CHARACTERIZATIONS OF BALAYAGES

Sirkka-Liisa Eriksson-Bique

University of Joensuu, Department of Mathematics P.O. Box 111, FIN-80101 Joensuu, Finland

Abstract. We consider balayages in H -cones. Any pair of elements in an H -cone has mixed envelopes formed relative to two partial orders. Our main result characterizes balayages in terms of mixed envelopes. We state an explicit formula of a balayage in an H -cone admitting a certain type of unit.

Introduction

Mappings called balayages are important objects in the theory of harmonic spaces ([4]). An axiomatic counterpart of the cone of positive superharmonic functions on a harmonic space is an H -cone ([3, Section 2]). We consider balayages in H -cones.

Any pair of elements of an H -cone has mixed envelopes, studied by Arsove and Leutwiler ([2]), defined in terms of two partial orders. Using mixed envelopes it is possible to extend the Freudental spectral theorem of vector lattices (or Riesz spaces) for H -cones [1]. In our main theorem (Theorem 2.4) we use mixed envelopes to characterize balayages. This result leads to an explicit formula of a balayage in an H -cone admitting a special unit (Theorem 2.8).

1. Preliminaries

We review the basic concepts.

Definition 1.1. Let E be an ordered vector space and S be a convex cone in E such that $S \subset E^+$ and $E = S - S$. The cone S is called an H-cone if it possesses the following properties:

- (A_1) any upward directed and dominated subset F of S has a least upper bound in E denoted by $\forall F$ and $\forall F \in S$,
- (A_2) any subset F of S has a greatest lower bound in E denoted by $\wedge F$ and $\wedge F \in S$,
- (A_3) for any s and t in S the greatest lower bound of the set $\{u \in S \mid s-t \leq u\}$ in E denoted by $R(s-t)$ satisfies $R(s-t) \in S$ and $s-R(s-t) \in S$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 31D05; Secondary 06F20, 46A40.

The equivalence of the preceding definition and the original definition of an H-cone [3, p. 37) is proved in [6].

The partial order \leq in an H-cone is called the *initial order*. Another partial order called *specific order* denoted by \preccurlyeq is defined in an H-cone by

 $s \preccurlyeq t$ if and only if $t = s + s'$ for some $s' \in S$.

Proposition 1.2. If S is an H -cone in an ordered vector space E then E is an Archimedean vector lattice with respect to the initial order. Moreover, the set E is a conditionally complete vector lattice with respect to the specific order.

Proof. See [3, Proposition 2.1.1] and [3, Theorem 2.1.5].

Any pair of elements in an H -cone has mixed envelopes introduced by Arsove and Leutwiler in algebraic potential theory ([1, 2]).

Theorem 1.3. Let S be an H-cone. Then for any elements s and t in S there exist a mixed lower envelope

$$
s \setminus t = \max\{ x \in S \mid x \preccurlyeq s, \ x \le t \}
$$

and a mixed upper envelope

$$
s \neg t = \min\{x \in s \mid x \succcurlyeq s, \ x \ge t\}
$$

satisfying the equality

$$
s \triangleleft t + t \triangleleft s = s + t.
$$

Proof. See [2, Theorem 2.5].

We use the following properties of mixed lower envelopes in H -cones stated in [2, Section 3]:

(1.1) $t \preccurlyeq s$ if and only if $s \triangleleft t = t$

(1.2)
$$
t \leq s
$$
 if and only if $t \leq s = t$

$$
(1.3) \t\t a + s \simeq t = (a + s) \simeq (a + t)
$$

$$
(1.4) \t\t\t (s+t) \negthinspace \negthinspace \negthinspace \negthinspace \negthinspace \negthinspace \sim \negthinspace u + t \negthinspace \negthinspace \negthinspace \negthinspace u
$$

$$
(1.5) \t u \triangleleft (s+t) \le u \triangleleft s + u \triangleleft t
$$

Two types of units, defined next, are important in the theory of H -cones.

Definition 1.4. Let S be an H-cone. An element $e \in S$ is called a weak unit if $s = \vee_{n \in \mathbb{N}} (ne) \wedge s$ for all $s \in S$. An element $p \in S$ is called a *generator* if $s = \bigvee_{n \in \mathbb{N}} (np) \setminus s$ for all $s \in S$.

