precise and show that the Hausdorff
measure of L(G) is infinite for some gauge function of the form | log |̺rδG for some ̺ > 0 . The
proof is based on the theorem that “most” hyperbolic rays with one endpoint in L(G) do not dive
too deeply in the horoballs at parabolic fixed points of G .

1. Introduction

Let G be a discrete Möbius group acting on the hyperbolic space Hn+1 =
Rn×(0,∞) and on the boundary R̄n = Rn∪{∞} of Hn+1 . The group G acts as
a group of hyperbolic isometries on Hn+1 and we can define the Poincaré series
of G of exponent δ as the series

(1a)
∑

g∈G

e−δd(y,g(z))

where y, z ∈ Hn+1 and d is the hyperbolic metric. The convergence or divergence
of (1a) depends only on δ and not on the points y and z . There is a critical value
δG , called the exponent of convergence of G such that (1a) converges if δ > δG

and diverges if δ < δG ; if δ = δG , the series may converge or diverge.
The group G is geometrically finite, if G is discrete and if the action of G

on Hn+1 has a finite sided fundamental domain (see [T2, Section 1B] for a more
precise definition). It is known that for geometrically finite G , the exponent of
convergence equals the Hausdorff dimension of the limit set L(G) of G [S2, N].
One of the aims of this paper is to make this result more precise (Theorem 4C) and
to show that the Hausdorff measure mγ of L(G) is infinite on open non-empty
subsets of L(G) for the gauge function γ(r) = | log r|̺rδG for some ̺ > 0 (for
the definition of mγ , see below). In the other direction, it is known (and easy to
prove) that it is finite or zero on bounded sets for the gauge function rδG .

The proof of this theorem makes use of conformal measures. This notion
is most naturally expressed if the model for the hyperbolic (n + 1)-space is the
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(n + 1)-ball Bn+1 since when using the half-space model Hn+1 the point ∞
is in a special position. However, the half-space model is natural for us and in
this case we can give the following definition, the general definition being given
below. Let G be a non-elementary Möbius group of H̄n+1 and µ an atomless
Borel measure µ . Then µ is a conformal (G-)measure of dimension δ on a G-
invariant set A ⊂ H̄n+1 = Hn+1 ∪ R̄n if µ is finite on bounded sets and satisfies
the transformation rule

(1b) µ(gX) =

∫

X

|g′|δ dµ

for all g ∈ G and measurable X ⊂ A ; here |g′| is the operator norm of the
differential g′ . Often a conformal measure µ is considered to be defined on a
fairly small set such as the limit set L(G) of G but we consider conformal measures
defined in H̄n+1 or even in R̄n+1 which we can obtain by extending by zero.

A simple and familiar example of such a measure is the n -dimensional Haus-
dorff measure on Rn . Sullivan [S1] has developed a method of Patterson [P] and
shown that there is a conformal measure on L(G) whose dimension is the expo-
nent of convergence δ of G . If G is geometrically finite, then µ is atomless and
uniquely determined up to multiplication by a constant [S2, N].

We now assume that G is geometrically finite and that µ is the Patterson–
Sullivan measure. The basic result from which we start is that if v ∈ Rn is a
parabolic fixed point of G of rank k (cf. Section 2), then we have the estimate
that the µ-measure for the ball Bn(v, t) of radius t around v is comparable to
t2δ−k for small values of t (Theorem 2B). This estimate enables us to find a
nullset Z (the set Z̺ of Lemma 3A) such that if x ∈ L(G) is outside Z and
not a parabolic fixed point, then points on the hyperbolic line (x, t) , t > 0,
behave in a controlled manner for small t when points on the line are near some
parabolic fixed point; here “near” means to be in a horoball (see Section 2) of the
parabolic fixed point. Here and below (x, t) is the point (x1, . . . , xn, t) ∈ Rn+1

when x = (x1, . . . , xn) ∈ Rn and t ∈ R .
On the other hand, unless (x, t) , x ∈ L(G) , t small, is in a horoball at a

parabolic fixed point of G , it is known that we have the estimate that µ
(

Bn(x, t)
)

is comparable to tδ . Combining this with the controlled diving of (x, t) , t → 0,
into horoballs at parabolic fixed points, we can obtain for points x ∈ L(G)\Z not
fixed by some parabolic g ∈ G the following estimate for the µ-measure of the
n -ball Bn(x, t) with radius t and center x

(1c) A−1| log t|−̺0tδ ≤ µ
(

Bn(x, t)
)

≤ A| log t|̺0tδ

for some ̺0 > 0 and A > 1 when t is less than a positive number which may
depend on x (Lemma 4B).

Estimate (1c) implies the infiniteness of the Hausdorff measure for the gauge
functions | log t|̺tδ for ̺ > ̺0 (Theorem 4C). Let us recall that the finiteness of
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the Hausdorff measure on bounded sets for the gauge function rδ is a consequence
of the fact that unless x ∈ L(G) is in set of points fixed by some parabolic g ∈ G ,
then there exists arbitrarily small t such that µ

(

Bn(x, t)
)

is comparable to tδ (cf.
(4a)).

