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Abstract. In this paper, the following result is proved. Let (Rm) be a sequence of real
numbers such that limn→∞ Rm+1/Rm = +∞ and let (ϕm) be a sequence of real numbers such
that 0 ≤ ϕm ≤ 2π . Suppose that η(0 < η < π) and S (> 1) are two constants. If E = ∪∞

m=1Dm ,
where Dm = {z = reiθ , Rm ≤ r ≤ SRm} \ {z = reiθ , ϕm − η < θ < ϕm + η} (m = 1, 2, . . .),
then Borel’s theorem holds in C \ E for every entire function f(z) of positive order.

1. Introduction

Suppose that f(z) is meromorphic in the plane and that the order λ (0 <
λ ≤ +∞) is defined by

λ = lim sup
r→∞

log T (r.f)

log r
.

Then Borel’s theorem asserts that

lim sup
r→∞

log n(r, a)

log r
= λ,

except for at most two values a for which the upper limit can be smaller, where
we use standard notation from [3], as we shall do throughout.

Following the idea of Picard sets [5], L. Yang introduced the notation of Borel
removable set [6]: a point set E ⊂ C is called a Borel removable set for a family
F of meromorphic functions, if for any meromorphic function f(z) ∈ F with
nonzero order λf , Borel’s theorem always holds in C \ E . That is, we have

lim sup
r→∞

log n
{

(|z| ≤ r) \ E, f = a
}

log r
= λf

for all a ∈ C , except for at most two values, where n{D, f = a} denotes the roots
of f(z) − a = 0 in D including multiplicities.
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It is obvious that if E is a Borel removable set for F , then E is also a Picard
set for F .

Since O. Lehto introduced the concept of Picard set in 1958, the Picard sets
have been extensively studied for entire and meromorphic functions. But there is
very little work done on Borel removable sets. In general, the Picard sets of entire
functions can only contain a sequence of discs with extremely small radii. Since we
need not consider the entire functions of order zero in the study of Borel removable
sets, we would expect to obtain some results which have some important difference
from the known Picard sets. Let F be the family of entire functions of positive
and finite order. The following result is proved in [8].

Theorem A. Let (an) be a sequence of complex numbers which satisfy the

condition that |an+1| > |an|
1+σ for a positive constant σ and let (εn) be a

sequence of positive numbers such that limn→∞ εn = 0 . Then the set

E =

∞
⋃

n=1

{

z; |z − an| < εn|an|
}

is a Borel removable set for F .

It is easily seen that in Theorem A if the sequence of (εn) is suitably chosen,
then we may have limn→∞ εn|an| = +∞ .

In this paper, we shall prove that the Borel removable sets for all entire
functions whose orders are finite or infinite can contain a sequence of large sectorial
domains. Using simple examples, we shall show that these results are best possible
in some sense. In the sequal for real numbers ϕ; η > 0; ̺ > 0 and S > 1, we shall
define the angular domain | arg z − ϕ| < η by G(ϕ, η) , and the sectorial domain
{z = reiθ, ̺ ≤ r ≤ S̺} \ G(ϕ, η) by D(̺, S, ϕ, η) . We shall also use F and F∞

to stand for the family of all the entire functions of finite and nonzero order, and
infinite order, respectively.

2. Statement and discussion of results

For F , we have the following

Theorem 1. Let (Rm) be a sequence of real numbers such that

(2.1) lim
m→∞

Rm+1

Rm
= ∞

and let (ϕm) be a sequence of real numbers. Suppose that η (0 < η < π) and

S (> 1) are two constants. Then

E =
∞
⋃

m=1

Dm

is a Borel removable set for F , where Dm = D (Rm, S, ϕm, η) (m = 1, 2, . . .) .
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Remark 1. Theorem 1 is sharp in the following sense. If we relax the gap
condition (2.1) by Rm+1 ≥ KRm for some K > 1, we may let S = K . In this
case, if we let ϕm = 0, then the set E in Theorem 1 may be the angular domain
G(π, π − η) . Since for λ (0 < λ ≤ 1

2
), the function

f(z) =

∞
∏

n=1

(

1 +
z

n1/λ

)

is of order λ and f(z) → ∞ uniformly for | arg z| < π − δ for any positive δ ,
G(π, π − η) is not a Borel removable set for F .

