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Abstract. We show that John domains in Rn can be exhausted by John subdomains. We
also give a slightly modified definition for the John domains and prove a topological folk theorem
on shortcuts of paths.

1. Introduction

This paper grew out from the following question of R. Hurri-Syrjänen: Can an
unbounded c-John domain in Rn be expressed as a union of an ascending sequence
of bounded c1 -John subdomains with c1 = c1(c, n)? For terminology, see 3.3. We
shall give an affirmative answer in 4.6. The result was applied by Hurri-Syrjänen
[Hu, 4.6] to prove that unbounded John domains are Poincaré domains. We also
construct the corresponding exhaustion for bounded John domains, but the proof
in this case is rather easy and routine.

We also take this opportunity to give some basic analysis on John domains and
on paths and arcs in Hausdorff spaces. The definition of a John domain is usually
based on joining points by curves with suitable cigar or carrot neighborhoods. The
curve can be considered to be either a path or an arc. We find it convenient to use
an intermediate concept, called a road. We believe that this formulation is useful
also elsewhere. A road is an equivalence class of paths in the relation defined
by an increasing change of the parameter. The basic theory of roads is given in
Section 3.

Arcs, roads and paths lead to the same concept of a c-John domain. This
is due to the fact that a path can be replaced by an injective path by “leaving
out some loops”. This is obvious if the path has only a finite number of self-
intersections. In the general case, however, the result is somewhat deeper and
seems to belong to the folklore. We give a rigorous treatment of this procedure in
Section 2.

Notation. We let B(x, r) and S(x, r) denote open balls and spheres in Rn

with center x and radius r , and we write B(r) = B(0, r) , S(r) = S(0, r) . For
real numbers a, b we write a ∨ b = max(a, b) and a ∧ b = min(a, b) .
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2. Shortcuts

2.1. Terminology. Let X be a topological space. A path in X is a continuous
map f : ∆ → X where ∆ = [a, b] , a ≤ b , is a closed interval of the real line.
Observe that we allow the degenerate case a = b . A shortcut of the path f is a
triple (g, E, ϕ) where E is a compact subset of ∆, and ϕ: E → ∆′ , g: ∆′ → X
are continuous maps with the following properties:

(1) ∆ is an interval, possibly degenerate.

(2) g is injective.

(3) ϕ is surjective and increasing.

(4) ∂∆ ⊂ E .

(5) f |E = g ◦ ϕ .

(6) If s, t ∈ E and s < t , then ϕ(s) = ϕ(t) if and only if the interval (s, t) is a
component of ∆ \ E .

Figure 1.

Thus g∆′ is an arc joining the points f(a) and f(b) in f∆. Intuitively, g
is obtained from f by “leaving out loops”. An injective path f has the trivial
shortcut (f, ∆, id) . Figure 1 describes the simplest nontrivial shortcut. Here
∆ = ∆′ = [0, 1] and E = [0, s] ∪ [t, 1] .

We shall prove in 2.5 that every path f in a Hausdorff space has a shortcut.
The shortcut is usually not unique in any sense. Our proof is a modification of an
idea of J.L. Kelley, who used it to prove that a Peano space is arcwise connected;
see [Wh, p. 39]. Observe that the latter result is a corollary of 2.5.

We first prove a lemma, which is a generalization of the construction of the
Cantor function from the Cantor set. The proof is somewhat complicated, since
the set may have interior points.
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2.2. Lemma. Suppose that E is a compact set in I = [0, 1] such that

{0, 1} ⊂ E and such that E \{0, 1} is nonempty and has no isolated points. Then

there is a continuous increasing function h: I → I such that for every y ∈ I , the

preimage h−1{y} is either a point in E or the closure of a component of I \ E .

In particular, hE = I .

Proof. The set A = (I \ E) ∪ {0, 1} has a countable number of components
A0, A1, . . .. The sequence may be finite or infinite. We choose the numbering
so that 0 ∈ A0 and 1 ∈ A1 . Then Aj is an open interval (aj , bj) for j ≥ 2.
Moreover, A0 is either {0} or an interval [0, b0) , and A1 is either {1} or an
interval (a1, 1] .

The function h will have a constant value yj in each Aj . We set y0 = 0
and y1 = 1. Proceeding inductively, assume that p ≥ 2 and that the numbers
y0, . . . , yp−1 have been defined in such a way that if Aj is the left-hand neighbor
of Ak in {A0, . . . , Ap−1} , then

(2.3) yk − yj ≥ d(Aj, Ak).

