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Abstract. In this paper we consider some basic existence questions about quasiconformal
mappings between spherical CR manifolds. A spherical CR manifold is locally modeled on the
Heisenberg group. The manifolds we consider are actually quotients of the 3 -dimensional Heisen-
berg group by cyclic groups of automorphisms. When the group consists of loxodromic elements,
the quotient manifold is compact, and if two such manifolds are homeomorphic, there is in fact a
quasiconformal homeomorphism. By contrast, when the group consists of parabolics, the manifolds
are noncompact, and there are exactly two quasiconformal equivalence classes.

1. Introduction

The theory of quasiconformal mapping on the Heisenberg group has a unique
appeal both for the amount of similarity with the classical theory, and for the
interesting ways in which the similarity breaks down. For example, a quasicon-
formal mapping on the Heisenberg group satisfies a system of equations formally
very similar to the classical Beltrami equation. But unlike the classical Beltrami
equation, in general these equations have no solution. Thus it is possible that
given two compact, smooth, homeomorphic manifolds M and N modeled on the
Heisenberg group, no quasiconformal homeomorphism exists between them.

The intuition behind this curious phenomenon runs as follows. The Heisen-
berg group has a natural contact structure, and any quasiconformal mapping on
the Heisenberg group which is sufficiently smooth (C2 will do) must preserve this
structure. Consequently, if M and N are manifolds modeled on the Heisenberg
group, and the induced contact structures on M and N are not homotopic, it
follows that at least there are can be no C2 quasiconformal maps between them.
If we restrict our attention to compact manifolds, the converse is also true: given
a contactomorphism, it is automatically quasiconformal. Thus, if we are content
with reasonably smooth mappings and compact spaces, the question of quasicon-
formal equivalence is a question about homotopy classes of contact structures, or
equivalently, about constructing contact mappings.
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For noncompact manifolds, however, the situation is more involved. Even
if a contact mapping exists, it need not be quasiconformal because of the non-
compactness. In any event, because of the regularity issue, contact mappings are
useful only for demonstrating existence of q.c. mappings, not their non-existence.
However, as this article demonstrates, it is still possible to produce examples of
noncompact manifolds modeled on the Heisenberg group which are homeomorphic
but not quasiconformal.

To illustrate these ideas, we need only consider the simplest non-simply con-
nected quotients of the Heisenberg group available. Namely, we will investigate
quotients by cyclic groups of automorphisms in dimension 3. In analogy with the
theory of conformal structures on the boundary of real hyperbolic space, the one
point compactification of the Heisenberg group can be regarded as the bound-
ary of complex hyperbolic space. Similarly, automorphisms of complex hyperbolic
space can be classified as elliptic, parabolic or loxodromic according to their fixed
points properties. We will consider cyclic subgroups generated by loxodromic and
parabolic elements, which act properly and discontinously on the complement of
their limit sets. The resulting quotient spaces are compact for loxodromic sub-
groups and noncompact for parabolic ones. Using techniques due to Korányi
and Reimann [1], we will show that all loxodromic quotients are quasiconformally
equivalent by exhibiting contactomorphisms. By contrast, we will show that there
are exactly two quasiconformal equivalence classes of purely parabolic quotients,
even though there is only one homeomorphism class.

The organization of the paper runs as follows. In Section 2, we present some
basic facts about complex hyperbolic space and the Heisenberg group viewed as
its boundary. In Section 3, we recall the fundamentals of quasiconformal mapping
on the Heisenberg group. In Section 4, we analyze loxodromic quotients, and in
Section 5, we treat the parabolic case.

The author would like to thank H.M. Reimann for his expert guidance and
support on this project.

2. Complex hyperbolic space and its boundary

A useful way of introducing complex hyperbolic spaces is by way of the pro-
jective model. Consider Cn+1 with the indefinite Hermitian inner product:

〈z, w〉 = z1w̄1 + · · ·+ znw̄n − zn+1w̄n+1.