For F∞ , the condition (2.1) can be weaker. Actually we have the following

Theorem 2. Let (Rm) be a sequence of real numbers such that

(2.2) Rm+1 > σRm,

where σ > 1 is a constant, and let (ϕm) be a sequence of real numbers such that

0 ≤ ϕm < 2π . Suppose that η (0 < η < π) and S (1 < S < σ) are two constants.

Then

E∞ =

∞
⋃

m=1

D′
m

is a Borel removable set for F∞ , where D′
m = D(Rm, S, ϕm, η) (m = 1, 2, . . .) .

Remark 2. Since there exists an entire function f(z) of infinite order
bounded outside a half strip |y| < 1

2π , x > 0, [3, p. 81] Theorem 2 is also
sharp in the sense of Remark 1.

Whether E∞ in Theorem 2 is or is not a Borel removable set for F , we are
unable to solve this problem. But, combining Theorem 1 and 2, we have

Theorem 3. Let E be defined as in Theorem 1 , then E is a Borel removable

set of entire functions, i.e., E is a Borel removable set for F ∪ F∞ .

3. Lemmas required for Theorem 1

Lemma 1 [4, p. 129]. Suppose that f(z) is meromorphic in |z| < 1 and the

equations f(z) = 0,∞, 1 have there at most a finite number of roots al where

l = 1 to L, bn where n = 1 to N and cj where j = 1 to J , respectively. We

write

f0(z) = f(z)

N
∏

n=1

( z − bn

1 − bnz

) /

L
∏

l=1

( z − al

1 − alz

)

.

Then if z1 = reiθ , where 0 < r < 1 , 0 ≤ θ ≤ 2π , and z0 = 0 ,

(3.1) log+ |f0(z1)| ≤
A0

1 − r

(

log+ |f0(z0)| + L + N + J + 1
)

,

where A0 is a positive absolute constant.
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Lemma 2. Suppose further that f(z) is regular in |z| < 1 and that

(3.2) log |f(0)| > 48A0(L + J + 2) > 1,

where A0 , L and J are as in Lemma 1 . Then

(3.3) log |f(z)| >
1

8A0
log |f(0)|

for all |z| < 1
2
, outside a set of circles (γ) the sum of whose radii is at most 1

64
.

Proof. By applying Lemma 1 with

f
( z0 + z

1 + z0z

)

, f0

( z0 + z

1 + z0z

)

,
z1 − z0

1 − z0z1

instead of
f(z), f0(z), z1,

we see that the conclusion (3.1) holds for an arbitrary pair of points z0 , z1 in
|z| < 1 with r =

∣

∣(z1 − z0)/(1 − z0z1)
∣

∣ .
Without loss of generality, we suppose A0 ≥ 1. Let z1 = 0 and z0 = reiθ in

(3.1), we have

(3.4) log+ |f0(re
iθ)| ≥

1 − r

A0
log+ |f0(0)| − L − J − 1.

Since |f0(0)| = |f(0)|/
∏L

l=1 |al| , we have

(3.5) log+ |f0(0)| ≥ log+ |f(0)|.

Taking r = 1
2

and substituting (3.5) in (3.4), we deduce that

(3.6) log+ |f0(
1
2reiθ)| ≥

1

2A0
log |f(0)| − L − J − 1 ≥

1

4A0
log |f(0)|.

Since there is no zero of f0(z) for |z| ≤ 1
2 , we deduce from (3.6) that

|f0(z)| ≥ |f(0)|1/4A0

for all |z| ≤ 1
2
. Thus

log |f(z)| = log |f0(z)| +
L

∑

l=1

log
∣

∣

∣

z − al

1 − alz

∣

∣

∣

≥
1

4A0
log |f(0)| −

L
∑

l=1

log |1 − alz| +

L
∑

l=1

log |z − al|

≥
1

4A0
log |f(0)| − L log 2 +

L
∑

l=1

log |z − al|

≥
1

4A0
log |f(0)| − L(log 128e)

≥
1

4A0
log |f(0)| − 6L ≥

1

8A0
log |f(0)|,
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for |z| < 1
2 , outside a set of circles, the sum of whose radii is at most 1

64 , by
Cartan’s lemma [1, p. 46].

