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Abstract. The behaviour as t → 0 of tδ(n−q)u(x, t) is studied, where u is either the
Gauss–Weierstrass or Poisson integral of a signed measure µ on Rn , q ∈ [0, n] , and δ is 1

2 for
a Gauss–Weierstrass integral but 1 for a Poisson integral. Such behaviour is used to characterize
rectifiable subsets of Rn , positive sets for µ , and sets to which the restriction of µ is absolutely
continuous with respect to q -dimensional Hausdorff measure.

1. Introduction

For any locally finite, signed Borel measure µ on Rn , the convolution

u(x, t) = Wµ(x, t) =

∫

Rn

W (x − y, t) dµ(y),

where W (x, t) = (4πt)−n/2 exp(−‖x‖2/4t) for all (x, t) ∈ Rn×]0,∞[ , is called the
Gauss–Weierstrass integral of µ . If u(x0, t0) exists and is finite, then u(x, t) is
finite whenever (x, t) ∈ Rn×]0, t0[ , and u is a solution of the heat equation there.
We shall always assume implicitly that u is finite on Rn×]0, a[ for some a > 0.

Similarly, the convolution

w(x, t) = Pµ(x, t) =

∫

Rn

P (x − y, t) dµ(y),

where P (x, t) = 2s−1
n+1t(‖x‖

2 + t2)−(n+1)/2 for all (x, t) ∈ Rn×]0,∞[ , and sn+1

is the surface area of the unit sphere in Rn+1 , is called the (half-space) Poisson
integral of µ . If w(x0, t0) exists and is finite, then w(x, t) is finite whenever
(x, t) ∈ Rn×]0,∞[ , and w is harmonic there. We shall always assume implicitly
that w is finite on Rn×]0,∞[ .

It is well-known that these two integrals have much in common, and here we
study them together, writing u = Kµ with K either W or P . We are particularly
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concerned with the limiting behaviour as t → 0 of tδ(n−q)u(x, t) , where q ∈ [0, n] ,
and δ = 1

2
if K = W , δ = 1 if K = P . Such behaviour is used to characterize

rectifiable subsets of Rn , positive sets for µ , and sets to which the restriction of
µ is absolutely continuous with respect to the q -dimensional Hausdorff measure
mq (defined in [7, p. 7]). Our main tool is the link with geometric measure theory
in Rn which is provided by the inequalities

lim inf
r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
) ≤ lim inf

t→0

u(x, t)

v(x, t)

≤ lim sup
t→0

u(x, t)

v(x, t)
≤ lim sup

r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
) ,

where u = Kµ , v = Kν with ν positive, and B(x, r) = { y ∈ Rn : ‖x− y‖ ≤ r } .
These inequalities lead to a very precise form of the relative Fatou theorem, whose
applications are found throughout this paper; the principal ones we now describe.

In Theorem 4 we show that, if q is an integer and Z is a rectifiable set (as
defined in Section 4) with σ -finite mq -measure then

lim
t→0

tδ(n−q)u(x, t) = cf(x)

for mq -almost all x ∈ Z , where c is a specific constant, and f is the Radon–
Nikodým derivative of the restriction of µ to Z with respect to mq . Conversely,
if µ is positive, mq(Z) > 0, and

0 < lim
t→0

tδ(n−q)u(x, t) < ∞

for mq -almost all x ∈ Z , then q is an integer and Z is a rectifiable set of σ -finite
mq -measure. Thus the classical Fatou theorem and its converse are generalized.
The proof depends essentially on the considerable measure theoretic achievements
of Federer [8], Marstrand [9], and Preiss [10].

In Section 5, we consider the problem of determining when a given Borel subset
Z of Rn is a positive set for the signed measure µ . For example, Theorem 8 shows
that, if Z has σ -finite mq -measure, then Z is positive for µ if and only if

lim inf
t→0

tδ(n−q)u(x, t) ≥ 0

for µ-almost all x ∈ Z . The case q = n , Z = Rn , is well-known. This result
depends on measure theory due to Wallin [12].