Let V− denote the set of negative vectors with respect to this metric, and de-
fine Hn

C
to be P (V−) , that is the projectivization of the negative vectors. The

(n, 1)-Hermitian form induces a Riemannian metric of negative curvature on Hn
C

via a procedure analogous to the construction of the Fubini–Study metric on
CPn . The holomorphic automorphism group of Hn

C
with this metric is the Lie

group PU(n, 1).
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It is easy to see Hn
C

is homeomorphic to Bn ⊂ Cn , so its boundary is
S2n−1 . The automorphisms of Hn

C
extend to the boundary by continuity. The

stabilizer of a boundary point is a group of automorphisms analogous to the group
of Euclidean similarity transformations. Abstractly, this group is isomorphic to
H 2n−1

⋊

(

R+ × U(n)
)

, where H 2n−1 is the 2n − 1- dimensional Heisenberg
group. We shall denote this group by Sim(H 2n−1) . The Heisenberg group is the
maximal parabolic subgroup of the stabilizer, and it acts simply transitively on
the complement of the fixed point on the boundary.

For the remainder of the paper, we shall focus on complex dimension 2, so
the boundary has real dimension 3. For notational simplicity, we will write H for
H 3 . In this case, the Heisenberg group can be described as the set C × R with
the group law:

(ζ, v) ∗ (ζ ′, v′) =
(

ζ + ζ ′, v + v′ + 2 Im(ζζ̄ ′)
)

.

Since the Heisenberg group acts simply transitively on the complement of a bound-
ary point, we may identify the two by choosing a point. In the resulting coordi-
nates, the action of the whole stabilizer, Sim(H ) , is affine. The action of the
Heisenberg group on itself by left translation is given by the preceding formula.
The action of R+ is given by:

r · (ζ, v) = (rζ, r2v).

The action of U(1) is given by

λ(ζ, v) = (λζ, v)

where λ is a unit complex number.
Elements of PU(2, 1) are elliptic, parabolic or loxodromic according to their

fixed point behavior. Elements with a fixed point in the interior of H2
C

are elliptic.
In the stabilizer of a boundary point, the only elliptics are conjugate to elements
in the U(1) factor. Elements with exactly one fixed point on the boundary are
called parabolic. We will refer to unipotent parabolics as purely parabolic auto-
morphisms. (The other parabolics are products of purely parabolic and elliptic
elements.) Elements of H acting on itself are all purely parabolic. Again thinking
of H as C × R , it is useful to distinguish the elements in the two factors. Ele-
ments of the form (0, v) are central in H . Finally, the loxodromic elements have
exactly two fixed points on the boundary. In Sim(H ) , loxodromics are conjugate
to a product of an element in the R+ factor and an element in the U(1) factor.
Elements without a rotational part are called purely hyperbolic.

Since the dimension of the boundary is odd, it has no complex structure.
However, in each tangent space, there is a maximal subspace stabilized by the
complex structure of the ambient space C2 . Specifically, define a hyperplane
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bundle E ⊂ TS3 by setting Ep = TpS
3 ∩ JTpS

3 . This hyperplane field is totally
non-integrable and defines a contact structure on ∂Hn

C
. Since it admits an almost

complex structure, it in fact defines a CR structure as well. Using the affine
coordinates described above, the plane field is concisely described as the kernel of
ω: TH −→ R where:

ω = dv + iζdζ̄ − iζ̄dζ = dv + 2x dy − 2y dx.

In addition to the CR structure, there is a natural metric space structure on
the boundary. While the Riemannian metric on Hn

C
is degenerate on the boundary,

it induces an infinitesimal metric on the plane field E [2]. Using this tensor, one
can define the length of a curve tangent to E , and hence a path metric, often
called the Carnot metric, on the Heisenberg group. This metric is equivariant with
respect to the action of Sim(H ) . Alternatively, one may define an equivariant
metric space structure by using a gauge as follows (see [2] for details). Define:

|ζ, v| = (|ζ|4 + v2)1/4.

Then define a metric d by the formula:

d
(

(ζ, v), (ζ ′, v′)
)

= |(ζ, v) ∗ (ζ ′, v′)−1|.