Lemma 3. [7, p. 207] Let f(z) be a meromorphic function of order λ (0 <
λ < +∞) in the plane and let (r < |z| < R) be an annular domain. Then there

exists a point zj ∈ (r < |z| < R) such that in (|z − zj | < (100/q)|zj|) f(z) takes

every complex value at least

n1 =
1

900q2

T (R, f)
(

log(R/r)
)2

times, except for at most some values which can be enclosed in two spherical circles

with radii e−n1 .

The above conclusion holds if the following conditions are satisfied.

i. n1 and q are sufficiently large;
ii. T (R, f) > max

{

c(f), 12T (r, f),
(

12T (kr, f)/ logk
)

log(R/r)
}

, where c(f) is
a positive constant depending only on f(z) and k is a constant satisfying
1 < k < R/r .

4. Proof of Theorem 1

The proof is indirect. We assume that E is not a Borel removable set for F .
Therefore there must exist an entire function of order λ (0 < λ < +∞) and two
distinct finite complex values a1 and a2 such that

(4.1) lim sup
r→∞

log n
{

(|z| < r) \ E, f = ai

}

log r
< τ < λ (i = 1, 2).

Without loss of generality, we suppose a1 = 0 and a2 = 1.
According to a result of Valiron [9, p. 64], there exists a proximate order λ(r)

of T (r, f) having the following properties:

(a) λ(r) is defined for r ≥ r0 > 0, continuous and nonnegative, and differentiable
in adjacent intervals;

(b : 4.2) lim
r→∞

λ(r) = λ;

(c : 4.3) lim
r→∞

(

rλ′(r) log r
)

= 0;

(d : 4.4) lim sup
r→∞

T (r.f)

U(r)
= 1
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where U(r) = rλ(r) .
Now we take a sequence (rm) of positive numbers such that

(4.5) lim
m→∞

T (rm, f)

U(rm)
= 1.

We next choose a fixed number k (0 < k < 1) such that

(4.6) 24kλ < 1 and
24 log(1/k)

log 2
(2k)λ < 1

and distinguish two cases.

Case 1. There exists a subsequence (rmj
) of (rm) such that

(4.7)
(

1
2krmj

≤ |z| ≤ (1 + k)rmj

)

∩ E = φ.

From (4.1) and (4.7), we have

(4.8)
n
{(

1
2krmj

≤ |z| ≤ (1 + k)rmj

)

, f = X
}

≤ n
{(

|z| ≤ (1 + k)rmj

)

\ E; f = X
}

≤ (1 + k)τrτ
mj

(X = 0, 1).

From (4.2), it is easy to see that

(4.9) lim
r→∞

U(kr)

U(r)
= kλ.

Thus we deduce from (4.2), (4.4), (4.5), (4.6) and (4.8) that

12T (krmj
, f) < 16U(krmj

) < 20kλU(rmj
) < 24kλT (rmj

, f) < T (rmj
, f)

and
12T (2krmj

, f)

log 2
log

rmj

krmj

≤
16U(2krmj

)

log 2
log

1

k

≤
24 log 1

k

log 2
(2k)λT (rmj

f) < T (rmj
, f).

We apply Lemma 3 to f(z) and (krmj
< |z| < rmj

) in which we set q =
1/ log rmj

. If j is sufficiently large, we conclude that there exists zj ∈ (krmj
<

|z| < rmj
) such that in

(

|z − zj | < (100/ log rmj
)|zj |

)

f(z) takes every complex
value at least

(4.10) nj =
T (rmj

, f)

900(log rmj
)2

(

log(1/k)
)2 >

U(rmj
, f)

1800(log rmj
)2

(

log(1/k)
)2
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times, except for at most some values which can be enclosed in two spherical circles
with radii e−nj . Since

(

|z − zj | <
100

log rmj

|zj |
)

⊂
(

1
2
krmj

≤ |z| ≤ (1 + k)rmj

)

and 0, 1 and ∞ cannot be all enclosed in the two spherical circles, there must
exist a value, say 0, such that it is not enclosed in the two circles. For this value,
we deduce from (4.2) and (4.10) that

(4.11)

n
{

( 1
2krmj

≤ |z| ≤ (1 + k)rmj
, f = 0

}

≥ n
{

(|z − zj | <
100

log rmj

|zj |, f = 0
}

≥ rλ−εj
mj

,

where εj → 0(j → ∞) .
This contradicts (4.8).