In Section 6, we determine when the restriction of µ to Z is absolutely con-
tinuous with respect to mq , where Z is a Borel set which is σ -finite with respect
to mq . Theorem 9 shows that this is the case if and only if

lim sup
t→0

tδ(n−q)|u(x, t)| < ∞
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for µ-almost all x ∈ Z . Here the measure theory involved is mainly due to
Besicovitch [3], [4].

Given a signed measure µ and a Borel set Z , we denote by µZ the restriction
of µ to Z , and by µ+ , µ− , and |µ| the positive, negative, and total variations
of µ . The term ‘positive’ is used in the wide sense.

Remark. The referee has pointed out that the results in [3], [4] which are
used below, can all be found in [8, Chapters 2.8 and 2.9].

2. Preliminaries

Let u = Kµ and v = Kν , where µ is signed but ν is positive. Consider the
inequalities

(1)

lim inf
r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
) ≤ lim inf

t→0

u(x, t)

v(x, t)

≤ lim sup
t→0

u(x, t)

v(x, t)
≤ lim sup

r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
) .

For the case K = W , it was proved in [13, Theorem 1] that (1) holds at any
point x such that ν

(

B(x, r)
)

> 0 for all r > 0. Subsequently, in [1, Theorem 1],
Armitage proved that (1) holds when K = P , but only at those points x for which

(2) lim
t→0

t−1v(x, t) = ∞.

He did not discuss the necessity of this more stringent condition, but it is essential.
For example, if n = 1, x = 0, l ∈]0,∞[ , and

dν(s) = l|s|−3 exp(−s−2) ds,

then for every r > 0 we have ν
(

B(0, r)
)

= l exp(−r−2) , so that, by a formula in
[1, p. 241],

lim
t→0

t−1v(0, t) = 2lπ−1

∫

∞

0

s−3 exp(−s−2) ds = lπ−1.

Taking µ to be the unit mass at the point 1, it is obvious that

lim
r→0

µ
(

B(0, r)
)

ν
(

B(0, r)
) = 0,

but
u(0, t)

v(0, t)
∼

πP (−1, t)

lt
→

1

l
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as t → 0.
The inequalities (1) are essential for this paper, and the extra condition (2)

in the harmonic case is not a real problem because it is satisfied by ν -almost all
points x . We introduce a notation which masks this difference in the two cases.
Given a positive measure ν such that Wν is finite at some point, we put

X(ν) = XW (ν) =
{

x ∈ Rn : ν
(

B(x, r)
)

> 0 for all r > 0
}

.

Clearly ν is concentrated on X(ν) , and (1) holds for all x ∈ X(ν) . If ν is a
positive measure such that v = Pν is finite, we put

X(ν) = XP (ν) =
{

x ∈ Rn : lim
t→0

t−1v(x, t) = ∞
}

.

It was shown in [1, p. 241] that limt→0 t−1v(x, t) exists for every x ∈ Rn , and
therefore limt→0 v(x, t) = 0 for every x ∈ Rn \XP (ν) , so that ν

(

Rn \X(ν)
)

= 0
by a result of Brelot [5]. Thus ν is again concentrated on X(ν) , and (1) holds for
all x ∈ X(ν) .

In particular, we have the following result, which is given in [14] for the case
K = W .

Lemma 1. Let u = Kµ and v = Kν , where µ is signed and ν is positive.

If µ and ν are mutually singular, then

u(x, t) = o
(

v(x, t)
)

as t → 0

for ν -almost all x .

Proof. We can suppose that µ is positive. By [3, Theorem 3],

lim
r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
) = 0

for ν -almost all x . Since (1) also holds for ν -almost all x , the result follows.