We are here concerned only with geometrically finite groups containing par-
abolic elements. The geometrically finite groups without parabolic elements are
the so called “convex cocompact” groups and in this case (1c) is true with ̺0 = 0,
and the Hausdorff measure for the gauge function rδG is the canonical conformal
measure mentioned above, cf. [S1, N]. If n = 2, then Sullivan [S2] proved that
if δG is at least the maximum of the ranks of the parabolic elements of G , then
the δG -dimensional Hausdorff-measure of L(G) is finite and non-zero and hence
the Hausdorff measure for the gauge function | log r|̺rδG is infinite for any ̺ > 0.
In other cases the δG -dimensional Hausdorff-measure is zero. These results are
probably valid for any n .

Sullivan [S4] also has the following, somehow related result. There are finitely
generated but geometrically infinite Kleinian groups of R̄2 whose limit sets are
of zero planar measure but whose Hausdorff dimension with respect to the gauge
function r2| log r| is positive or infinite.

More on conformal measures, some definitions and notations. If h is a Möbius
transformation, the image h∗µ of µ is defined by

(1d) h∗µ(hX) =

∫

X

|h′|δ dµ.

If µ is a G-measure, then h∗µ is an hGh−1 -measure. The fact that µ is a
G-measure can be expressed by the relation g∗µ = µ for g ∈ G .

By means of the notion of the image of a conformal measure, we can now
remove the restrictions in the definition given above. Let Γ be a Möbius group of
B̄n+1 . A conformal Γ-measure on B̄n+1 is a finite Borel measure which satisfies
(1b) for measurable X ⊂ B̄n+1 and g ∈ Γ. If h: B̄n+1 → H̄n+1 is a Möbius
transformation, and µ is a Γ-measure on B̄n+1 , then (1d) defines a measure
ν = h∗µ on H̄n+1 although possibly ν(∞) = ∞ if h−1(∞) is an atom of µ .
Furthermore, it is clear that that, ν satisfies (1b) if ∞ 6∈ X ∪gX and that if there
are no atoms, then (1b) is true for all measurable X ⊂ H̄n+1 .

Thus the problems connected with the point ∞ disappear in B̄n+1 and it is
reasonable to define that a conformal measure on H̄n+1 is the conformal image of
a conformal measure on B̄n+1 . Then we have (1b) for all measurable X ⊂ H̄n+1

with the understanding that if ∞ ∈ X ∪ gX and ν(∞) = ∞ , then we use the
information that ν = h∗µ to decide the measure of gX . If G is non-elementary
and µ atomless, then this definition is equivalent to the one given above, cf. [T3]
where we have discussed this in more detail.

We now fix some definitions.
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We first recall the definition of Hausdorff measure with respect to the gauge
function γ(r) . Let X have metric d and let d(U) be the diameter of a set U .
Let ε > 0. Set mγε(X) = inf

{
∑

U∈U
γ(d(U)) : U is a countable cover of X such

that d(U) < ε for U ∈ U
}

. The Hausdorff measure mγ(X) of X with respect
to γ is limε→0 mγε(X) .

The group of all Möbius transformations of H̄n+1 , which can be identified
with the group of Möbius transformations of R̄n , is denoted by Möb(n) . A Möbius
group G is a subgroup of Möb(n) and it is discrete if it is a discrete subset
in the natural topology of Möb(n) . The limit set L(G) is the complement of
the set where G acts discontinuously and the group is non-elementary if L(G)
contains more than two points. Elements g ∈ Möb(n) can be classified as elliptic
(including the identity map), parabolic and loxodromic, cf. e.g. [T2, Section 1C]
for the definitions.

The hyperbolic metric of Hn+1 is d and it is given by the element of length
|dx|/xn+1 , x = (x1, . . . , xn+1) .

(x, t) = (x1, . . . , xn, t) for x = (x1, . . . , xn) ∈ Rn and t ∈ R .
Bk(z, r) = the open euclidean k -ball with radius r and center z .
Bk(r) = Bk(0, r) and Bk = Bk(0).
Sk = k -sphere = the boundary of Bk+1 .
diam = the euclidean diameter.
∂ = topological boundary.
e1, . . . , en+1 is the standard basis of Rn+1 , e1 = (1, 0, . . . , 0) etc.

2. Conformal measure at parabolic fixed points

A parabolic fixed point v of a discrete Möbius group G is a point v ∈ R̄n

which is fixed by some parabolic g ∈ G . The stabilizer Gv = { g ∈ G : g(v) = v }
of v is an infinite group which contains a free abelian subgroup of finite index and
of rank k ∈ [1, n] ; here k is the rank of v . If we transform the situation to H̄n+1

so that v becomes ∞ , then every g ∈ G∞ is a euclidean isometry. In addition,
there is an affine Gv -invariant subspace V ⊂ Rn of dimension k such that V/Gv

is compact and if W is any Gv -invariant affine subspace of dimension k , then
W/Gv is compact. See [T2, Section 2] for a discussion of these consequences of
the Bieberbach theorems.

