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Abstract. We establish local and global higher integralibity results for the derivatives of
the solutions to obstacle problems associated with the second order degenerate elliptic partial
differential equation div A (x,∇u(x)) = 0 , where |A (x, ξ)| ≈ |ξ|p−1 , p > 1 .

1. Introduction

In this paper we consider the obstacle problem associated with the second
order degenerate elliptic equation

(1.1) div A
(

x,∇u(x)
)

= 0

with
∣

∣A (x, ξ)
∣

∣ ≤ β |ξ|p−1 and A (x, ξ) · ξ ≥ α |ξ|p for some 0 < α ≤ β < ∞ and
p > 1, see 2.1. The prototype of equation (1.1) is the p-harmonic equation

(1.2) div
(

|∇u|p−2 ∇u
)

= 0.

Suppose that Ω is a bounded open set in Rn , that ψ is any function in
Ω with values in R ∪ {−∞,∞} , and that θ ∈ W 1,p(Ω). The function ψ is an
obstacle and θ determines the boundary values. Let

Kψ,θ =
{

v ∈ W 1,p(Ω) : v ≥ ψ a.e. and v − θ ∈W 1,p
0 (Ω)

}

.

A solution to the Kψ,θ -obstacle problem is a function u ∈ Kψ,θ such that

(1.3)

∫

Ω

A (x,∇u) · ∇(v − u) dx ≥ 0

whenever v ∈ Kψ,θ .
For solutions u of equation (1.1) it is known ([GM], [Str 1–2], [I], [RZ]) that

u ∈ W 1,q
loc (Ω) where q = q(p, n, α/β) > p . Our first result generalizes this to the

solution of the Kψ,θ -obstacle problem.
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Theorem A. Suppose that ψ ∈ W 1,s
loc (Ω) , s > p . Then a solution u to the

Kψ,θ -obstacle problem belongs to W 1,q
loc (Ω) where q = q(p, s, n, α/β) > p .

For variational extremals the global higher integrability of the derivative ∇u
has been studied by S. Granlund [G] in the case p = n . For this it seems necessary
to impose a regularity condition for ∂Ω. We say that ∂Ω is p-Poincaré thick if
there is γ <∞ such that for all open cubes Q(r) ⊂ Rn with side length r > 0 it
holds

(1.4)

(
∫

Q(2r)

|u|p dx

)1/p

≤ γ

(
∫

Q(2r)

|∇u|pn/(p+n) dx

)(p+n)/pn

whenever u ∈W 1,p
(

Q(2r)
)

, u = 0 a.e. on (Rn \Ω)∩Q(2r) , and Q( 3
2r)∩∁Ω 6= ∅ ;

here, and in the following, Q(λr) , λ > 0, means a cube parallel to Q(r) with
the same center as Q(r) and with side length λr . Theorem 2.3 and Corollary 2.7
below give simple sufficient conditions such that (1.4) holds for p ≥ n/(n− 1).

Theorem B. Suppose that a bounded domain Ω has a p-Poincaré thick

boundary and that p ≥ n/(n − 1) . Let θ and ψ belong to W 1,s(Ω) , s > p .

Then a solution u to the Kψ,θ -obstacle problem belongs to W 1,q(Ω) where q =
q(p, s, n, α/β, γ) > p and γ is the constant of (1.4) .

In Section 2 the assumptions on A together with some preliminary lemmas
are presented. Section 3 is devoted to the proofs of Theorems A and B. In Re-
mark 3.14 some variants of Theorems A and B are discussed. In particular, local
and global higher integrability for the derivatives of solutions of (1.1) is a con-
sequence of Theorems A and B, respectively. Theorems A and B also imply the
corresponding results for variational obstacle problems.