Another set of inequalities, which can be derived from (1), will also be needed.
If u = Kµ and q ∈ [0, n] , then for all x ∈ Rn

(3)

lim inf
r→0

r−qµ
(

B(x, r)
)

≤ cn,q lim inf
t→0

tδ(n−q)u(x, t)

≤ cn,q lim sup
t→0

tδ(n−q)u(x, t) ≤ lim sup
r→0

r−qµ
(

B(x, r)
)

,

where δ is as defined in Section 1, and

(4) cn,q =

{

πn/22n−q/Γ( 1
2
q + 1) if K = W ,

π(n+1)/2/Γ( 1
2
q + 1)Γ

(

1
2
(n + 1 − q)

)

if K = P .
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These inequalities were proved for K = W in [13], and for K = P in [1]. Their
proofs are valid for all q ∈ [0,∞[ and all q ∈ [0, n + 1[ respectively, but the
extended ranges are not useful here. In particular, it follows from (3) that if
limr→0 r−qµ

(

B(x, r)
)

= λ then limt→0 tδ(n−q)u(x, t) = c−1
n,qλ . For Theorem 4

below, we require the reverse implication under the Tauberian condition that µ
is positive. For K = W this was proved in [13], for all λ, q ∈ [0,∞[ (despite
the statement of [13, Theorem 4]). For K = P a different Tauberian condition
was used in [1], while that of positivity was used by Rudin in [11] for the case
λ ∈ [0,∞[ , q = n only. We now extend the result of [11, Theorem A] to an
arbitrary q ∈ [0, n + 1[.

Theorem 1. Let u = Pµ with µ positive, let q ∈ [0, n + 1[ , and suppose

that

(5) lim
t→0

tn−qu(x, t) = λ < ∞

for some x . Then

lim
r→0

r−qµ
(

B(x, r)
)

= cn,qλ,

where cn,q is given by (4) .

Proof. The case q = 0 is simple, because it is always true that
limr→0 µ

(

B(x, r)
)

= µ({x}) , and therefore that limt→0 tnu(x, t) = µ({x})c−1
n,0

by (3).
The proof when q > 0 is similar to that given for q = n in [11], so we give

only an outline, in which all unexplained notations have the same meanings as in
[11], and all omitted calculations are similar to the corresponding ones there. Note
that our Poisson integral differs from Rudin’s by a factor of πn/2Γ( 1

2n + 1).
If v(t) = tn−qu(x, t) , then (5) implies that

lim
r→0

(Hq ∗ v)(r) = λ.

Furthermore, it follows from (3) that, if µ
(

B(x, ̺)
)

= 0 for some ̺ > 0, then
limt→0 tn−qu(x, t) = 0; therefore our hypotheses are unaffected if we replace µ
by µB(x,1) , and since our conclusion is also unaffected by such a change, we may
assume that µ(Rn) < ∞ . We shall also take x = 0.

The definitions of Hq and v give

(6) (Hq ∗ v)(r) = qr−q

∫

Rn

dµ(y)

∫ r

0

P (y, s)sn−1 ds.

If Mq(r) = r−qµ
(

B(0, r)
)

for all r ∈]0,∞[ , then Mq is bounded. The function
kq , defined for all t ∈]0,∞[ by

kq(t) = 2s−1
n+1qt

n−q+1(1 + t2)−(n+1)/2,
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satisfies
P

(

y, ‖y‖t
)

= q−1tq−n‖y‖−nkq(t)

whenever y 6= 0. Since Mq is bounded and q > 0, we have µ({0}) = 0. Therefore,
if we replace s by ‖y‖t in (6), we obtain

(Hq ∗ v)(r) = (Mq ∗ kq)(r),

so that the bounded function Mq satisfies limr→0(Mq ∗ kq)(r) = λ . Furthermore,
the Fourier transform of kq is given by

k̂q(s) = 2s−1
n+1q

∫

∞

0

(1 + t2)−(n+1)/2tn−q−is dt

= s−1
n+1qΓ

(q + is

2

)

Γ
(n + 1 − q − is

2

) /

Γ
(n + 1

2

)

,

since q ∈]0, n + 1[. Hence k̂q has no zeros, and k̂q(0) = c−1
n,q . It now follows from

Wiener’s tauberian theorem that

lim
r→0

(Mq ∗ f)(r) = cn,qλ

for every f such that
∫

∞

0

f(r)r−1 dr = 1.