To define yp , let Aj(p) be the left-hand neighbor of Ap in {A0, . . . , Ap} , and let
Ak(p) be the right-hand neighbor. We set

(2.4) yp = (yj(p) + ap − bj(p) + yk(p) − ak(p) + bp)/2.

Figure 2.

In Figure 2, yp is the midpoint of the interval ∆. The numbers y0, . . . , yp

clearly satisfy (2.3). Setting h|Aj = yj we obtain an increasing function h: A → I
with h(0) = 0, h(1) = 1.

Suppose that x ∈ E is a left-hand limit point of A . This means that the
interval (x − r, x) meets A for all r > 0. We set

h1(x) = sup
{

h(a) : a ∈ A, a < x
}

.
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Similarly, if x is a right-hand limit point of A , we set

h2(x) = inf
{

h(a) : a ∈ A : a > x
}

.

Moreover, we write h1(0) = 0 and h2(1) = 1. We next prove two facts:

(i) If F = {u} is a degenerate component of E \ {0, 1} , then h1(u) = h2(u) .

(ii) If F = [s, t] is a nondegenerate component of E , then h1(s) < h2(t) .

Suppose that (i) is not true. Then h2(u) − h1(u) = q > 0. For sets P, Q in
the real axis we write P ≤ Q or P < Q if all elements of P and Q satisfy the
corresponding inequality. Choose integers j and k such that

(1) Aj ≤ u ≤ Ak ,
(2) d(Aj , Ak) ≤ q/2,
(3) yk − yj ≤ 5q/4,
(4) for m = k ∨ j , the sets Aj and Ak are neighbors in {A0, . . . , Am} .

Since u is not isolated in E , we can choose the smallest integer p > m for
which Aj < Ap < Ak . Suppose, for example, that u < Ap . Setting α = d(Aj , Ap)
and β = d(Ap, Ak) we have yp = (yj + α + yk − β)/2 by (2.4). Since α ≤
d(Aj, Ak) ≤ q/2, we obtain

q ≤ yp − yj ≤ (α + yk − yj)/2 ≤ (q/2 + 5q/4)/2 < q.

This contradiction proves (i).

To prove (ii), it suffices to show that yk −yj ≥ d(F ) whenever Aj ≤ F ≤ Ak .
Write p = j∨k , and let Am and An be the left-hand and the right-hand neighbors
of F , respectively, in {A0, . . . , Ap} . Then (2.3) implies that

d(F ) ≤ d(Am, An) ≤ yn − ym ≤ yk − yj ,

and (ii) follows.

To complete the proof, we must define h(x) for x ∈ E \ {0, 1} . Let F be the
x -component of E . If F = {x} , we use (i) to define h(x) = h1(x) = h2(x) . If
F = [s, t] is nondegenerate, we define h|F to be the increasing affine map onto
[

h1(s), h2(t)
]

. Then h|F is strictly increasing by (ii). Now h is defined on the
whole interval I , and it is easy to check that h has the desired properties.

2.5. Theorem. Every path f : ∆ → X in a Hausdorff space X has a

shortcut.

Proof. We may assume that ∆ = I = [0, 1] and that f(0) 6= f(1). Let H be
the family of all compact sets F ⊂ I such that

(1) {0, 1} ⊂ F ,
(2) f(s) = f(t) for every component (s, t) of I \ F .
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We may assume that H 6= ∅ , since otherwise f is injective and has the trivial
shortcut (f, I, id) . Suppose that F1 ⊃ F2 ⊃ · · · is a decreasing sequence in H ,
and let F be the intersection of all the sets Fj . Clearly F satisfies (1). We show
that it satisfies also (2). Let (s, t) be a component of I \ F . Choose ε with
0 < ε < (t − s)/2 and then an integer j such that (s + ε, t − ε) ⊂ I \ Fj . Let
(u, v) be the component of I \ Fj containing (s + ε, t − ε) . Then s ≤ u ≤ s + ε
and t − ε ≤ v ≤ t . Since Fj ∈ H , we have f(u) = f(v) . Since f is continuous
and since X is Hausdorff, this implies that f(s) = f(t) . Thus F ∈ H .