It is not hard to show that d defines a metric on H which is equivariant with
respect to Sim(H ) . Moreover, it is possible to show that d is equivalent to the
Carnot metric. Thus we will usually use the d metric for simplicity, rather than
the better known, but more unwieldly, Carnot metric.

3. Quasiconformal mappings on the Heisenberg group

Suppose that f : H −→ H is a homeomorphism. Define

a(x, r) = inf
{y:d(x,y)=r}

d
(

f(x), f(y)
)

b(x, r) = sup
{y:d(x,y)=r}

d
(

f(x), f(y)
)

.

Set H(x, r) = b(x, r)/a(x, r) and define Hf(x) = lim supr→0 H(x, r) . The quan-
tity Hf(x) is called the dilatation of f at x . The mapping f is called k -
quasiconformal on a set U ⊂ H provided Hf is uniformly bounded on U by k .

We shall require only a few basic results from the theory of quasiconformal
mappings on the Heisenberg group. For a systematic treatment, see [3].

The first result we need describes the relationship between contactomorphisms
and quasiconformal maps. A contactomorphism is a diffeomorphism f which
preserves the contact bundle E . That is, f∗(Ep) = Ef(p) . Equivalently, f∗ω = µω
for some nonvanishing, real valued function µ . The following statement is proved
in [1].
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Proposition 3.1. If f : U ⊂ H −→ H is a C2 quasiconformal mapping,

then f is a contactomorphism. Conversely, if f is a contactomorphism, and U is

compact, then f is quasiconformal.

The collection of contactomorphisms is quite large. In particular, it is easy
to produce flows of contactomorphisms. Consider the vector fields

Z =
∂

∂z
+ iζ̄

∂

∂v

Z̄ =
∂

∂z̄
− iζ

∂

∂v

V =
∂

∂v

on H . These vector fields form a left invariant frame for TH . The following
theorem is also proved in [1].

Proposition 3.2. Let f : H −→ R be any differentiable function. Define:

ξf =
i

2

(

(Z̄f)Z − (Zf)Z̄
)

+ fV.

Then the flow Ψs of ξf is contact for all times s .

The function f is sometimes called a contact potential function.
In addition to satisfying an infinitesimal distortion bound, quasiconformal

mappings also satisfy a global distortion estimate. For proof see [3].

Proposition 3.3. There exists a constant C such that for any k -quasicon-

formal mapping f : H −→ H ,

H(x, r) ≤ exp(kC).

Finally, we shall make use of the fact that the extremal length, or modulus, of
a curve family is a quasi-invariant. Let Γ denote a family of piecewise C1 curves,
tangent to the plane field E . Denote by ΣΓ the collection of Borel measurable
functions σ: H −→ R such that

∫

γ

σ ≥ 1

for all γ ∈ Γ. Then define the modulus of Γ by:

M(Γ) = inf
σ∈ΣΓ

∫

H

σ4dvol.

For the following theorem see [3] and [4].

Proposition 3.4. If f : H −→ H is k -quasiconformal, then:

1

k2
M(fΓ) ≤ M(Γ) ≤ k2M(fΓ).
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4. Loxodromic quotients

Let Dα1
and Dα2

be two Heisenberg dilations, i.e. Dαi
(ζ, v) = (αiζ, α2

i v) .
To produce a quasiconformal mapping from H r {0}/〈Dα1

〉 to H r {0}/〈Dα2
〉 ,

we must produce a quasiconformal mapping φ: H −→ H which commutes with
the group action. Since these manifolds are compact, it suffices to produce a
contactomorphism φ such that:

Dα1
◦ φ = φ ◦ Dα2

.

To accomplish this, we will produce a contact vector field whose flow is essentially
given by:

φs(ζ, v) = |ζ, v|es−1(ζ, v).

It easily follows that:
φs ◦ Dα1

= Dαes

1
◦ φs.