The higher integrability of solutions of (1.1) were first considered by Meyers
and Elcrat [ME] in 1975. See also [Str 1–2]. For obstacle problems and for differ-
ential and variational inequalities most of the regularity studies have been devoted
to prove the Hölder continuity of the solutions u to the Kψ,θ -obstacle problem
for Hölder continuous obstacles ψ [Gi]. Michael and Ziemer [MZ] proved the con-
tinuity of u if ψ is just continuous. For p-harmonic equations (1.2) the higher
regularity, i.e. the C1,α -regularity, has been much studied, see [L]. For equations
(1.1) the Hölder continuity and higher integrability of the derivatives are different
aspects of regularity, although for p ≥ n there is an obvious connection via the
Sobolev imbedding theorem.

When our work was completed, T. Kilpeläinen and P. Koskela [KK] replaced
the Poincaré thickness in Theorem B by a capacitary condition on ∂Ω.
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2. Equation (1.1) and preliminary results

2.1. Equation div A (x,∇u) = 0. We consider mappings A : Rn ×Rn → Rn

which satisfy the following assumptions for some p > 1 and 0 < α ≤ β :

(a) the mapping x 7→ A (x, ξ) is measurable for all ξ ∈ Rn and the mapping
ξ 7→ A (x, ξ) is continuous for a.e. x ∈ Rn ;

for all ξ ∈ Rn and a.e. x ∈ Rn

(b) A (x, ξ) · ξ ≥ α |ξ|p and

(c)
∣

∣A (x, ξ)
∣

∣ ≤ β |ξ|p−1 .

The constant p is always associated with A as in (b) and (c).
The assumptions (a)–(c) are not strong enough to give a unique solution to

the Kψ,θ -obstacle problem. However, if A satisfies the monotonicity condition

(

A (x, ξ1) − A (x, ξ2)
)

· (ξ1 − ξ2) > 0, ξ1 6= ξ2,

for a.e. x ∈ Rn , then it can be shown that the Kψ,θ -obstacle problem has a unique
solution provided that Kψ,θ 6= ∅ . For this result see [HKM].

In [HKM] the relation between Kψ,θ -obstacle problems and variational ob-
stacle problems is explained.

2.2. A sufficient condition for (1.4). Here we show that condition (1.4) follows
from a measure-theoretic property of ∁Ω; this observation is due to Granlund [G]
for p = n .

2.3. Theorem. Suppose that there is µ > 0 such that each cube Q(r) with

Q( 3
2r) ∩ ∁Ω 6= ∅ satisfies

(2.4) m
(

(Rn \ Ω) ∩Q(2r)
)

≥ µm
(

Q(2r)
)

.

Then ∁Ω is p-Poincaré thick for each p ≥ n/(n− 1) and the constant γ in (1.4)
depends only on n , p , and µ .

Proof. Let Q(r) be a cube with Q(r) ∩ ∂Ω = ∅ and let u ∈ W 1,p
(

Q(2r)
)

satisfy u = 0 on Q(2r) \ (Rn \ Ω). By [Mor, Theorem 3.6.5, p. 83] we have for
each q > 1

(2.5)

∫

Q(2r)

|u|q dx ≤ c1(n, q, µ)rq
∫

Q(2r)

|∇u|q dx.

Next let

cu =
1

m
(

Q(2r)
)

∫

Q(2r)

u dx
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be the mean value of u in Q(2r) . For the following Sobolev–Poincaré inequality

(2.6)

(
∫

Q(2r)

|u− cu|
p dx

)1/p

≤ c2(n, p)

(
∫

Q(2r)

|∇u|pn/(p+n) dx

)(p+n)/pn

see [GT, p. 174]; note that p is the Sobolev conjugate exponent of q = pn/(p+n)
and that q < n .

Combining (2.5) and (2.6) we obtain

(
∫

Q(2r)

|u|p dx

)1/p

≤

(
∫

Q(2r)

|u− cu|
p

)1/p

+m
(

Q(2r)
)1/p

|cu|

≤ c2

(
∫

Q(2r)

|∇u|q dx

)1/q

+m
(

Q(2r)
)−1/n

(
∫

Q(2r)

|u|q dx

)1/q

≤ c2

(
∫

Q(2r)

|∇u|q dx

)1/q

+ c′1

(
∫

Q(2r)

|∇u|q dx

)1/q

≤ γ

(
∫

Q(2r)

|∇u|q dx

)1/q

where the Minkowski and Hölder inequality has also been used. The theorem
follows.