We can now apply Brouwer’s reduction theorem [Wh, p. 17] to choose a
minimal member E of H . Then {0, 1} ⊂ E , and E \ {0, 1} and has no isolated
points. Let h: I → I be the function given by Lemma 2.2 for this E . The
restriction ϕ = h|E: E → I is a continuous increasing surjection satisfying the
condition (5) in 2.1. We show that there is a unique map g: I → X with g ◦ ϕ =
f |E . Assume that s, t ∈ E are such that s < t and ϕ(s) = ϕ(t) . Then (s, t) is
a component of I \ E by 2.2. Since E ∈ H , we have f(s) = f(t) . This proves
the uniqueness of g . Since ϕ is a continuous surjection of a compact set, ϕ is an
identification map. Hence g is continuous.

To prove that (g, E, ϕ) is a shortcut of f , it suffices to show that g is injective.
Assume that 0 ≤ u < v ≤ 1 with g(u) = g(v) . Choose s, t ∈ E with ϕ(s) = u ,
ϕ(t) = v . Since ϕ is increasing, we have s < t . Moreover, (s, t) is not a component
of I \ E , since otherwise ϕ(s) = ϕ(t) . Thus E1 = E \ (s, t) is a proper subset
of E . Since f(s) = f(t) , E1 belongs to H , which contradicts the minimality of
E .

2.6. Remark. Theorem 2.5 is not true in arbitrary topological spaces. For
example, let X be the two-point space {0, 1} with the trivial topology and let
f : I → X be any map with f(0) = 0, f(1) = 1. Then f is a path which has no
shortcut.

3. Roads and John domains

3.1. Roads. Let X be a metric space. We say that two rectifiable paths
f : ∆ → X and f ′: ∆′ → X are equivalent if they have the same arc-length
parametrization f0: [0, λ] → X where λ = l(f) = l(g) and l denotes the length.
The equivalence class [f ] of f is called a road in X .

If f = f ′h for some increasing homeomorphism h: ∆ → ∆′ , then f and
f ′ are equivalent. The converse is true if f and f ′ are not constant on any
nondegenerate interval. We do not need nonrectifiable paths in this paper, but
the equivalence relation could be extended to all paths in X as follows: f and g
are equivalent if there is a path f0: ∆0 → X and continuous increasing surjections
h: ∆ → ∆0 , h′: ∆′ → ∆0 such that f = f0h and f ′ = f0h

′ .
Let E = [f ] be a road with f : ∆ → X , ∆ = [a, b] , a ≤ b . The starting

point stE = f(a) and the terminal point ter E = f(b) of E are well-defined.
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The inverse E−1 of E is the road [f ◦ h] , where h: ∆ → ∆ is any decreasing
homeomorphism. If F is a road with st F = terE , the composition EF is well-
defined. Moreover, the composition of roads is associative. If ∆1 is a subinterval
of ∆, the road F = [f |∆1] is a subroad of the road E . The length of the road E
is well-defined and written as l(E) .

An arc in X is a subset homeomorphic to a closed interval, possibly degener-
ate. An arc α is directed if one of the endpoints is chosen to be the starting point
st α . A directed arc α determines a unique road E with stE = st α , defined
by any homeomorphism f : [a, b] → α with f(a) = st α . In the sequel, we shall
identify the directed arc α and the road E . If x and y are points in Rn , we let
[a, b] denote the directed line segment with starting point a and terminal point b .

3.2. Carrots and cigars. Let f : [a, b] → Rn be a rectifiable path in Rn and
let c ≥ 1. The length c-carrot with core f and parameter c is the open set

car (f, c) =
⋃

{

B
(

f(t), l
(

f |[a, t]
)

/c
)

: a < t ≤ b
}

.

If f and g are equivalent paths, then clearly car (f, c) = car (g, c) . Hence the
carrot car (E, c) with E = [f ] is well-defined. Indeed, we can write

car (E, c) =
⋃

{

B
(

ter F, l(F )/c
)

: F subroad of E, stF = st E
}

.

Here E can also be a directed arc.
The length c-cigar with core f is the open set

cig (f, c) =
⋃

{

B
(

f(t), l
(

f |[a, t]
)

∧ l
(

f |[t, b]
)

/c
)

: a < t < b
}

.

The cigar cig (E, c) with E = [f ] is again well-defined and can be written as

cig (E, c) =
⋃

{

B
(

terF1,
(

l(F1) ∧ l(F2)
)

/c
)

: E = F1F2

}

.

We remark that in [NV] and in several other papers, we have used the notation
carl and cigl instead of car and cig.