Case 2. For (rm) , we have

(4.12)
(

1
2krm ≤ |z| ≤ (1 + k)rm

)

∩ E 6= φ.

In this case, we may suppose that

(4.13)
(

1
2
krm ≤ |z| ≤ (1 + k)rm

)

∩ Dnm
6= φ.

(4.13) implies that

(4.14) Dnm
⊂

{ k

2S
rm ≤ |z| ≤ (1 + k)Srm

}

.

We next prove that there exists a positive constant A not depending on m
such that

(4.15) T
( k

4S
rm, f

)

≥ AT (rm, f)

for all sufficiently large m .
In order to prove (4.15), a disc train that we shall construct below is needed.

Suppose that z0 = 4Srmeiθm (in which we omit the subscript of z0,m for the
simplicity of notation) is such a point that

(4.16) |f(z0)| = M(4Srm, f),

where M(r, f) = max0≤θ<2π |f(reiθ)| . Then we get the first disc Γ0 : |z − z0| <
5αrm, where α < kη/625S is a positive constant. We next rotate Γ0 around
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the origin with the argument increasing by one α each time from z0 . With at
most N ′

1 = 2[4Sπ/α] times of rotations we can obtain the discs Γ0, Γ1, . . . , ΓN1

(N1 ≤ N ′
1 ) such that ΓN1

is completely contained in G(ϕm, 1
2η) . Suppose that

the center of ΓN1
is 4SrmeiθN1 . We continue to move ΓN1

along the segment
L =

{

reiϕN1 ;
(

(k/8S) − 2α
)

rm ≤ r ≤ 4Srm

}

in succession with its distance from
the origin decreasing αrm each time and obtain the discs ΓN1+1, ΓN1+2, . . .ΓN1+N2

such that ΓN1+N2
is contained in |z| <

(

(k/8S)−α
)

rm . It is not hard to see that

N2 ≤ [4S/α] + 1. We set Tm = (
⋃N1

ν=1 Γv) ∪
{
⋃N2

µ=1 ΓN1+µ

}

which is the desired
disc train. From the construction of Tm , we see that Tm ∩ E = φ . Thus we have

(4.17)

nm = n(Tm, f = 0} + n(Tm, f = 1)

≤ n
{

(|z| ≤ 5Srm) \ E, f = 0
}

+ n
{

(|z| ≤ 5Srm) \ E, f = 1
}

≤ rτ
m, τ < λ.

Since f(z) is entire, we have

(4.18) log |f(z0)| = M(4Srm, f) ≥ T (4Srm, f) > T (rm, f).

We apply Lemma 2 to g(t) = f(z0 + 4αrmt) . Suppose that aν
l where l = 1

to Lν and bν
j where j = 1 to Jν are the roots of the equations f(z) = 0, 1 in Γν

(ν = 0, 1, 2, . . .N1+N2 ), respectively. Then we have for every ν(0 ≤ ν ≤ N1+N2)

(4.19) Lν + Jν ≤ nm.

On the other hand, we have for all large m ,

(4.20) log |g(0)| > T (rm, f) > 1
2U(rm, f) = 1

2rλ(rm)
m .

From (4.17), (4.19) and (4.20) and by using Lemma 2, we conclude that

(4.21) log |g(t)| >
1

8A0
log |g(0)| =

1

8A0
log |f(z0)| >

1

8A0
T (rm, f)

for all |t| ≤ 1
2
, outside a set of circles (γ′)0 the sum of whose radii is at most

1/64. (4.21) implies that

log |f(z)| >
1

8A0
T (rm, f)

for all |z − z0| < 2αrm, outside a set of circles (γ)0 the sum of whose radii is at
most αrm/16.
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We next consider Γ1 . It is not hard to see that there exists a point z1 ∈ 1
5Γ1 ,

in which for a disc Γ : |z − a| < t , δΓ refers to |z − a| < δt , such that

log |f(z1)| >
1

8A0
T (rm, f).