An open set Ω is c-coplump, c ≥ 1, if for each x ∈ Rn \ Ω and r > 0 there
is z ∈ B(x, r) such that

B(z, r/c) ∩ Ω = ∅.

If Ω is c-coplump, then Ω clearly satisfies condition (2.4) for some µ = µ(c) > 0.
Hence we obtain from Lemma 2.3

2.7. Corollary. If Ω is c-coplump, then ∁Ω is p-Poincaré thick for all

p ≥ n/(n− 1) .

2.8. Reverse Hölder inequality. To obtain the higher integrability we use the
following semilocal reverse Hölder inequality due to Giaquinta and Modica [GM,
p. 164]; a new and rather simple proof for Lemma 2.9 can be derived from the
work of Kinnunen [K].

2.9. Lemma. Suppose that q > 1 and that g ∈ Lq
(

Q(2r0)
)

and f ∈

Ls
(

Q(2r0)
)

, s > q . If for every x ∈ Q(2r0) and r < 1
2d

(

x, ∂Q(2 r0)
)

we have the

estimate
∫

Q(r)

|g|q dx ≤ c

[(
∫

Q(2r)

|g| dx

)q

+

∫

Q(2r)

|f |q dx

]

for some c > 0 independent of the cube Q(r) with center at x , then g ∈
Ltloc

(

Q(2 r0)
)

for some t = t(n, q, s, c) > q .
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3. Proofs for Theorems A and B

3.1. Proof for Theorem A. Let u be a solution to the Kψ,θ -obstacle problem
and let Q(2r) ⊂ Ω be a cube. Fix a cutoff function ϕ ∈ C∞

0

(

Q(2r)
)

such that
0 ≤ ϕ ≤ 1, |∇ϕ| ≤ c/r , and ϕ = 1 on Q(r) . Consider the function

v = u− cu − ϕp
(

u− cu − (ψ − cψ)
)

;

here cu and cψ denote the mean values of the functions u and ψ , respectively, in
Q(2r) , i.e.

cu =

∫

Q(2r)

u dx =
1

m
(

Q(2r)
)

∫

Q(2r)

u dx.

Now v ∈ Kψ−cu,θ−cu
; indeed, v − (θ − cu) ∈ W 1,p

0 (Ω) because ϕ ∈ C∞

0 (Ω) and
since cu ≥ cψ , we obtain

v = (1 − ϕp)(u− cu) + ϕp(ψ − cψ) ≥ (1 − ϕp)(u− cu) + ϕp(ψ − cu)

≥ (1 − ϕp)(ψ − cu) + ϕp(ψ − cu) = ψ − cu

a.e. in Ω. Since

∇v = (1 − ϕp)∇(u− cu) + ϕp∇(ψ − cψ) + pϕp−1 ∇ϕ
[

(ψ − cψ) − (u− cu)
]

and since u− cu is a solution to the Kψ−cu,θ−cu
-obstacle problem, we have

∫

Ω

A (x,∇u) · ∇u dx ≤

∫

Ω

A (x,∇u) · ∇v dx

≤

∫

Ω

(1 − ϕp) A (x,∇u) · ∇u dx+

∫

Ω

ϕp A (x,∇u) · ∇ψ dx

+ pβ

∫

Ω

|∇u|p−1 ϕp−1 |∇ϕ|
(

|ψ − cψ| + |u− cu|
)

dx

where we have also used assumption (c). Using (b) and (c) again we obtain from
the above inequality

(3.2)

α

∫

Ω

ϕp |∇u|p dx ≤

∫

Ω

ϕp A (x,∇u) · ∇u dx

≤ β

∫

Ω

ϕp |∇u|p−1 |∇ψ| dx+ pβ

∫

Ω

|∇u|p−1 ϕp−1

× |∇ϕ| (|ψ − cψ| + |u− cu|) dx.