The desired conclusion, that limr→0 Mq(r) = cn,qλ , now follows.

3. A relative Fatou theorem

Here we give a precise form of the relative Fatou theorem for approach along
lines normal to the boundary. This is needed for the proofs of most of the subse-
quent results. The existence of parabolic limits of quotients of Gauss–Weierstrass
integrals, and of nontangential limits of quotients of Poisson integrals, is proved
in [6, p. 292 and p. 31, respectively]. However, we give a simpler argument for the
present situation. The case K = W , ν = mn , is given in [15].

Theorem 2. Let u = Kµ and v = Kν , where µ is signed and ν is positive,

let

f(x) = lim
t→0

u(x, t)

v(x, t)

whenever the limit exists, let Z+ = {x ∈ Rn : f(x) = ∞} , and let Z− = {x ∈ Rn :
f(x) = −∞} . Then f is defined and finite ν -a.e. on Rn , and there are positive

ν -singular measures σ+ and σ− , concentrated on Z+ and Z− respectively, such

that

(7) dµ = f dν + dσ+ − dσ−.
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Proof. The inequalities (1) hold for all x ∈ X(ν) , and hence for ν -almost all
x , so that f(x) exists and is equal to

(8) lim
r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
)

for ν -almost all x at which the limit (8) exists. Therefore f is defined and finite
ν -a.e., by [3, Theorem 2]. Furthermore, [4, Theorem 6] shows that the limit (8) is
the Radon–Nikodým derivative of µ with respect to ν , so that (7) holds with σ
the ν -singular part of µ .

It remains to prove that σ+ and σ− are concentrated on Z+ and Z− re-
spectively. Since ν and µ − σ+ are both σ+ -singular, it follows from Lemma 1
that v(x, t) = o

(

Kσ+(x, t)
)

and K(µ − σ+)(x, t) = o
(

Kσ+(x, t)
)

as t → 0, for
σ+ -almost all x . Hence

u(x, t)

v(x, t)
=

K(µ − σ+)(x, t) + Kσ+(x, t)

v(x, t)
→ ∞

as t → 0 for σ+ -almost all x , so that σ+ is concentrated on Z+ . Similarly σ−

is concentrated on Z− .

4. Boundary singularities and rectifiable sets

The main result in this section is Theorem 4, which establishes a relationship
between the sets of points x where limt→0 tδ(n−q)Kµ(x, t) exists and the rectifiable
subsets of Rn . In its proof, we require a result that sharpens parts of both [13,
Theorem 6] and the unstated version of [1, Theorem 4] which relates to normal
limits.

Theorem 3. Let u = Kµ for some positive measure µ , and let q ∈ [0, n] .
Then the set

Y =
{

x ∈ Rn : lim sup
t→0

tδ(n−q)u(x, t) > 0
}

is a Borel set which is σ -finite with respect to mq .

Proof. It follows from (3) that

(9) Y ⊆
{

x ∈ Rn : lim sup
r→0

r−qµ
(

B(x, r)
)

> 0
}

.

Furthermore, for any x ∈ Rn ,

t−qδµ
(

B(x, tδ)
)

≤ κtδ(n−q)

∫

B(x,tδ)

K(x − y, t) dµ(y)

≤ κtδ(n−q)u(x, t),
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where κ = 2nπn/2e1/4 if K = W , and κ = 2(n−1)/2sn+1 if K = P . Therefore

(10) lim sup
r→0

r−qµ
(

B(x, r)
)

≤ κ lim sup
t→0

tδ(n−q)u(x, t),

so that equality holds in (9). Hence Y is a Borel set. For each j ∈ N , let
µj = µB(0,j+1) . Then Y =

⋃

∞

k,j=1 Yk,j , where

Yk,j =
{

x ∈ B(0, j) : lim sup
r→0

r−qµj

(

B(x, r)
)

> k−1
}

.