Since Γ′
1 : |z− z1| < 9

2αrm is contained in Γ1 and 1
2Γ′

1 ⊃ 2
5Γ1 , by using Lemma 1

to f(z1 + 4αrmt) , we deduce that

log |f(z)| >
1

(8A0)2
T (rm, f)

for all z ∈ 2
5
Γ1 , outside a set of circles (γ)1 the sum of whose radii is at most

αrm/16.
Repeating the above arguments for Γ2, Γ3, . . . , ΓN1+N2

, we finally obtain that

(4.22) log |f(z)| >
1

(8A0)N1+N2+1
T (rm, f)

for all z ∈ 2
5ΓN1+N2

, outside a set of circles (γ)N1+N2
the sum of whose radii is

at most αrm/16.
It follows from (4.22) that there exists a point z with |z| < krm/8S such that

log |f(z)| >
1

(8A0)N1+N2+1
T (rm, f).

Since f(z) is entire, we have

T
( k

4S
rm, f

)

>
1

3
log M

( k

8S
rm, f

)

>
1

3(8A0)N0+N1+1
T (rm, f).

Setting A = 1/3(8A0)
N1+N2+1 , we obtain (4.15).

Since
(

2SRnm−1 ≤ |z| ≤
k

3S
rm

)

∩ E = φ

for all large m , we have

(4.23)
n
{(

2SRnm−1 ≤ |z| ≤
k

3S
rm

)

, f = X
}

≤ n
{(

|z| ≤
k

3S
rm

)

\ E, f = X
}

< rτ
m (X = 0, 1).

On the other hand, for ε > 0, if r is sufficiently large and R > r , we deduce
from (4.3) that

|λ(R) − λ(r)| =

∣

∣

∣

∣

∫ R

r

λ′(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ R

r

λ′(t)t log t

t log t
dt

∣

∣

∣

∣

≤
ε

log r

∫ R

r

dt

t
=

ε

log r
log

R

r
.
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Thus

U(R)

U(r)
=

(R

r

)λ(R)

e(λ(R)−λ(r)) log r ≥
(R

r

)λ(R)

e−ε log(R/r) ≥
(R

r

)λ/2

.

Therefore

(4.24)
T (6SRnm−1, f)

(6SRnm−1)λ/2
≤

U(6SRnm−1)

(6SRnm−1)λ/2
≤

U(rm, f)

r
λ/2
m

≤
2T (rm, f)

r
λ/2
m

.

It follows from (4.14) and (4.24) that

(4.25)

T (6SRnm−1, f) ≤ 2
(6SRnm−1

rm

)λ/2

T (rm, f)

≤ 2
(24S2

k

Rnm−1

Rnm

)λ/2

T (rm, f)

≤ A′
(Rnm−1

Rnm

)λ/2

T
( k

4S
rm, f

)

where

A′ =
2

A

(24S2

k

)λ/2

.

We conclude from (2.1) and (4.25) that

12T (3SRnm−1, f) < T (
k

4S
rm, f)

and

12T (6SRnm−1, f)

log 2
log

krm/4S

6SRnm−1
≤

12T (6SRnm−1, f)

log 2

(

log
kRnm

/16S2

6SRnm−1

)

≤
12A′

log 2

(

log
kRnm

/6S2

6SRnm−1

)(Rnm−1

Rnm

)λ/2

T
( k

4S
rm, f

)

< T
( k

4S
rm, f

)

for all large m .
From Lemma 3, if m is sufficiently large, there exists a disc (|z − zm| <

100|zm|/ log rm) ⊂ (2SRnm−1 < |z| < krm/3S) such that f(z) takes every com-
plex value in (|z − zm| < 100|zm|/ log rm) at least

nm >
AT (rm, f)

900(log rm)4
>

AU(rm)

1800(log rm)4

times, except for at most some values which can be enclosed in two spherical circles
with radii e−nm . Thus we can similarily obtain a contradiction as we did in the
proof of Case 1. The proof of the theorem is completed.
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5. A lemma required for Theorem 2

Lemma 4 [7. p. 214]. Let f(z) be a meromorphic function of infinite order

and let (r < |z| < R) be an annular domain. Then there exists a point zj ∈ (r <
|z| < R) such that in (|z − zj | < (100/q)|zj|) f(z) takes every complex value at

least

n1 =
1

1800q2

T
(

R − (2/T (R − 1, f)), f
)

log(R/r)

times, except for at most some values which can be enclosed in two spherical circles

with radii e−n1 .