Next we use Young’s inequality

(3.3) ab ≤ εap
′

+ C(ε, p)bp,
1

p
+

1

p′
= 1,
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valid for all a , b ≥ 0, ε > 0, and p > 1. Now (3.2) yields

α

∫

Ω

ϕp |∇u|p dx ≤ εβ

∫

Ω

ϕp |∇u|p dx+ C(ε, p)β

∫

Ω

ϕp |∇ψ|p dx

+ pβε

∫

Ω

|∇u|p ϕp dx+ 2pC(ε, p)pβ

∫

Ω

|∇ϕ|p
(

|ψ − cψ|
p + |u− cu|

p
)

dx

and choosing

ε =
α

2β(1 + p)

we obtain from the above inequality

(3.4)

∫

Ω

ϕp|∇u|p dx ≤ c

[
∫

Ω

ϕp |∇ψ|p dx+

∫

Ω

|∇ϕ|p
(

|ψ − cψ|
p + |u− cu|

p
)

dx

]

where c is a (generic) constant which depends only on n , p , and α/β . Next we
estimate the last integral in (3.4) using the ordinary Poincaré inequality [GT, 7.45,
p. 164]

(3.5)

∫

Q(2r)

|v − cv|
p dx ≤ crp

∫

Q(2r)

|∇v|p dx

valid for all functions v ∈W 1,p
(

Q(2r)
)

and the Sobolev–Poincaré inequality (2.6).
Together with |∇ϕ| ≤ c/r these give

∫

Ω

|∇ϕ|p
(

|ψ − cψ|
p + |u− cu|

p
)

dx

≤ c

∫

Q(2r)

|∇ψ|p dx+
c

rp

(
∫

Q(2r)

|∇u|pn/(p+n) dx

)(p+n)/n

and hence we obtain from (3.4) the estimate
∫

Q(r)

|∇u|p dx ≤

∫

Ω

ϕp|∇u|p dx

≤ c

∫

Q(2r)

|∇ψ|p dx+
c

rp

(
∫

Q(2r)

|∇u|pn/(p+n) dx

)(p+n)/n

.

This implies
∫

Q(r)

|∇u|p dx ≤ c

(
∫

Q(2r)

|∇u|pn/(p+n) dx

)(p+n)/n

+ c

∫

Q(2r)

|∇ψ|p dx.

Setting g ≡ |∇u|pn/(p+n) , f = |∇ψ|pn/(p+n) , and q = (p + n)/n we obtain from
Lemma 2.9 that |∇u| ∈ Ltloc(Ω) for some t = t(p, s, n, α/β) > p .

The Sobolev imbedding theorem [GT, p. 164] yields u ∈ L
np/(n−p)
loc (Ω) if

p < n , u ∈ Lqloc(Ω) for all q > 1 if p = n , and u ∈ L∞

loc(Ω) if p > n . Hence

u ∈ Lt
′

loc(Ω), t′ = t′(p, n) > p , and choosing q = min(t, t′) > p we have proved
Theorem A.
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3.6. Proof for Theorem B. Since Ω is bounded, we can choose a cube Q0 =
Q(2r0) such that Ω ⊂ Q(r0) . Next let Q(2r) ⊂ Q0 . There are two possibilities:
(i) Q

(

3
2r

)

⊂ Ω or (ii) Q
(

3
2r

)

∩ ∁Ω 6= ∅ . In the case (i) we can follow the proof for
Theorem A to obtain the estimate

∫

Q(r)

|∇u|p dx ≤ c

[(
∫

Q( 3

2
r)

|∇u|np/(p+n) dx

)(p+n)/n

+

∫

Q( 3

2
r)

|∇ψ|p dx

]

and then choosing g = |∇u|np/(p+n) , f = |∇ψ|np/(p+n) in Q
(

3
2
r
)

and g = f = 0

in Q(2r) \Q
(

3
2r

)

with q = (p+ n)/p we arrive at the inequality

(3.7)

∫

Q(r)

gq dx ≤ c

[(
∫

Q(2r)

g dx

)q

+

∫

Q(2r)

f q dx

]

where c = c(p, s, n, α/β) <∞ .