A cusp neighbourhood in H̄n+1 of a parabolic fixed point v of rank k is a Gv -
invariant set U not intersecting L(G) such that there is a Möbius transformation
h: H̄n+1 → H̄n+1 such that h(v) = ∞ and that

(2a) H̄n+1 \ (hU ∪ {∞}) = (Rk × B̄n+1−k) ∩ H̄n+1−k.

A cusp neighbourhood V in R̄n of v is of the form U ∩ R̄n when U is a cusp
neighbourhood in H̄n+1 so that Rn \ hV = Rk × B̄n−k . In (2a) the set Rk ×
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B̄n+1−k/hGvh−1 is compact and hence
(

H̄n+1 \ (U ∪ {v})
)

/Gv and
(

R̄n \ (V ∪
{v})

)

/Gv are compact.
Note that if v has a cusp neighbourhood in R̄n , then it has a cusp neigh-

bourhood in H̄n+1 . If the rank of v is n , then cusp neighbourhoods in R̄n are
empty and v has cusp neighbourhoods in H̄n+1 which are horoballs (see below).
The name “cusp neighbourhood” of v may sound odd since v is not in it but the
name is more reasonable in the quotient

(

H̄n+1 \L(G)
)

/G where they correspond
to neighbourhoods of ideal elements. Note also that the notion of a cusp neigh-
bourhood of the point v also involves the group G since a cusp neighbourhood
cannot intersect the limit set.

Usually, one adds the condition to the definition of a cusp neighbourhood that
if g, h ∈ G , then either gU = hU or gU ∩hU = ∅ . However, we will not need this
condition in this paper. One notable difference with the earlier definition is that
v may have cusp neighbourhoods in R̄n but not in H̄n+1 . If G is geometrically
finite, all parabolic fixed points have cusp neighbourhoods in H̄n+1 in this stronger
sense, see [T2].

A horoball based at v is an open (n + 1)-ball B which is a proper subset of
Hn+1 such that ∂B is tangent to R̄n at v (if v = ∞ , this definition needs an
obvious modification). If v is a parabolic fixed point, then GvB = B . We will
need the following fact about horoballs. It involves the hyperbolic convex hull HG

of G which is the smallest closed subset of Hn+1 which is convex in the hyperbolic
metric and such that H̄G ⊃ L(G) . This well-defines HG unless L(G) is a point
in which case we set HG = ∅ .

Lemma 2A. Let v be a parabolic fixed point of G which has cusp neigh-
bourhoods in R̄n . Let B be a horoball at v . Then (HG ∩ ∂B)/Gv is compact.

Proof. We transform the situation by a Möbius transformation so that v = ∞
which has a cusp neighbourhood U in R̄n such that Rn \ U = Rk × B̄n−k = A .
Since Rk/Gv is compact, also A/Gv is compact. Now L(G)∩Rn ⊂ A and hence
HG ⊂ A × (0,∞) . Since ∂B \ {v} = Rn × {t} for some t > 0, the intersection
∂B ∩HG is a closed Gv -invariant subset of Rk × B̄n−k × {t} whose Gv -quotient
is homeomorphic to A/Gv . Thus (∂B ∩ HG)/Gv is compact, too.

Theorem 2B. Let G be a discrete non-elementary Möbius group of H̄n+1 .
Let v be a parabolic fixed point of G of rank k and let µ be a non-trivial conformal
G-measure of dimension δ such that v is not an atom of µ . Suppose that there
is a cusp neighbourhood U of v in H̄n+1 such that µ(U) = 0 ; if µ is supported
by R̄n it suffices that U is a cusp neigbourhood in R̄n with µ(U) = 0 . Let B
be a horoball based at v . Under these circumstances there is C ≥ 1 with the
following property. Let g ∈ Möb (n) be such that g(v) ∈ Rn and ∞ ∈ g

(

L(G)
)

.
Let d = diam (gB)/2 where diam is the euclidean diameter. Then

C−1t2δ−kg∗µ
(

Bn+1
(

g(v), d
))

≤ g∗µ
(

Bn+1
(

g(v), td
))

(2b)
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≤ Ct2δ−kg∗µ
(

Bn+1g(v), d
)

if 0 ≤ t ≤ 1 . Alternatively, C can be so chosen that

(2c) C−1t2δ−kdδ ≤ g∗µ
(

Bn+1
(

g(v), td
))

≤ Ct2δ−kdδ.

Remarks. 1. The point v can be an atom of µ and the theorem remains
true if we remove the point g(v) from the sets in formulae (2b) and (2c).

2. If µ is supported by R̄n , then g∗µ
(

Bn+1
(

g(v), d
))

in (2b) is the g∗µ-
measure of the “shadow” of gB , that is the projection of gB onto Rn which is
Bn

(

g(v), d
)

. When we use Theorem 2B, g ∈ G and so g∗µ = µ .

3. If µ is supported by L(G) , then automatically µ(U) = 0 since cusp
neighbourhoods do not intersect with L(G) .

4. The proof of Lemma 2B is similar to the proof that the canonical conformal
measure of a geometrically finite group has no atoms at parabolic fixed points given
in [S2, Section 2]. Sullivan attributes the idea to Patterson [P].