Note that a generator is also a weak unit. If the initial order and the specific order coincide, then an element is a weak unit if and only if it is a generator. Moreover, an H-cone possessing a weak unit and a countable order dense set has a generator [6, Theorem 2.8].

2. Characterizations of balayages of H -cones

We are going to state some new characterizations of balayages in terms of mixed lower envelopes. We start by recalling the main concepts.

Definition 2.1. Let S be an H-cone and B be a mapping from S into S . The mapping B is called *left order continuous* if for any $s \in S$ the property

$$
B(s) = \bigvee_{t \in F} B(t)
$$

holds for all upward directed subsets F of S such that $s = \forall F$. The mapping B is called *idempotent* if $B^2 = B$ and *contractive* if $B(s) \leq s$ for all $s \in S$. Moreover, the mapping $B: S \to S$ is called a *balayage* if it is additive, left order continuous, idempotent and contractive.

A partial ordering in the set of left order continuous additive mappings in S is defined by $\psi \leq \varphi$ if $\psi(s) \leq \varphi(s)$ for all $s \in S$.

Note that if $B: S \to S$ is left order continuous then B is increasing.

The pointwise least upper bound of an arbitrary set of balayages is surprisingly a balayage as proved in [5, Proposition 2.1].

Lemma 2.2. Let S be an H-cone. If B_i is a balayage for each i in an index set I then a mapping $B: S \to S$ defined by

$$
B(s) = \bigvee_{i \in I} B_i(s)
$$

is a balayage.

Lemma 2.3. Let S be an H-cone and B: $S \rightarrow S$ be a balayage. Then the set $B(S)$ is a specifically solid convex cone in S. Moreover, the equality

$$
B(u) \triangleleft v = B(u) \triangleleft B(v)
$$

holds for all u and v in S .

Proof. Assume that $B: S \to S$ is a balayage. Since B is idempotent and additive we have

$$
B(s) + B(t) = B2(s) + B2(t) = B(B(s) + B(t)).
$$

Hence $B(S)$ is a convex cone. It is also specifically solid. Indeed from $w \preccurlyeq s$ for $s \in B(S)$ it follows that $w + w' = s = B(s) = B(w) + B(w')$. Then the properties $B(w) \leq w$ and $B(w') \leq w'$ imply that $B(w) = w$.

Assume that $u, v \in S$. Obviously,

$$
B(u) \triangleleft v \ge B(u) \triangleleft B(v).
$$

To prove the reverse inequality, let $t \in S$ be such that $t \preccurlyeq B(u)$ and $t \leq v$. As $B(S)$ is specifically solid we infer $t = B(t)$. But then the inequality $t \leq v$ results in $t = B(t) \leq B(v)$. Consequently $B(u) \rightarrow v \leq B(u) \rightarrow B(v)$ completing the proof.

The preceding lemma gives a characterization of balayages. The first assertion of this result is also proved by Popa in [7].

Theorem 2.4. Let S be an H-cone. Suppose that a mapping $\psi: S \to S$ is left order continuous and admits the property

(2.1)
$$
\psi(u)\Delta v = \psi(u)\Delta \psi(v)
$$

for all u and v in S. Then ψ is idempotent, contractive, subadditive and the set $\psi(S)$ is specifically solid. Moreover the mapping $B_{\psi}: S \to S$ defined by

(2.2)
$$
B_{\psi}(s) = \bigvee \left\{ \sum_{i=1}^{n} \psi(s_i) \mid \sum_{i=1}^{n} s_i \le s, \ n \in \mathbf{N}, s_i \in S \right\}
$$

is a balayage and therefore satisfies (2.1).

Proof. Assume that $\psi: S \to S$ is left order continuous and satisfies (2.1). Using (2.1) we find out that

$$
u \ge \psi(u) \setminus u = \psi(u) \setminus \psi(u) = \psi(u).
$$

Hence ψ is contractive and so $\psi^2 \leq \psi$. Moreover applying (2.1) twice we obtain

$$
\psi(u) = \psi(u) \triangleleft \psi(u) = \psi(u) \triangleleft \psi^2(u) \le \psi^2(u).
$$

Hence ψ is idempotent.