The above conclusion holds if the following conditions are satisfied.

i. n1 and q are sufficiently large;
ii. T

(

R−
(

2/T (R−1, f)
)

, f
)

> max{c(f), 24T (r.f), 24
(

T (kr, f)/log k
)

log R/r
}

,
where c(f) is a positive constant depending only on f(z) and k is a constant
satisfying 1 < k < R/r .

6. Proof of Theorem 2

As in the proof of Theorem 1, the proof is indirect. We assume that E∞ is
not a Borel removable set for F∞ . Thus there exists an entire function f(z) with
order λ = ∞ such that

(5.1) lim sup
r→∞

log n
{

(|z| < r) \ E∞, f = X
}

log r
< B < +∞ (X = 0, 1).

From a result of Chuang [2. p. 178], there exists a proximate order λ(r) of
T (r.f) which has the following properties.
(a) λ(r) is defined for r ≥ r0 > 0, and continuous and nondecreasing;

(b : 5.2) lim
r→∞

λ(r) = +∞;

(c : 5.3) lim sup
r→∞

T (r, f)

U(r)
= 1,

where U(r) = rλ(r) .
We choose a sequence (rm) such that rm < rm+1/σ2 and

(5.4) lim
m→∞

T (rm, f)

U(rm)
= 1

and distinguish the following two cases.
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Case 1. There exists a subsequence (rmj
) of (rm) and a fixed positive con-

stant σ1 > 1 such that

(5.5)
( 1

σ1
rmj

≤ |z| ≤ σ1rmj

)

∩ E∞ = φ.

It follows from (5.1) that

(5.6)
n
{

(rmj
/σ1 ≤ |z| ≤ σ1rmj

), f = X
}

≤ n
{

(|z| ≤ σ1rmj
) \ E∞, f = X

}

< r2B
mj

(X = 0, 1).

From the properties (a) and (b) of λ(r) , if r is sufficiently large then we have

(5.7)
U(R)

U(r)
=

Rλ(R)

rλ(r)
≥

(R

r

)λ(r)

for all R > r .

Setting σ2 = σ
1/4
1 , we deduce that

24T
( 1

σ2
2

rmj
, f

)

≤ 25U
( 1

σ2
2

rmj

)

≤ 25
( 1

σ2
2

)λ(rmj
)

U(rmj
)

≤ 26
( 1

σ2
2

)λ(rmj
)

T (rmj
, f) < T (rmj

, f)

and

24T
(

rmj
/σ2, f

)

log σ2
log σ2

2 ≤ 49U
( 1

σ2
rmj

)

≤ 49
( 1

σ2

)λ(rmj
)

U(rmj
) < T (rmj

, f).

By using Lemma 4, if j is sufficiently large, there exists a disc (|z − zj | <
(100/log rmj

)|zj |) contained in (rmj
/σ3

2 ≤ |z| < σ2rmj
) such that f(z) takes every

complex value there at least

nj =
1

1800(log rmj
)2

T (rmj
, f)

log σ1
> r

λ(rmj
)−1

mj

times, except for at most some complex values which can be enclosed in two
spherical circles with radii e−nj . Therefore we can obtain a contradiction as we
did in the proof of Theorem 1.
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Case 2. For any fixed σ1 > 1,

( 1

σ1
rm ≤ |z| ≤ σ1rm

)

∩ E∞ 6= φ

for all sufficiently large m .

In this case, we choose a fixed constant σ3 such that 1 < σ4
3 < min{S, σ/S} .

In the following, we shall constuct a single connected domain Tm which is formed
by two annular domains connected by a sectorial domain. The large annular
domain Gm can be obtained in the following way. If (rm ≤ |z| ≤ σ3rm)∩E∞ = φ ,
we let Gm = (rm ≤ |z| ≤ σ3rm) . Otherwise we may suppose (rm ≤ |z| ≤
σ3rm) ∩ Dnm

6= φ , then we let Gm = (σ3SRnm
≤ |z| ≤ σ2

3SRnm
) . If we write

Gm = (r′m ≤ |z| ≤ σ3r
′
m) , then we have r′m > rm and Gm ∩ E∞ = φ .

The small annular domain and Tm can be obtained in the following way.