If q > 0, then [8, p. 181 (3)] shows that mq(Yk,j) ≤ kµj(R
n) < ∞ ; and if q = 0

then obviously mq(Yk,j) < ∞ . Hence Y is σ -finite with respect to mq .

Following Federer [8, p. 251], we say that a Borel set Z is countably (mq, q)
rectifiable if it can be written in the form

∞
⋃

j=1

fj(Bj) ∪ Y,

where mq(Y ) = 0 and each fj is a Lipschitz function from a bounded subset Bj

of Rq into Rn .

Theorem 4. Let u = Kµ , let q ∈ [0, n] and let Z be a Borel subset of Rn

such that mq(Z) > 0 .

(i) If q is an integer, µ is signed, and Z is a countably (mq, q) rectifiable set

with σ -finite mq -measure, then

lim
t→0

tδ(n−q)u(x, t) = 2qc−1
n,qf(x)

for mq -almost all x ∈ Z , where cn,q is given by (4) and f is the Radon–

Nikodým derivative of µZ with respect to mqZ .

(ii) Conversely, if µ is positive and

(11) 0 < lim
t→0

tδ(n−q)u(x, t) < ∞

for mq -almost all x ∈ Z , then q is an integer and Z is a countably (mq, q)
rectifiable set with σ -finite mq -measure.

Proof. (i) If q = 0 then Z is countable, and for every x ∈ Z it follows from
(3) that

f(x) = µ
(

{x}
)

= lim
r→0

µ
(

B(x, r)
)

= cn,0 lim
r→0

tδnu(x, t).

Now suppose that q ∈]0, n] . (The case q = n is well-known, but is in-
cluded for completeness.) We can assume that mq(Z) < ∞ . If ν = mqZ , then
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limr→0 r−qν
(

B(x, r)
)

= 2q for ν -almost all x , by a theorem of Federer [8, p. 256]
if q < n . It follows from (3) that

lim
t→0

tδ(n−q)Kν(x, t) = 2qc−1
n,q

for the same values of x . By Theorem 2, the function

f(x) = lim
t→0

u(x, t)

Kν(x, t)

is defined for ν -almost all x , and is the Radon–Nikodým derivative of µZ with
respect to ν . The result follows.

(ii) There is nothing to prove if q = n . If q = 0, then (11) holds for all x ∈ Z ,
and it follows from (3) that

0 < lim
r→0

µ
(

B(x, r)
)

= µ
(

{x}
)

for all x ∈ Z , so that Z is countable.
Now suppose that q ∈]0, n[ , and put ν = mqZ again. By Theorem 3, the set

Z is σ -finite with respect to mq , and so we may suppose that 0 < mq(Z) < ∞ .
By (11) and either [13, Theorem 4] or Theorem 1 above,

0 < lim
r→0

r−qµ
(

B(x, r)
)

< ∞

for ν -almost all x . By [3, Theorem 2],

lim
r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
)

exists and is finite for ν -almost all x , and so it follows that

(12) lim
r→0

r−qν
(

B(x, r)
)

exists and is strictly positive for ν -almost all x . By [7, Corollary 2.5],

lim sup
r→0

r−qν
(

B(x, r)
)

≤ 2q,

so that the limit (12) is finite, for ν -almost all x . Therefore, by a theorem of
Marstrand [9], q is an integer. It follows that Z is countably (mq, q) rectifiable,
by a theorem of Preiss [10, p. 613].
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5. Positivity of sets for signed measures

We begin by establishing two conditions which ensure that a set is null for a
positive measure.

Theorem 5. Let u = Kµ for some positive measure µ , let q ∈ [0, n] , and

let Z be a Borel subset of Rn .

(i) If mq(Z) = 0 and

lim sup
t→0

tδ(n−q)u(x, t) < ∞

for µ-almost all x ∈ Z , then µ(Z) = 0 .

(ii) If Z is σ -finite with respect to mq and

lim
t→0

tδ(n−q)u(x, t) = 0

for µ-almost all x ∈ Z , then µ(Z) = 0 .