Suppose that $w \in S$ and $w \preccurlyeq \psi(t)$ for some $t \in S$. Then applying (2.1) we observe that

$$
w = \psi(t) \triangleleft w = \psi(t) \triangleleft \psi(w) \le \psi(w) \le w,
$$

which leads to $w = \psi(w) \in \psi(S)$. Thus the set $\psi(S)$ is specifically solid.

The mapping B_{ψ} is well defined, since $\sum_{i=1}^{n} \psi(s_i) \leq \sum_{i=1}^{n} s_i \leq s$ for all $s \in S$ and therefore the least upper bound on the right side of the equality (2.1) exists and $B_{\psi}(s) \leq s$. To prove additivity assume that u and v are arbitrary elements of S . Then by (1.5) and (2.1) we have

$$
\psi(u+v) = \psi(u+v) \triangleleft (u+v) \le \psi(u+v) \triangleleft u + \psi(u+v) \triangleleft v
$$

=
$$
\psi(u+v) \triangleleft \psi(u) + \psi(u+v) \triangleleft \psi(v) \le \psi(u) + \psi(v).
$$

Hence ψ is subadditive. Applying [3, Proposition 2.2.4] we note that the mapping B_{ψ} is additive and left order continuous. Moreover since the mapping ψ is idempotent and $\psi \leq B_{\psi}$ we have $\psi \leq B_{\psi}^2$. As B_{ψ}^2 is additive and increasing we infer from (2.2) that $B_{\psi} \leq B_{\psi}^2 \leq B_{\psi}$ completing the proof.

Corollary 2.5. If the function $\psi_a: S \to S$ defined by $\psi_a(u) = a \searrow u$ is left order continuous for some $a \in S$ then the mapping B_{ψ_a} defined by (2.2) is a balayage and $B_{\psi_a}(s) = \vee_{n \in \mathbb{N}} (na) \rightarrow s$ for all $s \in S$.

Proof. Assume that the function $\psi_a: S \to S$ given by $\psi_a(u) = a \setminus u$ for some $a \in S$ is left order continuous. The preceding theorem asserts that the mapping B_{ψ_a} defined by (2.2) is a balayage. Let s be an arbitrary element of S. Assume that s_i are elements of S such that $\sum_{i=1}^n s_i \leq s$. Then we infer that

$$
\sum_{i=1}^{n} a \Delta s_i \leq (na) \Delta s \leq n \big(a \Delta(s/n) \big) \leq B_{\psi_a}(s).
$$

Hence we conclude $B_{\psi_a}(s) = \vee_{n \in \mathbb{N}} (na) \rightarrow s$.

Corollary 2.6. Let S be an H-cone. Then the mapping $B: S \to S$ is a balayage if and only if B is left order continuous, idempotent and the set $B(S)$ is a specifically solid subsemigroup of S .

Proof. The assertion is obvious for a balayage. To prove the converse statement assume that $B: S \to S$ satisfies the required conditions. Since the set $B(S)$ is a semigroup and B is idempotent we infer

$$
B(s) \ge B\left(\sum_{i=1}^n B(s_i)\right) = \sum_{i=1}^n B(s_i)
$$

for all $s_i \in S$ and $s \in S$ with $\sum_{i=1}^n s_i \leq s$. Hence we only have to verify the equality (2.1) for B. Let u and v be elements in S. Suppose that $w \preccurlyeq B(u)$ and $w \leq v$. Since $B(S)$ is specifically solid we have $w = B(t)$ for some $t \in S$. As B is idempotent and increasing we obtain $w = B(w) \leq B(v)$. Hence the fact that w is an arbitrary element such that $w \preccurlyeq B(u)$ and $w \preccurlyeq v$ implies $B(u)\rightarrow v \leq B(u)\rightarrow B(v)$. Thus noting that $B(v)\leq v$ we conclude

$$
B(u) \neg v \le B(u) \neg B(v) \le B(u) \neg v
$$

completing the proof.