If Gm = (rm ≤ |z| ≤ σ2rm) , then (rm/σ3 ≤ |z| ≤ rm) ∩ Dnm
6= φ for some

Dnm
, otherwise we have the Case 1. We let G′

m = (Rnm
/σ2

3 ≤ |z| ≤ Rnm
)/σ3 and

set Tm = Gm ∪ G′
m ∪ {G(ϕnm

, η/2) ∩ (Rnm
/σ3 ≤ |z| ≤ rm)} .

If Gm = (σ3SRnm
≤ |z| ≤ σ2

3SRnm
) and (rm/σ3 ≤ |z| ≤ rm) ∩ E = φ , then

we let G′
m = (rm/σ3 ≤ |z| ≤ rm) and Tm = Gm ∪ G′

m ∪ {G(ϕnm
, η

2 ) ∩ (rm ≤
|z| ≤ σ3SRnm

) . Finally we may have (rm/σ3 ≤ |z| ≤ rm)∩Dnm
6= φ , then we let

G′
m = (Rnm

/σ2
3 ≤ |z| ≤ Rnm

/σ3) and Tm = Gm∪G′
m∪{G(ϕnm

, η/2)∩(Rnm
/σ3 ≤

|z| ≤ σ3SRnm
)} .

In all cases, if we write G′
m = (r′′m ≤ |z| ≤ σ3r

′′
m) , then we have σ3r

′′
m ≤ rm

and G′
m ∩ E∞ = φ . Thus we have Tm ∩ E∞ = φ .

Write σ4 = (σ3)
1/4 . By using Lemma 2 for a disc train which can be similarly

obtained as we did in the proof of Theorem 1 Case 2. We can show that there
exists a positive constant A not depending on m such that

T (σ3
4r

′′
m, f) > AT (rm, f).

Therefore by comparing T (σ4r
′′
m, f) , T (σ2

4r
′′
m, f) and T (σ3

4r
′′
m, f) , we conclude

from Lemma 4 that there is a disc |z − zm| < 100|zm|/ log rm contained in G′
m

such that f(z) takes every value there at least

nm > rλ(rm)−1
m

times, except for some values which can be enclosed in two spherical circles with
radii e−nm . Thus we can obtain a contradiction as we did before. The proof of
Theorem 2 is completed.
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Referee’s comments. The following examples show that Theorem 1 is
essentially sharp.

Let
rn = 16n

and

f(z) =
∞
∏

n=1

(

1 +
z

rn

)2n

.

Let 2rn ≤ |z| ≤ 8rn = rn+1/2. We have

log |f(z)| ≥ 2n−1 log 16 + 2n−2 log 162 + 2n−3 log 163 + 2n+1 log(1 − 1
2)

+ 2n+2 log
(

1 −
1

16

)

+ 2n+3 log
(

1 −
1

162

)

+ · · ·

≥ 2n(2 + 2 + 3/2) log 2 − 2n+1 log 2 − 2n+2 16

15

( 1

16
+

2

162
+

22

163
+ · · ·

)

≥ 2n(2 + 3/2) log 2 − 2n 4 · 16

15 · 14
> 2n.

Clearly
min{|f(z)| : |z| = r, | arg z| ≤ π} → ∞

as r → ∞ .
If we choose

D′
m = D( 1

216m, 4, 0, 1
2π)

we deduce that Theorem 2 is not valid for entire functions of order 1
4 .

Let n be a positive integer and

g(z) = f(zn).

Choosing

D′
m = D

((16m

2

)1/n

, 41/n, 0,
π

2n

)

,

we see that Theorem 2 does not hold for functions of order n/4.

Perhaps the following example is interesting, too.

Let rn → ∞ and rn+1/rn → ∞ as n → ∞ and let 0 < εn < 1 for any n .
We set

f(z) =

∞
∑

n=1

( z

rn

)tn

where tn is a positive integer such that

tn log
rn + εn

rn
> 4tn−1 log rn
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for all large n . If rn + εn < |z| < rn+1 , then

|(z/rn)tn − f(z)| < 1
4 |z/rn|

tn

and we deduce that f(z) → ∞ as z → ∞ through these ring domains.
This implies that in Theorem 2, the sets D′

m cannot be replaced with the
ring domains

rm < |z| < rm + εm.

Therefore, Theorem 2 is essentialy sharp, too.

Acknowledgement. The author wishes to thank the referee for his valuable
comments and examples.
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