Proof. If µ is supported by R̄n and V is a cusp neighbourhood of v in R̄n

such that µ(V ) = 0, then there is a cusp neighbourhood U in H̄n+1 such that
U ∩ R̄n = V . Thus µ(U) = 0 and so we can assume in all cases that there is a
cusp neighbourhood in H̄n+1 such that µ(U) = 0.

We first prove the theorem in the following special case. The horoball B is
the horoball of Hn+1 based at 0 such that diam(B) = 2d = 1. In addition, g = id
and 0 has a cusp neighbourhood U in H̄n+1 such that µ(U) = 0 and such that if
σ is the reflection x 7→ x/|x|2 on Sn , then

A = H̄n+1 \ (σU ∪ {∞}) = (Rk × B̄n+1−k) ∩ H̄n+1.

Let Γ = σGσ and ν = σ∗µ which is a conformal Γ-measure. Then ∞ is a
parabolic fixed point of Γ of rank k and σU is a cusp neighbourhood of ∞ such
that ν(σU) = 0. Elements of the stabilizer Γ∞ are euclidean isometries and hence
ν(hX) = ν(X) for h ∈ Γ∞ and measurable X .

Since Rk/Γ∞ is compact, there is s > 0 such that Γ∞

(

Bk(x, s)× B̄n+1−k
)

⊃
A for every x ∈ Rk . If x ∈ Rk , set

Bx = Bk(x, s) × B̄n+1−k.

The set B̄x∩A is compact and since By∩A are open as subsets of A , we can cover
Bx ∩ A by a finite number N of the sets of the form γBy , γ ∈ Γ∞ . This finite
number N does not change if we change x or y by a small amount nor does it
change if we replace x by γ(x) , γ ∈ Γ∞ , or y by γ̃(y) , γ̃ ∈ Γ∞ . Compactness of
Rk/Γ∞ now shows that N can be chosen uniformly for all x, y ∈ Rk . In addition,
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ν(γBx) = ν(Bx) for all γ ∈ Γ∞ . These facts imply that there are p, p′ > 0 such
that

(2d) p′ ≤ ν(Bx) ≤ p

regardless of x ∈ Rk .
We define

A(r, q) = Bk(0, r + q) \ Bk(0, r) and

Ã(r, q) = A(r, q)× B̄n+1−k

with A(r,∞) = Rk \ Bk(0, r) and Ã(r,∞) = A(r,∞) × B̄n+1−k . Let mk be
the Lebesgue k -measure of Rk . We want to compare the ν -measure Ã(r, q) and
mk -measure A(r, q) . The comparison is based on (2d) and on the fact that the
number of sets of the form Bx forming a cover of Ã(r, q) is proportional to the
k -volume of A(r, q) .

Expressed more precisely, there are numbers C1, C
′
1 > 0, not depending on r ,

such that there are at most N1 = C1mk

(

A(r, q)
)

balls Bk(xi, s) covering A(r, q)

and that we can find at least N ′
1 = C′

1mk

(

A(r, q)
)

disjoint balls Bk(yj, s) ⊂
A(r, q) , provided that q ≥ 2s . Since Bxi

’s are a cover of Ã(r, q) and Byi
’s are

disjoint, we obtain in view of (2d)

N ′
1p

′ ≤ ν
(

Ã(r, q)
)

≤ N1p.

As indicated above, N ′
1 and N1 are proportional to the mk -volume of A(r, q) , we

obtain the conclusion that there are C′
2, C2 > 0 which may depend on q but not

on r such that

(2e) C′
2r

k−1 ≤ ν
(

Ã(r, q)
)

≤ C2r
k−1

for all r > 0 and q ≥ 2s .
We fix some q ≥ 2s . Since µ = σ∗ν , we can now estimate the µ-measure of

σ
(

Ã(r, q)
)

. We have |σ′(x)| = |x|−2 and hence [(r + q)2 + 1]−1 ≤ |σ′| ≤ r−2 on

Ã(r, q) and so

r−2δ

[(1 + q/r)2 + r−2]δ
ν
(

(Ã(r, q)
)

≤ µ
(

σ
(

Ã(r, q)
))

=

∫

Ã(r,q)

|σ′|δ dν ≤ r−2δν
(

Ã(r, q)
)

.

Thus, in view of (2e), there are C′
3, C3 > 0 independent of r such that

C′
3r

−2δrk−1 ≤ µ
(

σ
(

Ã(r, q)
))

≤ C3r
−2δrk−1
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uniformly for all r ≥ 1. Hence, letting r assume values r, r + q, r + 2q, . . . and
summing up we find that there are constants C′

4, C4 > 0 not depending on r such
that

(2f) C′
4r

−2δ+k ≤ µ
(

σ
(

Ã(r,∞)
))

≤ C4r
−2δ+k

if r ≥ 1. Since µ(U) = 0, ν vanishes outside Rk × B̄n+1−k . Consequently

µ
(

σ
(

Ã(r,∞)
))

≤ µ
(

σ
(

Rn+1 \ Bn+1(r)
))

≤ µ
(

σ
(

Ã(
√

r2 − 1,∞)
))

.