Proposition 2.7. Let S be an H-cone and u in S. If the mapping $B: S \to S$ defined by

$$
B(s) = \bigvee_{n \in \mathbf{N}} (nu) \triangleleft s
$$

is left order continuous then it is a balayage.

Proof. Applying (1.4) and (1.5) we note that

 $(nu)\rightarrow x + (mu)\rightarrow y \leq (m+n)u\rightarrow (x+y) \leq (m+n)u\rightarrow x + (m+n)u\rightarrow y$

and so B is additive. From (1.1) and (1.2) it easily follows that B is also idempotent and contractive. Hence $B(S)$ is specifically a solid subsemigroup of S. By the preceding corollary B is a balayage.

Our main theorem gives a new presentation of a balayage. Moreover it shows how the value of a balayage at a point is obtained from its value at a generator.

Theorem 2.8. Let S be an H-cone possessing a generator p and B a mapping from S into S . Then B is a balayage if and only if B is left order continuous and

(2.3)
$$
B(x) = \bigvee_{n \in \mathbb{N}} (nB(p)) \triangleleft x
$$

for all $x \in S$.

Proof. Assume first that $B: S \to S$ is a balayage. Let p be a generator in S and $x \in S$. Since B is order continuous we have

$$
B(x) = B\left(\bigvee_{n \in \mathbf{N}} (np) \triangleleft x\right) = \bigvee_{n \in \mathbf{N}} B\big((np) \triangleleft x\big).
$$

Hence by Lemma 2.3 we conclude

$$
B(x) = \bigvee_{n \in \mathbf{N}} B((np) \triangleleft x) \leq \bigvee_{n \in \mathbf{N}} B(np) \triangleleft x = \bigvee_{n \in \mathbf{N}} (nB(p)) \triangleleft B(x) \leq B(x),
$$

which implies

$$
B(x) = \bigvee_{n \in \mathbf{N}} (nB(p)) \triangleleft x.
$$

To prove the converse assume that $B: S \to S$ is left order continuous and

$$
B(x) = \bigvee_{n \in \mathbf{N}} (nB(p)) \triangleleft x.
$$

Since by (1.5) the relation

$$
(nB(p))\neg x + (mB(p))\neg y \le ((m+n)B(p))\neg (x+y)
$$

$$
\le ((m+n)B(p))\neg x + ((m+n)B(p))\neg y
$$

holds for all $n, m \in \mathbb{N}$ the mapping B is additive. Moreover B is idempotent since

$$
B^{2}(x) = \bigvee_{n \in \mathbb{N}} (nB(p)) \triangleleft B(x) = \bigvee_{n \in \mathbb{N}} (nB(p)) \triangleleft \left (\bigvee_{n \in \mathbb{N}} (nB(p)) \triangleleft x \right) \right) = \bigvee_{n \in \mathbb{N}} (nB(p) \triangleleft x).
$$

Hence B is a balayage.

Corollary 2.9. Let S be an H-cone possessing a generator p. If B_1 and B_2 are balayages from S into S such that $B_1(p) \le B_2(p)$ then $B_1 \le B_2$.

Proof. Assume that $B_1: S \to S$ and $B_2: S \to S$ are balayages with $B_1(p) \leq$ $B_2(p)$. Lemma 2.2 assures us that the mapping $B: S \to S$ defined by $B(s) =$ $B_1(s) \vee B_2(s)$ is a balayage and $B(p) = B_2(p)$. Hence by the theorem above $B = B_2$ establishing the result.

The mapping B satisfying (2.3) is left order continuous if and only if B is left order continuous at $B(p)$. Generally the following result holds.

Theorem 2.10. Let S be an H-cone and u be an element of S. Then $B: S \to S$ defined by

(2.4)
$$
B(s) = \bigvee_{n \in \mathbb{N}} (nu) \triangleleft s
$$

is a balayage if and only if $u = \vee_{f \in F} B(f)$ for all upward directed families F with $u = \vee F$.