3.3. John domains. A domain D ⊂ Rn is a c-John domain, c ≥ 1, if each
pair of points in D can be joined by an arc with cig (E, c) ⊂ D . For alternative
characterizations, see [MS], [NV, Section 2], and Theorem 3.6 below. We first
observe that in the definition, the arcs can be replaced by roads or by paths:

3.4. Theorem. Let D be a domain in Rn and let c ≥ 1 . Then the following

conditions are equivalent:

(1) D is a c-John domain.

(2) Each pair of points in D can be joined by a road E with cig (E, c) ⊂ D .

(3) Each pair of points in D can be joined by a path f with cig (f, c) ⊂ D .
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Proof. Clearly (1) ⇒ (2) ⇒ (3). Suppose that (3) is true. Let a and b be
points in D , and choose a path f : ∆ → D joining a and b with cig (f, c) ⊂ D .
By 2.5, there is a shortcut (g, F, ϕ) of f . Let s and t be points of F with s < t .
Since ϕ is increasing, we easily see that the length of the arc g

[

ϕ(s), ϕ(t)
]

is not
larger than the length of the path f |[s, t] . Let E be the image arc of g . Then
cig (E, c) ⊂ cig (f, c) ⊂ D . Hence (1) is true.

3.5. The carrot property. Let D be a domain in Rn and let c ≥ 1. We say
that D has the c-carrot property with center x0 ∈ D if each point x ∈ D can be
joined to x0 by a road E such that car (E, c) ⊂ D . As in 3.4, the roads can be
replaced by arcs or by paths. If D has the carrot property, then either D = Rn or
D is bounded. Indeed, we have D ⊂ B

(

x0, cd(x0, ∂D)
)

. For bounded domains,
the carrot property is quantitatively equivalent to the John property. In fact, the
carrot property was originally used as the definition of a John domain [MS]. We
recall the precise formulation and the proof:

3.6. Theorem. Suppose that D is a domain in Rn and that c ≥ 1 .

(1) If D has the c-carrot property, then D is a c-John domain.

(2) If D is a bounded c-John domain, then D has the c1 -carrot property

with c1 = 4c2 .

Proof. (1) Let a0 and a1 be points in D . Assuming that aj 6= x0 we join aj

to the center x0 by a road Ej with car (Ej, c) ⊂ D . Then the road E = E0E
−1
1

joins a0 to a1 with cig (E, c) ⊂ D . If a0 6= x0 = a1 , then E = E0 has this
property.

(2) Let B(x0, r) be the largest ball contained in D . Fix x ∈ D \ {x0} ,
and join x to x0 by an arc E with cig (E, c) ⊂ D . It suffices to show that
car (E, c1) ⊂ D . Let F be a subarc of E with st F = x . Setting y = terF we
show that d(y, ∂D) ≥ l(F )/c1 .

Since cig (E, c) contains a ball of radius l(E)/2c , we have l(E) ≤ 2cr . If
|y − x0| ≤ r/2, then

d(y, ∂D) ≥ r/2 ≥ l(E)/4c ≥ l(F )/c1.

If |y − x0| ≥ r/2, then

d(y, ∂D) ≥
(

l(F ) ∧ (r/2)
)

/c ≥
(

l(F )/c
)

∧
(

l(E)/4c2
)

≥ l(F )/c1.

4. Exhaustions

In 4.6 we shall give the main result of this paper: Each c-John domain in Rn

can be exhausted by relatively compact c1 -John subdomains, c1 = c1(c, n) . We
first give some preparatory lemmas.
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4.1. Lemma. Let E = F1F2 be the composition of the roads F1, F2 in Rn ,

and let c ≥ 1 , c1 = c(2c + 1) . Then

car (E, c1) ⊂ car (F1, c) ∪ car (F2, c).

Proof. Write z = ter F1 = st F2 . Let F be a subroad of E with st F = st F1 .
Set y = ter F . We must show that

(4.2) B
(

y, l(F )/c1

)

⊂ car (F1, c) ∪ car (F2, c).

Since c1 > c , we may assume that F1 ⊂ F . We can write F = F1F3 where
F3 ⊂ F2 and st F3 = z . Setting r = l(F1)/c we have B(z, r) ⊂ car (F1, c) .

Case 1. l(F3) ≤ r/2. Now |y − z| ≤ r/2, and hence B(y, r/2) ⊂ car (F1, c) .
Since

l(F ) = l(F1) + l(F3) ≤ cr + r/2 ≤ c1r/2,

(4.2) follows.