To this end, let
f(ζ, v) = 2v log |ζ, v|

be a contact potential function. By Lemma 3.2, it follows that

ξf =
(

ζ log |ζ, v| + iζv

2(|ζ|2 + iv)

)

Z +
(

ζ̄ log |ζ, v| − iζ̄v

2(|ζ|2 − iv)

)

Z̄ + 2v log |ζ, v|T

generates a contact flow. Rewriting in terms of the basis { ∂
∂x

, ∂
∂y

, ∂
∂v

} and identi-

fying R3 with C ×R we obtain:

ξf =
(

ζ log |ζ, v|, 2v log |ζ, v|
)

+
( iζv

2(|ζ|2 + iv)
,

−|ζ|4v
|ζ4| + v2

)

= X + Y.

Observing that the gradient of r(ζ, v) = |ζ|4 + v2 is given by

∇r = (4ζ|ζ|2, 2v)

it follows that X is transverse to the level sets of r and Y is tangent. The flow
for X can be directly computed:

Φs(ζ, v) = |ζ, v|es−1(ζ, v).

Consequently, Φs ◦ Dα = Dαes ◦ Φs . Furthermore, a computation shows that
[X, Y ] = 0. Thus, if Ψ denotes the flow for ξf , then Ψs ◦Dα = Dαes ◦Ψs as well.

For a more direct, though less geometric argument, differentiate Ψs ◦ Dα =
Dαes ◦ Ψs to obtain:

ξf

(

Dα(ζ, v)
)

= Ḋαes (ζ, v) + (Dαes )∗ξf (ζ, v).

Since Ψs ◦Dα = Dαes ◦Ψs holds for s = 0, Ψs ◦Dα = Dαes ◦Ψs holds everywhere
if and only if the preceding condition on the derivative holds. A straightforward
calculation verifies this to be the case.

In summary, we have shown:
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Proposition 4.1. Any two purely hyperbolic Hopf manifolds H r{0}/〈Dα1
〉

and H r {0}/〈Dα2
〉 , are quasiconformally equivalent.

In the same way, it is possible to show any loxodromic quotient is quasicon-
formally equivalent to a purely hyperbolic quotient. Set:

g(ζ, v) = 2|ζ|2 log |ζ|.

Using g as a contact potential function gives a contact vector field

ξg = (iζ log |ζ|, 0) +
( i

2
ζ,−|ζ|2

)

whose flow Ψ satisfies:

Ψs ◦ Dα = Deis log(α)α ◦ Ψs.

Thus Ψ conjugates a loxodromic action into a purely hyperbolic one.

Corollary 4.2. Any two loxodromic Hopf manifolds H r {0}/〈Dα1
〉 and

H r {0}/〈Dα2
〉 are quasiconformally equivalent.

5. Parabolic quotients

In this section, it will be more convenient to think of the underlying set of
H 3 as R3 instead of C × R . Accordingly, let T(1,0,0) and T(0,0,1) denote left
translation by (1 + 0i, 0) and (0 + 0i, 1) in the Heisenberg group. Observe that
T(0,0,1) is central while T(1,0,0) is not. Let G1 denote the cyclic subgroup of
Sim(H ) generated by T(1,0,0) and let G2 be the cyclic subgroup generated by
T(0,0,1) . Denote by Zi the cylinder H /Gi . Topologically, Z1

∼= Z2
∼= R2 × S1 .

Theorem 5.1. There exists no quasiconformal homeomorphism between Z1

and Z2 .

The proof depends on global distortion inequalities, and explicit computations
for the module of two curve families. Define

Dr = Br ∩ {(x, y, t) : −1
2 ≤ x ≤ 1

2}

where Br is the gauge ball of radius r . Next, define Γ1 to be the set of rectifiable
curves in Z1 homotopic to a generator of π1(Z1) . In particular, a rectifiable curve
must be tangent to the contact plane [2]. Since {(x, y, t) : −1

2
≤ x ≤ 1

2
} is a

fundamental domain for G1 , it is easy to identify Dr with a subset of Z1 . Then
define

Γr = {γ ∈ Γ1 : γ ⊂ Dr}.
That is, Γr consists of paths in H beginning at some point (−1

2 , y, v) and ending
at T(1,0,0)(−1

2 , y, v) and which are contained in the “cylinder” consisting of all the
translates of Dr by G1 .
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Now suppose a quasiconformal map f : Z1 −→ Z2 exists. Then f extends to
a q.c. map f : H −→ H which commutes with the group action. That is:

f ◦ T(1,0,0) = T(0,0,1) ◦ f.