Proof. For a balayage B satisfying (2.4) the assertion is clear. To verify the converse assume that B defined by (2.4) satisfies the required condition. Let $x \in S$ and F be an upward directed family with $x = \forall F$. Suppose first that $x \preccurlyeq u$. As the family $u - x + F$ is upward directed with $\vee (u - x + F) = u$, we have by (1.3)

$$
x + u - x = u = \bigvee_{f \in F} B(u - x + f) = u - x + \bigvee_{f \in F} B(f).
$$

Hence the mapping B is left order continuous at x with $x \preccurlyeq nu$ for any $n \in \mathbb{N}$.

Assume next that x is arbitrary. Since $(nu) \rightarrow x \preccurlyeq nu$ we obtain $B((nu) \rightarrow x)$ $=(nu)\rightarrow x$ and therefore the relation

$$
(nu)\triangleleft x = \bigvee_{f \in F} B((nu)\triangleleft x) \land f\right) \le \bigvee_{f \in F} B(f) \le B(x)
$$

holds for $n \in \mathbb{N}$. Consequently B is left order continuous.

A characterization of balayages in terms of their images follows from Theorem 2.8 and Theorem 2.10.

Theorem 2.11. Let S be an H-cone possessing a generator and T be a specifically solid subset of S. Then there exists a balayage $B \to T$ such that $B(S) = T$ if and only if T admits a generator u satisfying

$$
u = \bigvee_{\substack{n \in \mathbf{N} \\ f \in F}} (nu) \triangleleft f
$$

for all upward directed families F with $\forall F = u$.

An H -cone S is a positive cone of the Dedekind complete vector lattice with respect to the specific order by Proposition 1.2. Hence balayages with respect to the specific order are just specific band projections [8, Theorem 2.10]. In addition they have the following simple characterization.

Theorem 2.12. Let S be an H -cone in which the specific and initial order coincide. Then $B: S \to S$ is a balayage if and only if there exists a subset F of S such that

(2.5)
$$
B(s) = \bigvee_{\substack{n \in \mathbb{N} \\ t \in F}} (nt) \wedge s
$$

for all $s \in S$.

Proof. Assume that a mapping $B: S \to S$ satisfies (2.5) for some subset F of S . Since by Proposition 1.2 the cone S is a positive cone of a Dedekind complete vector lattice, the mapping $s \mapsto t \wedge s$ is left order continuous for all $t \in F$. Hence Lemma 2.2 and Corollary 2.5 imply that B is a balayage.

Conversely, assume that B is a balayage. Applying Theorem 2.4 we find out that

$$
B(t) \wedge s = B(t) \wedge B(s)
$$

for all s and t in S . Thus we conclude

$$
\bigvee_{t \in S} B(t) \wedge s = B(s)
$$

for all $s \in S$ and the condition (2.4) holds for $F = B(S)$.

References

- [1] Arsove, M., and H. Leutwiler: Infinitesimal generators and quasi-units in potential theory. - Proc. Nat. Acad. Sci. U.S.A. 72, 1975, 2498–2500.
- [2] Arsove, M., and H. Leutwiler: Algebraic potential theory. Mem. Amer. Math. Soc. 226, 1980.
- [3] BOBOC, N., GH. BUCUR, and A. CORNEA: Order and convexity in potential theory: H cones. - Lecture Notes in Mathematics 853. Springer-Verlag, Berlin–Heidelberg–New York, 1981.
- [4] Constantinescu, C., and A. Cornea: Potential theory on harmonic spaces. Springer-Verlag, Berlin–Heidelberg–New York, 1972.
- [5] CORNEA, A., and H. HÖLLEIN: Morphisms and contractions on standard H-cones. -Hokkaido Math. J. Special Issue 10, 1981, 157–212.
- [6] Eriksson-Bique, S.-L.: Real-valued duals of H -cones. Math. Scand. (to appear).
- [7] POPA, E.: Balayages and morphisms in H-cones. An. Stiint. Univ. "Al. I. Cuza" Iași Sect. I a Mat. (N.S.) 36, 1990, 203-213.
- [8] Schaeffer, H.H.: Banach lattices and positive operators. Springer-Verlag, Berlin– Heidelberg–New York, 1974.

Received 1 December 1992