Now, σ
(

Rn+1 \ Bn+1(r)
)

= Bn+1(r−1) \ {0} . In view of (2f), and remembering
that v is not an atom of µ , we obtain for t = r−1 and for some C′

5, C5 > 0 not
depending on r

C′
5t

2δ−k ≤ µ
(

Bn+1(t)
)

≤ C5t
2δ−k.

Here the left-hand inequality is true for t ≤ 1 and the right-hand one for t ≤
√

2
but, possibly by changing C5 , we can make them valid for all t ≤ 1. This proves
the theorem in the special case we are considering.

Finally, we reduce the general case to the special case. Since we can always
replace the original horoball B by g0B , g0 a Möbius transformation of Hn+1 ,
we can assume that the lemma is true if g = id. We also observe that we can
always assume, by postcomposing g by a similarity, that gB is based at 0 and that
diam(gB) = 1 since similarities preserve the inequalities of (2b) and (2c), all terms
being multiplied by the same constant. Thus we can consider only g ∈ Möb (n)
such that gB = B .

So we suppose that gB = B . Now (∂B ∩HG)/G0 is compact by Lemma 2A.
Hence there is a compact set X ⊂ ∂B ∩ HG such that G0X = ∂B ∩ HG . Let
u = g−1(∞) . We assumed that ∞ ∈ g

(

L(G)
)

and so u ∈ L(G) . Let Lu be
the hyperbolic line with endpoints 0 and u ∈ R̄n . Since 0 and u are in L(G) ,
we have that Lu ⊂ HG . Thus there is h0 ∈ G0 such that h0Lu intersects ∂B
at a point w ∈ X . Let h = gh−1

0 . Then h(Lu) is the hyperbolic line joining 0
and ∞ and hence h(Lu) intersects B = hB at the point h(w) = en+1 . Thus
h ∈ M = { γ ∈ Möb(n) : γ−1(en+1) ∈ X and h(0) = 0 } . Since X is compact
and the group of Möbius transformations fixing a given point z ∈ Hn+1 is also
compact, it is easy to see that M is a compact set of Möbius transformations.

Since h0 ∈ G , h0∗µ = µ and so

g∗µ
(

Bn+1(0, t)
)

= h∗h0∗µ
(

Bn+1(0, t)
)

= h∗µ
(

Bn+1(0, t)
)

.

Now h fixes 0 and varies in the compact set M , it is clear that there is r0 such
that |h′(x)| is bounded away from 0 and ∞ if |x| ≤ r0 uniformly for h ∈ M .
This fact implies that there is C′ > 0 such that

C′−1 ≤ h∗µ
(

Bn+1(0, t)
)

/µ
(

Bn+1(0, t)
)

≤ C′
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provided that t is small enough, say t ≤ t0 ; note that since h(0) = 0 ∈ L(G) ,
h∗µ

(

Bn+1(0, t)
)

is always positive. This implies (2c) with suitable C if t ≤ t0 .

We note that since h∗µ
(

Bn(0, 1)
)

is finite and non-zero for each h ∈ M and M

is compact, the numbers h∗µ
(

Bn(0, 1)
)

are bounded away from 0 and ∞ and so
we can make (2c) valid for all t ≤ 1 with bigger C .

We can estimate similarly g∗µ
(

Bn+1
(

g(v), d
))

= g∗µ(Bn+1) in (2b). This
proves the theorem in all cases.

3. A conformal nullset

We now assume that G is a geometrically finite non-elementary Möbius
group. Let µ be a conformal G-measure of dimension δ such that each para-
bolic fixed point has a cusp neighbourhood U in R̄n with µ(U) = 0, for instance
the Patterson–Sullivan measure on L(G) . This seems to be the only reasonable
measure in this situation but in any case µ needs only to satisfy the properties
mentioned.

Let P be the set of points such that each v ∈ P is fixed by some parabolic
g ∈ G . A complete set of horoballs for G is a disjoint set Bv , v ∈ P , of horoballs
such that Bv is based at v and that Bg(v) = g(Bv) if g ∈ G . If G is geometrically
finite, then G has a complete set of horoballs [T1, Lemma B].

We will now construct a µ-nullset by means of these horoballs. If B is a
horoball and t ∈ (0, 1), we let tB be the horoball such that tB ⊂ B and that the
hyperbolic distance of ∂B \ {v} and ∂(tB) \ {v}) is | log t| when B and tB are
based at v . If v 6= ∞ , this just means that tB is based at v and the euclidean
diameters satisfy diam(tB) = tdiam (B), hence the notation tB .