Case 2. l(F3) ≥ r/2. Now l(F1) = cr ≤ 2cl(F3) . Hence

l(F ) ≤ (2c + 1)l(F3) = c1l(F3)/c,

which implies that
B

(

y, l(F )/c1

)

⊂ B
(

y, l(F3)/c
)

,

and we again obtain (4.2).

4.3. Lemma. Let c ≥ 1 and let Γ be a family of roads in Rn with the

common terminal point x0 . Then the union

D =
⋃

{

car (E, c) : E ∈ Γ
}

is a domain with the c-carrot property with center x0 .

Proof. Since each car (E, c) is a domain containing x0 , D is a domain. Let
x ∈ D \ {x0} . There is E ∈ Γ with x ∈ car (E, c) . We can write E = F1F2 such
that setting y = ter F1 = st F2 we have |x− y| < l(F1)/c . Now E1 = [x, y]F2 is a
road from x to x0 . It is easy to see that car (E1, c) ⊂ D .

4.4. Theorem. Suppose that D is a domain in Rn with the c-carrot

property with center x0 , that Q ⊂ D is compact and that c′ > c . Then there is

a domain G such that

(1) Q ⊂ G ,

(2) G is compact in D ,

(3) G has the c′ -carrot property with center x0 .
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Proof. If D = Rn , every ball G = B(x0, r) containing Q has the desired
properties. Suppose that D 6= Rn and write 2r = d(Q, ∂D) . Choose c1 with
c < c1 < c′ . Let G be the union of all carrots car (E, c′) such that

(i) ter E = x0 ,
(ii) d(st E, ∂D) ≥ r ,
(iii) car (E, c1) ⊂ D .

We show that G is the desired domain. The property (3) follows directly from
4.3.

To prove (1), let x ∈ Q and choose a road E0 from x to x0 such that
car (E0, c) ⊂ D . Next pick x1 ∈ D such that |x1 − x| ≤ r

(

1 ∧ (c1 − c)/c
)

. Then
E = [x1, x]E0 is a road from x1 to x0 , and d(x1, ∂D) ≥ r . It suffices to show
that car (E, c1) ⊂ D .

Let F be a subroad of E with stF = x1 , and set y = ter F . We must show
that d(y, ∂D) ≥ l(F )/c1 . If F ⊂ [x1, x] , then

d(y, ∂D) ≥ r ≥ l(F ) > l(F )/c1.

If [x1, x] ⊂ F , we write F = [x1, x]F0 . Now F0 is a subroad of E0 , and hence
l(F0) ≤ cd(y, ∂D) . If |y − x| ≤ r , then d(y, ∂D) ≥ r , which gives

l(F ) = |x1 − x| + l(F0) ≤ (c1 − c)r/c + cd(y, ∂D) ≤ c1d(y, ∂D).

If |y − x| ≥ r , then l(F0) ≥ r , and hence

l(F ) ≤ (c1 − c)l(F0)/c + l(F0) = c1l(F0)/c ≤ c1d(y, ∂D),

and (1) is proved.

To prove (2), let x ∈ D with d(x, ∂D) ≥ r , and let E be a road from x
to x0 with car (E, c1) ⊂ D . Let z ∈ car (E, c′) . We must find a positive lower
bound for d(z, ∂D) . Choose a subroad F of E from x to a point y such that
|z − y| < l(F )/c′ . If l(F ) ≤ r/3, then

|z − x| ≤ |z − y| + |y − x| ≤ 2l(F ) ≤ 2r/3,

and hence d(z, ∂D) ≥ r/3. If l(F ) ≥ r/3, then

d(z, ∂D) ≥ d(y, ∂D)− |z − y| ≥ l(F )/c1 − l(F )/c′ ≥ r/3c1 − r/3c′ > 0.

Hence d(G, ∂D) > 0.

4.5. Theorem. Suppose that D is an unbounded c-John domain in Rn and

that Q ⊂ D is compact. Then there is a domain G such that

(1) Q ⊂ G ,

(2) G is compact in D ,

(3) G is a c1 -John domain with c1 = c1(c, n) .
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Figure 3.