Without loss of generality we may assume f has been normalized so that f(0) = 0.
Now consider Br ⊂ H . By the global distortion estimate in Proposition 3.3,

there exists a constant c0 such that for all r , there is some r′ for which

Br′ ⊂ f(Br) ⊂ Bc0r′ .

Suppose r is an integer. Then since

f ◦ T(r,0,0) = T(0,0,r) ◦ f

the point (0, 0, r) lies on ∂f(Br) . Remembering the inhomogeneity in the defini-
tions of the metric d , it follows that:

(1) r′ ≤
√

r ≤ c0r
′.

Now we state two propositions which we shall soon prove.

Proposition 5.2. There exists a constant c1 such that for all r , M(Γr) ≥
c1r

2 .

Proposition 5.3. There exists a constant c2 such that for all r , M
(

f(Γr)
)

≤
c2(r

′)2 .

From these statements we easily derive a contradiction. Since f is quasicon-
formal, there is a constant K such that

M(Γr) ≤ KM
(

f(Γr)
)

.

From Propositions 5.2 and 5.3, it follows that

c1r
2 ≤ Kc2(r

′)2.

On the other hand, from (1), we know that r′ ≤ √
r . Thus,

r2 ≤ Kc2/c1r

for all r which cannot happen. Theorem 5.1 follows.
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Figure 1.

Proof of 5.2. Consider the following curves for fixed s, v , where a =
√

2/π :

α(s,v)(t) = (−1
2 + t, s, v + 2st), t ∈ [0, 1

2 + a
√

s ]

β(s,v)(t) =
(

a
√

s cos(t), s + a
√

s sin(t), v + s(1 + 2a
√

s cos(t) − 2a2t)
)

, t ∈ [0, π]

γ(s,v)(t) =
(

t − a
√

s, s, v + s(2t − 2a
√

s − 3)
)

, t ∈ [0, 1
2 + a

√
s].

Set η(s,v) = α ⋆ β ⋆ γ . Then η(s,v) is an element of Γr provided 0 ≤ s ≤ π/8 and

−1
2r2 ≤ v ≤ 1

2r2 , and r is large. Moreover, the α , β and γ paths foliate certain
regions of Dr , and in fact the mapping (t, s, v) 7→ η(s,v)(t) is a diffeomorphism on
these sets. Consequently, these paths define a new coordinate system on a subset
of Dr .

More specifically, let Ai denote the regions indicated in Figure 1. Set Bi =
Ai × [−1

2r2, 1
2r2] . Then B1 , B2 and B3 are foliated by the α , β and γ curves,

respectively. The mapping (s, t, v) 7→ α(s,v)(t) is a diffeomorphism, and thus
defines new coordinates on B1 , and similarly with the other curve families. On
B1 and B3 , one computes in (t, s, v) coordinates that:

dvol = dx ∧ dy ∧ dz = dt ∧ ds ∧ dv.

On B2 ,
dvol = dx ∧ dy ∧ dz =

(

1
2a2 + a

√
s sin(t)

)

dt ∧ ds ∧ dv.

Also, |α′
(s,v)(t)| = |γ′

(s,v)(t)| = 1 and |β′
(s,v)(t)| = a

√
s , where | · | denotes the

gauge length of a tangent vector. (As an aside, this shows that η(s,v) has length
O(

√
s ) . This implies the reverse inequality in Proposition 5.2 and shows that

M(Dr; Γr) is O(r2) .)
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Now let σ be an admissible function for Γr . Observe that trivially,

3

∫

Dr

σ4dvol ≥ 3

∫

∪Bi

σ4dvol ≥
∑

∫

Bi

σ4dvol.

Now expand each summand as a triple integral:

∫

B1

σ4 dvol =

∫

1
2

r2

−1
2 r2

dv

∫ π/8

0

ds

∫

1
2
+a

√
s

0

σ4(α(s,v)(t)) dt.