Let kmax be the maximal rank of the parabolic fixed points v ∈ P ; if there
are no parabolics, then set kmax = 0 although then this section is trivial. We
have that 2δ − kmax > 0 since otherwise Theorem 2B cannot be true (originally,
if n = 2, this result was due to Beardon [B]). Fix ̺ > 0 such that

(3a) ̺(2δ − kmax) > 1

and define for every v ∈ P a horoball Bv(̺) ⊂ Bv by

(3b) Bv(̺) = | log diam (Bv)|−̺Bv

if diam(Bv) < e−1 , otherwise we set Bv(̺) = Bv .
We consider the shadows of Bv(̺) on R̄n . It turns out that the set of points

that are in the shadow of infinitely many Bv(̺) is a µ-nullset. More precisely,
we let w ∈ H̄n+1 be any point. We place a light source at w and consider the
shadows Sw

(

Bv(̺)
)

from w when the shadow of a horoball B from w is

Sw(B) = { x ∈ R̄n : w 6= x and L(w, x) intersects B },
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where L(w, x) is the hyperbolic line or ray with endpoints w and x , and define,
first for w 6∈ L(G)

(3c) Z̺(w) =
{

x ∈ R̄n : x ∈ Sw

(

Bv(̺)
)

for infinitely many v ∈ P
}

;

if w ∈ L(G) we must require in addition that if w′ ∈ L(x, w) , then the horoballs
Bv(̺) in (3c) intersect L(x, w′) , i.e. x ∈ Z̺(w

′) for any w′ ∈ L(x, w) . This latter
condition is automatically true if w 6∈ L(G) .

Lemma 3A. The set Z̺(w) is a µ-nullset for every w ∈ H̄n+1 if (3a) is
true.

Proof. We first note that since the Z̺(w) ⊂ R̄n , we can assume that µ is
supported by R̄n . Obviously, Zw(̺) ∩ P = ∅ and hence we can assume that no
v ∈ P is an atom of µ and hence Theorem 2B can be applied.

We first assume that w = ∞ and that ∞ ∈ L(G) . Since ∞ 6∈ Z̺(∞) , it
suffices to prove that Z̺(∞) ∩ Bn(r) is a nullset for every r > 0.

Let Sv = S∞(Bv) and S′
v = S∞

(

Bv(̺)
)

. Let Pk be the set of v ∈ P such that
Sv∩Bn(r) 6= ∅ and that e−k−1 ≤ diam (Bv) < e−k . Since the balls Bv are disjoint,
it is easy to see that there is a number c > 0 such that |v−v′| > ce−k if v, v′ ∈ Pk .
Now diam (Sv) = diam (Bv) and it follows that there is N independent of k such
that at most N sets Sv , v ∈ Pk , can have common intersection. Furthermore, Pk

will be finite. Hence
∑

v∈Pk

µ(Sv) ≤ Nµ
(

Bn(r + 1)
)

.

Recall that Bv(̺) = | log(diam Bv)|−̺Bv ⊂ k−̺Bv if v ∈ Pk and that ∞ ∈ L(G)
and hence by Theorem 2B

∑

v∈Pk

µ(S′
v) ≤

∑

v∈Pk

Ck−̺(2δ−kmax)µ(Sv) ≤ CNk−̺(2δ−kmax)µ
(

Bn(r + 1)
)

.

It follows that

∑

j≥k,v∈Pj

µ(S′
v) ≤

∑

j≥k

CNj−̺(2δ−kmax)µ
(

Bn(r + 1)
)

tends to 0 as k → ∞ by (3a). Obviously, {S′
v : j ≥ k, v ∈ Pj } is still a cover of

Z̺(∞) ∩ Bn(r) for every k , and it follows that µ
(

Z̺(∞)
)

= 0.
Obviously, we can obtain by a suitable conjugation that Z̺(w) is a µ-nullset

for every w ∈ L(G) . If w ∈ H̄n+1 \ L(G) , we pick ̺′ < ̺ that still satisfies (3a).
We have that Sw

(

Bv(̺)
)

⊂ S∞

(

Bv(̺
′)

)

if v ∈ Bn(r) and diam(Bv) does not
exceed a positive number depending on r , ̺ , ̺′ and w . Hence Z̺(w) \ {∞} ⊂
Z̺′(∞) and we have shown that Z̺′(∞) is a nullset. The exceptional point ∞
can be taken care of by a conjugation and the theorem is proved.
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Remarks. 1. We have formulated Lemma 3A for the situation where we
need it. In other situations other formulations might be preferable. One situation
is that we use the model Bn+1 for the hyperbolic space rather than the half-space
model and define B′

v(̺) as in (3b) by the euclidean metric of Bn+1 . On H̄n+1 this
means that we use the metric q defined by q(x, y) = |σ(x)− σ(y)| where σ is the
reflection on the n -sphere |z + 2en+1| = 2 which maps H̄n+1 onto B̄n+1 − en+1 .
Define horoballs B′

v(̺) like Bv(̺) in (3b) but using q . Since q(x, y) ≤ |x−y| , we
have that B′

v(̺) ⊂ Bv(̺) and hence the set Z ′
̺(w) defined by (3c) using B′

v(̺) is
a subset of Z̺(w) and so a nullset.