In the case (ii) note that replacing θ by θ1 = max(θ, ψ) we may assume that
the boundary function θ satisfies θ ≥ ψ in Ω. Indeed, θ1 = (ψ − θ)+ + θ and
since

0 ≤ (ψ − θ)+ ≤ (u− θ)+ ∈W 1,p
0 (Ω),

the function (ψ − θ)+ , and hence u− θ1 , belongs to W 1,p
0 (Ω). Next let

v = u− ϕp(u− θ)

in Ω where ϕ ∈ C∞

0

(

Q(2r)
)

is a similar cutoff function as in the proof of Theo-

rem A. Now v ∈ Kψ,θ because v − θ ∈W 1,p
0 (Ω) and u ≥ ψ , θ ≥ ψ a.e. yields

v = (1 − ϕp)u+ ϕpθ ≥ (1 − ϕp)ψ + ϕpψ = ψ

a.e. Since

∇v = (1 − ϕp)∇u+ ϕp∇ θ + pϕp−1(θ − u)∇ϕ,

we have the estimate

∫

Ω

A (x,∇u) · ∇u dx ≤

∫

Ω

A (x,∇u) · ∇v dx

≤

∫

Ω

(1 − ϕp) A (x,∇u) · ∇u+ β

∫

Ω

|∇u|p−1ϕp|∇θ| dx

+ βp

∫

Ω

|∇u|p−1ϕp−1|θ − u| |∇ϕ| dx
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where assumption (c) has also been used. From this and from (b) we obtain

α

∫

Ω

ϕp |∇u|p dx ≤

∫

Ω

ϕpA (x,∇u) · ∇u dx

≤ β

∫

Ω

|∇u|p−1ϕp|∇θ| dx+ βp

∫

Ω

|∇u|p−1ϕp−1|θ − u| |∇ϕ| dx

≤ βε

∫

Ω

ϕp|∇u|p dx+ βC(ε, β)

∫

Ω

ϕp|∇θ|p dx

+ βpε

∫

Ω

ϕp|∇u|p dx+ βpC(ε, p)

∫

Ω

|∇ϕ|p|θ − u|p dx;

here we have also used Young’s inequality (3.3) twice. Now we choose

ε =
α

2β(1 + p)
.

Then the above inequality yields

(3.8)

∫

Ω

ϕp|∇u|p dx ≤ c

[
∫

Ω

ϕp|∇θ|p dx+

∫

Ω

|∇ϕ|p|θ − u|p dx

]

where c is a (generic) constant depending only on p , s , α/β , n , and γ .
To estimate the last integral in (3.8) we use the p-Poincaré thickness of ∂Ω.

Indeed, the function θ − u can be continued as 0 to ∁Ω and hence (1.4) implies

(3.9)

∫

Ω

|∇ϕ|p|θ − u|p dx ≤ cr−p
(

∫

Q(2r)∩Ω

∣

∣∇(θ − u)
∣

∣

pn/(p+n)
dx

)(p+n)/n

;

note that ∇(θ − u) = 0 a.e. in ∁Ω. The Minkowski and Hölder inequalities yield

r−p
(

∫

Q(2r)∩Ω

∣

∣∇(θ − u)
∣

∣

pn/(p+n)
dx

)(p+n)/n

≤ r−p
[(

∫

Q(2r)∩Ω

|∇θ|pn/(p+n) dx

)(p+n)/pn

+

(
∫

Q(2r)∩Ω

|∇u|pn/(p+n) dx

)(p+n)/pn]p

≤ r−p
[

r

(
∫

Q(2r)∩Ω

|∇θ|p dx

)1/p

+

(
∫

Q(2r)∩Ω

|∇u|pn/(p+n)