Since |α′
(s,v)(t)| = 1, Hölder’s inequality with p = 4 and q = 4/3 gives:

( 1
2

+ a
√

s )3
∫

1
2
+a

√
s

0

σ4
(

α(s,v)(t)
)

dt ≥
(

∫

1
2
+a

√
s

0

σ
(

α(s,v)(t)
)

|α′
(s,v)(t)| dt

)4

.

Thus,

∫

B1

σ4dvol ≥
∫

1
2 r2

−1
2 r2

dv

∫ π/8

0

ds ( 1
2+a

√
s )−3

(
∫

1
2+a

√
s

0

σ
(

α(s,v)(t)
)

|α′
(s,v)(t)| dt

)4

.

The analogous statement holds for B3 . For B2 , recall that |β′
(s,v)(t)| = a

√
s so

now Hölder’s inequality gives:

(
∫ π/8

0

(a
√

s )4/3 dt

)3(∫ π/8

0

σ4
(

β(s,v)(t)
)

dt

)

≥
(

∫ π/8

0

σ
(

β(s,v)(t)
)

|β′
(s,v)(t)| dt

)4

.

Simplifying and further approximating gives:

∫ π/8

0

σ4
(

β(s,v)(t)
)

dt ≥ a−4s−2(π/8)−3

(
∫ π/8

0

σ
(

β(s,v)(t)
)

|β′
(s,v)(t)| dt

)4

.

Since a−4s−2(π/8)−3 ≥ 213π3 > 1 we obtain altogether that

∫

Dr

σ4dvol ≥ 1/3

∫

1
2

r2

−1
2 r2

dv

∫ π/8

0

(
∫

α

σ

)4

+

(
∫

β

σ

)4

+

(
∫

γ

σ

)4

≥ 1/9

∫

1
2

r2

−1
2 r2

dv

∫ π/8

0

(
∫

η

σ

)4

ds

≥ πr2/72

since by definition
∫

η
σ ≥ 1. The result now follows.
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Proof of 5.3. Since f commutes with the group action, f(Dr) is entirely
contained in a fundamental domain, and the “faces” of Dr are mapped into
the boundary of a fundamental domain. Since ∂Dr has Lebesgue measure 0,
and because quasiconformal mappings are absolutely continuous in measure [3],
m

(

f(∂Dr)
)

= 0 as well. Next, we need a lemma.

Lemma 5.4. Let L(x, y) denote the vertical line passing through (x, y, 0) .
Then for almost every (x, y) , m

(

L(x, y) ∩ f(Dr)
)

≤ 1 .

Proof. Since m
(

f(∂Dr)
)

= 0, for almost every (x, y) , L(x, y) ∩ f(∂Dr) has
measure zero as well, by Fubini’s theorem. Thus it suffices to consider L(x, y)
intersected with the image of the interior of Dr . Suppose the intersection has
measure greater than 1. Since the intersection is open, there must exist a finite,
disjoint collection of open intervals contained in the intersection whose measure
is also greater than 1. Since f(Dr) is contained in a fundamental domain, this
cannot happen.

Returning to the proof of Proposition 5.3, let l0 denote the Carnot distance
from (0, 0, 0) to (0, 0, 1). Since the Carnot metric is invariant under translation,
it is clear that len(γ) ≥ l0 for every path γ ∈ f(Γr) . It follows that σ = 1/l0 is
an admissible function for f(Γr) . Consequently, using the lemma, one sees that

M
(

f(Γr)
)

≤
∫

f(Dr)

1

l0
dvol ≤

∫

p(f(Dr))

1

l0
dx dy

where p denotes vertical projection onto the xy -plane. Since f(Dr) ⊂ Bc0r′ ,
certainly p

(

f(Dr)
)

⊂ p(Bc0r′) . Thus,

M
(

f(Γr)
)

≤
∫

p(f(Dr))

1

l0
≤ πc2

0(r
′)2

l0
.

This finishes the proof.
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