2. Sometimes it might be preferable to make the definition of Z̺(w) more
intrinsic to the hyperbolic metric, for instance as follows. Observe that the hyper-
bolic distance of en+1 and ten+1 is | log t| . Hence we fix a center in Hn+1 which
might be the point w where the light source is. Let rv = d(w, ∂Bv \ {v}) . Define

(3d) B′′
v (̺) = r−̺

v Bv

(this now depends also on w ) and define Z ′′
̺ (w) using the horoballs B′′

v (̺) . If
v ∈ Bn(r) and dv = diam(Bv) ≤ 1, then rv − c ≤ log dv for some c = c(r) . Using
this fact one easily proves that Z ′′

̺ (w) ⊂ Z̺′(w) for all ̺′ < ̺ and hence is a
nullset.

3. The logarithm law for geodesics. We can use the fact that Z ′′
̺ (w) is a

µ-nullset to estimate the distance how far a point on a geodesic on the quotient
orbifold M = Hn+1/G can go from a fixed point. Denote by z̃ the point on
M corresponding to z ∈ Hn+1 and let d be the metric of M induced by the
hyperbolic metric of Hn+1 . Let HG be the hyperbolic convex hull of L(G) and
fix a point w ∈ HG . Use this w to define the horoballs B′′

v (̺) . Since
(

HG \
(
⋃

v∈P Bv)
)

/G is compact [T1, Lemma B], there is m such that d(z, Gw) ≤ m

for z ∈ HG \ (
⋃

v∈P Bv) . It follows by (3d) that, if z ∈ HG ∩
(

Bv \ B′′
v (̺)

)

, then
d(z̃, w̃) ≤ ̺ log rv + m ≤ ̺ log d(z, w) + m . By Lemma 3A, the union of Z̺(w)
for ̺ satisfying (3a) is a nullset and it follows that if Lwx is the hyperbolic ray
joining w and x , then

(3e) lim sup
z∈Lwx,z→x

d(z̃, w̃)

log d(z, w)
≤ 1

2δ − kmax

for µ a.e. x ∈ L(G) . Since two hyperbolic rays with the same endpoint x ∈ L(G)
are asymptotic, this is actually true for any w ∈ Hn+1 .

Inequality (3e) is the (easier) half of Sullivan’s logarithm law for geodesics
[S3, Theorem 2] for groups G such that Hn+1/G is non-compact but of finite
hyperbolic volume and µ is the n -dimensional Lebesgue measure. In this case
δ = n = kmax and so 2δ−kmax = n . Sullivan has equality in (3e) for a.e. x ∈ R̄n .

4. Although we formulated Lemma 3A for geometrically finite G , it is valid
in a slightly more general setting. Let G be any discrete Möbius group and let
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P be a G-invariant set of parabolic fixed points of G such that P/G is finite.
Assume that each v ∈ P has a cusp neighbourhood U in R̄n with µ(U) = 0 and
that there is a disjoint set of horoballs Bv for v ∈ P such that Bv is based at v
and that Bg(v) = gBv for g ∈ G . Define Zw(̺) as above with these Bv . Then
Z̺(w) is a µ-nullset for all ̺ satisfying (3a) where kmax is the maximum of the
ranks of the points v ∈ P . The above proof is valid and shows that Z̺(w) is a
µ-nullset and so are the sets Z ′

̺(w) and Z ′′
̺ (w) mentioned in Remarks 1 and 2.

4. The dimension of the limit set

We start with a lemma where B and tB are horoballs as in Section 3.

Lemma 4A. Let B be a horoball of Hn+1 . Let t ∈ (0, 1) and let L be a
hyperbolic line such that L intersects ∂B at points a and b but does not touch
tB . Then
(a) the shortest path joining a and b on ∂B has hyperbolic length less than

2t−1 ,
(b) d(a, b) ≤ 2| log t| + 2 .

Proof. We transform the situation by a Möbius transformation so that the
base point v becomes ∞ and that en+1 ∈ ∂(tB) and ten+1 ∈ ∂B . It suffices to
consider the situation where L is the hyperbolic line passing through en+1 and
the points ±e1 which gives the maximum values for the distances in (a) and (b).
For this L , the points a and b are ±se1 + ten+1 where s ∈ (0, 1). The shortest
path on ∂B joining a and b is [−s, s]e1 + ten+1 with length < 2t−1 .

This proves (a). We get (b) if we observe that d(a, b) is less than the sum of
the hyperbolic distances d(−se1 + ten+1,−se1 +en+1) , d(−se1 +en+1, se1 +en+1)
and d(se1 + en+1, se1 + ten+1) which is less than 2| log t| + 2.

Let G be a geometrically finite group and let P be the set of parabolic
fixed points of G . Let Bv , v ∈ P , be a complete set of horoballs for G as in
the beginning of Section 3. Define the sets Zw(̺) like in Section 3 using these
horoballs. Now we can estimate the µ-measure of balls centered at points x ∈
L(G)\Z̺(w) as follows, thus improving [N, Theorem 9.3.4] for geometrically finite
groups. Here µ is a G-measure of dimension δ such that every v ∈ P has a cusp
neighbourhood U with µ(U) = 0.