)(p+n)/pn]p

≤ 2p
[

∫

Q(2r)∩Ω

|∇θ|p dx+ r−p
(

∫

Q(2r)∩Ω

|∇u|pn/(p+n) dx

)(p+n)/n]

.
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From (3.8) and (3.9) we thus obtain

(3.10)

∫

Ω

ϕp|∇u|p dx

≤ c

[
∫

Q(2r)∩Ω

|∇θ|p dx+ r−p
(

∫

Q(2r)∩Ω

|∇u|pn/(p+n) dx

)(p+n)/n]

.

If we now set g = |∇u|pn/(p+n) and f = |∇θ|pn/(p+n) in Ω∩Q(2r) , g = f = 0 in
Q(2r) \ Ω, and q = (p+ n)/n , then (3.10) yields

(3.11)

∫

Q(r)

gq dx ≤ c

[
∫

Q(2r)

f q dx+

(
∫

Q(2r)

g dx

)q]

where c = c(p, s, n, α/β, γ) <∞ .
Lemma 2.9 together with inequalities (3.7) and (3.11) implies that |∇u| ∈

Lt(Ω) for some t = t(p, s, n, α/β, γ) > p .

It remains to show that u ∈ Lδ(Ω) for some δ = δ(n, p) > p . Continuing
u − θ as 0 to Rn we obtain from the ordinary Sobolev imbedding theorem that
for p < n , p∗ = pn/(n− p) ,

(3.12)

(
∫

Ω

|u− θ|p
∗

dx

)1/p∗

≤ c

(
∫

Ω

|∇(u− θ)|p dx

)1/p

<∞.

If now δ = min(s, p∗) > p , then by the Minkowski and Hölder inequalities

(3.13)

(
∫

Ω

|u|δ dx

)δ

≤

(
∫

Ω

|θ|δ dx

)1/δ

+

(
∫

Ω

|u− θ|δ dx

)1/δ

≤

(
∫

Ω

|θ|δ dx

)1/δ

+ c1

(
∫

Ω

|u− θ|p
∗

dx

)1/p∗

where c1 depends on diam Ω, p , and n .
Since θ ∈ Ls(Ω), we obtain from (3.13) that u ∈ Lδ(Ω). Setting q =

min(t, δ) > p we see that u ∈ W 1,q(Ω) in the case p < n . If p ≥ n , then
we can apply the above reasoning for any p∗ <∞ together with Hölder’s inequal-
ity to conclude that u ∈ Ls(Ω) and hence u ∈W 1,q(Ω) with q = min(t, s) > p in
this case. The theorem follows.

3.14. Remarks. Here we present some variants of Theorems A and B.

(a) A slight modification of the proof of Theorem A shows that if u ∈W 1,p
loc (Ω)

is a solution of div A (x,∇u) = 0 in Ω, then u ∈ W 1,q
loc (Ω), q = q(n, p, α/β) > p .

This situation has already been considered in [GM], [Str 1–2], and [I]. In fact, this
situation corresponds to the case ψ = −∞ .
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(b) If in Theorem B it is assumed that θ , ψ ∈W 1,p(Ω) with ∇θ , ∇ψ ∈ Ls(Ω),
s > p ≥ n/(n−1), then it follows from the proof of Theorem B that ∇u ∈ Lq(Ω),
q = q(n, p, s, α/β, γ) > p . Granlund proved this result for variational obstacle
problems in the case p = n [G, Theorem 1.5].

(c) A simplified version of the proof for Theorem B shows that if u is a
solution of ∇ · A (x,∇u) = 0 in Ω with u − θ ∈ W 1,p

0 (Ω) and if θ ∈ W 1,s(Ω),
s > p ≥ n/(n− 1), then u ∈W 1,q(Ω), q = q(p, s, n, α/β, γ) > p .
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