Proof. Choose R > 0 such that Q is contained in the ball B(R/2). We
may assume that B(R) 6⊂ D , since otherwise we can choose G = B(R/2). By
an elementary packing argument we can choose a finite set A in the sphere S(R)
such that the balls B(a, R/4c) , a ∈ A , cover S(R) and such that the cardinality
of A is a number N = N(c, n) independent of R .

Write A = {a1
1, . . . , a

1
N} . Since D is a c-John domain, we can choose roads

E1
j from a1

j to a1
j+1 , 1 ≤ j ≤ N − 1 such that cig (E1

j , c) ⊂ D . We bisect the

lengths of the roads E1
j by points a2

j and choose roads E2
j from a2

j to a2
j+1 ,

1 ≤ j ≤ N − 2, such that cig (E2
j , c) ⊂ D . We continue this process until we

obtain the road EN−1
1 and its midpoint aN

1 . We write x0 = aN
1 . The process is

schematically illustrated in Figure 3, where N = 5.
We see that each a ∈ A can be joined to x0 by a road Ea = F1 · · ·FN−1 ,

where each Fi is either the first half of some road Ei
j or the inverse of the second

half. Since cig (Ei
j , c) ⊂ D , we have car (Fi, c) ⊂ D . Applying 4.1 N − 2 times

we see that car (Ea, c1) ⊂ D for some c1 = c1(c, n) .
We next show that each point x ∈ D ∩ B(R/2) can be joined to a point

z ∈ S(R) by a road F such that car (F, c) ⊂ D . Since D is unbounded, there is
a point y ∈ D with |y| ≥ 9cR . Join x to y by a road E0 with cig (E0, c) ⊂ D .
Let F be the minimal subroad of E0 with st F = x , terF = z ∈ S(R) . Write
λ = l(F ) and choose a subroad F0 of F with st F0 = x , l(F0) = λ/2. Then
d(terF0, ∂D) ≥ λ/2c . Since B(R) meets ∂D , this implies that λ/2c ≤ 2R .
Hence

2λ ≤ 8cR ≤ |y| − |x| ≤ l(E0).

Since cig (E0, c) ⊂ D , this gives car (F, c) ⊂ D .
Let x ∈ D ∩ B(R/2) and choose F and z ∈ S(R) as above. Then

B(z, R/2c) ⊂ D . Pick a point a ∈ A with |a − z| < R/4c . Then car
(

[z, a], 1
)

=

B
(

a, |z − a|
)

⊂ D . Let Ea be the road described above from a to x0 with
car (Ea, c1) ⊂ D , and let E be the composition F [z, a]Ea . By 4.1, car (E, c2) ⊂ D
with some c2 = c2(c, n) . We have proved that each point of D ∩ B(R/2) can be
joined to x0 by a road E with car (E, c2) ⊂ D .

Write c3 = c2 + 1 and 2r = d(Q, ∂D) . Let G be the union of all carrots
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car (E, c3) such that

(i) ter E = x0

(ii) d(st E, ∂D) ≥ r ,
(iii) |st E| ≤ R ,
(iv) car (E, c2) ⊂ D .

We show that G is the desired domain. The property (3) follows from 4.3 and 3.6.
To prove (1), let x ∈ Q . Since Q ⊂ D ∩ B(R/2), there is a road E0 from x

to x0 with car (E0, c2) ⊂ D . As in the proof of 4.4, we can show that if x1 is a
point sufficiently close to x , then car

(

[x1, x]E0, c3

)

⊂ D . This gives (1).

To prove (2), let E be a road satisfying (i)–(iv), and let z ∈ car (E, c3) . As
in the proof of 4.4, we obtain the lower bound d(z, ∂D) ≥ r/3c2 − r/3c3 > 0.
Furthermore, since l(E) ≤ d(x0, ∂D) , we obtain the upper bound |z| ≤ R +
2c2d(x0, ∂D) . Hence G is compact in D .

4.6. Theorem. A c-John domain D ⊂ Rn can be written as the union of

domains D1, D2, . . . such that

(1) Dj is compact in Dj+1 ,

(2) Dj is a c1 -John domain with c1 = c1(c, n) .

Proof. This follows directly from 4.4, 3.6 and 4.5. If D is bounded, c1 can
be chosen to be any number greater than 4c2 .

4.7. Remark. It is natural to ask whether 4.6 is true if the John domains
are replaced by uniform domains. P. Jones pointed out to the author that the
answer is affirmative and can be proved using his ideas in [Jo]. The construction
is rather complicated involving pipelines in Whitney cubes.
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