Lemma 4B. Let Z = Z̺(∞) be defined by (3c). There is A > 1 such that
if x ∈ L(G) \ (Z ∪ P ) , x 6= ∞ , then there is rx > 0 such that for r ≤ rx

A−1| log r|−2̺δrδ ≤ µ
(

Bn+1(x, r)
)

≤ A| log r|2̺δrδ.

Proof. We can assume that ∞ ∈ L(G) since otherwise we can conjugate by
a Möbius transformation g = gx such that g maps some w ∈ L(G) , w 6= x ,
onto ∞ . It is not difficult to see that there are Möbius transformations g and h
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such that we can always choose gx = g or gx = h and that, in addition, |g′
x| are

uniformly bounded away from 0 and ∞ in some neighbourhood Ux of x . Hence
the number A will not depend on x .

Let B′
v = Bv(̺) be as in (3b). Let L(p, q) be the hyperbolic line or ray with

endpoints p and q . If x ∈ L(G)\(Z∪P ) , then there is a point u on Lx = L(∞, x)
such that u 6∈ Bv for any v ∈ P and that L(u, x) does not intersect any B′

v ,
v ∈ P . We show that the lemma is true if rx = min(|u − x|, e−1) ; the minimum
is taken in order to guarantee that | log rx| > 1.

Suppose that r < rx . Let H ′
G = HG \(

⋃

v∈P Bv) where HG is the hyperbolic
convex hull of L(G) , cf. Section 2. By [T1, Lemma B], H ′

G/G is compact. It
follows by compactness that there is C > 0 such that if (x, r) ∈ H ′

G , then

(4a) C−1rδ ≤ µ
(

Bn+1(x, r)
)

≤ Crδ,

cf. [T3, Lemma 2C]. Thus the case that (x, r) ∈ H ′
G is clear.

If (x, r) 6∈ H ′
G , then (x, r) ∈ Bv \ B′

v for some v ∈ P . Let a and b
be the points of Lx where Lx intersects ∂Bv such that b is closer to x . Let
dv = diam (Bv) . Since Lx does not intersect B′

v = | log dv|−̺Bv , we obtain by
Lemma 4A (b) that d(a, b) ≤ 2̺ log | log dv| +2. Hence

e−2| log dv|−2̺|a − x| ≤ |b − x| ≤ r ≤ |a − x|.

Since r ≤ |a − x| ≤ dv < 1, we obtain

|a − x| ≤ e2| log r|2̺r and |b − x| ≥ e−2| log r|−2̺r.

Estimating Bn+1(x, r) from above by Bn+1(x, |a − x|) and from below by
Bn+1(x, |b − x|) , we obtain by (4a) since a = (x, |a − x|) and b = (x, |b − x|)
are points of H ′

G since ∞ ∈ L(G) ,

C−1e−2δ | log r|−2δ̺rδ ≤ µ
(

Bn+1(x, r)
)

≤ Ce2δ| log r|2δ̺rδ

and the lemma follows.

We are now ready to estimate the dimensionality of L(G) . We let µ be the
canonical conformal measure on L(G) . Its dimension is the exponent of conver-
gence of G and it is known that µ is atomless [S2, N]. Hence µ(P ) = 0. We
choose ̺ satisfying (3a) and then µ(Z ∪ P ) = 0.

Let U be an open non-empty subset of L(G) ∩ Rn . Then µ(U) > 0. The
function rx of Lemma 4B is a measurable function of x and so there is r0 > 0
such that the set of x ∈ U such that rx ≥ r0 has positive measure. Hence
U \ (Z ∪P ) has a subset K of positive µ-measure such that rx exceeds a uniform
lower bound r0 for every x ∈ K . Now µ(K) > 0, and so we can prove like in [N,
9.3.5] that the Hausdorff measure of K , and hence of U , with respect to the gauge
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function | log r|2̺δrδ is positive or infinite. Actually, it must be infinite since if
we choose ̺′ < ̺ such that (3a) is still true, then the same argument shows that
the Hausdorff measure of U with respect to the gauge function | log r|2̺′δrδ is not
zero.

On the other hand, by (4a), every x ∈ L(G) \ (P ∪ {∞}) has arbitrarily
small neighbourhoods Bn+1(x, r) for which (4a) is true since there are arbitrarily
small r such that (x, r) ∈ H ′

G . Thus there is a fixed N such that there is a
cover U = U1 ∪ · · · ∪UN of L(G) \ (P ∪ {∞}) of closed balls of radii less than a
given ε and where each Ui is disjoint [F, 2.8.14]. This fact easily implies that the
Hausdorff measure with respect to the gauge function rδ is finite (possibly zero)
on bounded sets.

Thus we have the following theorem which is simplest formulated for groups
of B̄n+1 .

Theorem 4C. The Hausdorff dimension of the limit set of a geometrically
finite Möbius group of B̄n+1 is the exponent of convergence δ of G . More pre-
cisely, if U is any open subset of Sn intersecting with L(G) , then the Hausdorff
measure of L(G) ∩ U with respect to the gauge function | log r|2̺δrδ is infinite if
̺ satisfies (3a), it is finite (possibly zero) for ̺ = 0 and zero for ̺ < 0 .
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