Proof. If q = 0 then (i) is trivial, and in case (ii) Z is countable and (10)
shows that µ({x}) = 0 for all x ∈ Z , so that µ(Z) = 0.

Suppose that q ∈]0, n] . In case (i), it follows from (10) that µZ is concentrated
on

⋃

∞

k=1 Sk , where

Sk =
{

x ∈ Z : lim sup
r→0

r−qµZ

(

B(x, r)
)

< k
}

.

Furthermore, by [8, p. 181 (1)], we have µZ(Sk) ≤ kmq(Sk) ≤ kmq(Z) = 0, and
therefore µZ is null. In case (ii), we may suppose that mq(Z) < ∞ . By (10), for
every γ > 0 the measure µZ is concentrated on

S =
{

x ∈ Z : lim sup
r→0

r−qµZ

(

B(x, r)
)

< γ
}

,

and as before µZ(S) ≤ γmq(Z) < ∞ . Hence µZ is again null.

Remark. In the case q = n , Theorem 5(ii) was proved in [14] for K = W
and in [5] for K = P .

We are now in a position to prove three theorems on the positivity of sets
for signed measures. In the case K = W , the first generalizes [15, Theorem 7] in
several directions, and also [14, Theorem 6]. In the case K = P , the analogue of
the latter result is [2, Theorem 2], which is complicated by the fact that behaviour
at infinity has to be taken into account; that aside, the conditions therein which
ensure the positivity of the appropriate boundary measure are relaxed and made
applicable to an arbitrary Borel set.
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Theorem 6. Let u = Kµ and v = Kν , where µ is signed and ν is positive,

let q ∈ [0, n] and let Z be a Borel subset of Rn . Let Y be a ν -null Borel subset

of Z , and suppose that

lim sup
t→0

u(x, t)

v(x, t)
> −∞

for all x ∈ Z \ Y , and that

(13) lim sup
t→0

u(x, t)

v(x, t)
≥ 0

for ν -almost all x ∈ Z \ Y .

(i) If mq(Y ) = 0 and

(14) lim inf
t→0

tδ(n−q)u(x, t) > −∞

for µ-almost all x ∈ Y , then µZ is positive.

(ii) If Y is σ -finite with respect to mq and

(15) lim inf
t→0

tδ(n−q)u(x, t) ≥ 0

for µ-almost all x ∈ Y , then µZ is positive.

Proof. By Theorem 2, there are positive ν -singular and mutually singular
measures σ+ and σ− on Z such that

dµZ = f dνZ + dσ+ − dσ−,

where f(x) is the (upper) limit in (13) and σ− is concentrated on Y . By (13), f is
positive. The measures µ+σ− and σ− are mutually singular, so that by Lemma 1
K(µ + σ−)(x, t) = o

(

Kσ−(x, t)
)

as t → 0 for σ− -almost all x . Therefore

(16) lim
t→0

u(x, t)

Kσ−(x, t)
= −1

for σ− -almost all x .

(i) It follows from (14) and (16) that

lim sup
t→0

tδ(n−q)Kσ−(x, t) < ∞

for σ− -almost all x , so that σ−(Y ) = 0 by Theorem 5(i). Hence σ− is null and
µZ is positive.

(ii) It follows from (15) and (16) that

lim
t→0

tδ(n−q)Kσ−(x, t) = 0

for σ− -almost all x , so that Theorem 5(ii) can be used to show that µZ is positive.
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If Z is σ -finite with respect to mq , for some q ∈ [0, n] , we can derive from
Theorem 6 two criteria for µZ to be positive, neither of which explicitly involves
an auxiliary function v . The necessity of the conditions is shown in our next
result.

Lemma 2. Let u = Kµ for some signed measure µ , let q ∈ [0, n] , and let Z
be a Borel subset of Rn which is σ -finite with respect to mq . If µZ is positive,

then

(17) lim inf
t→0

tδ(n−q)u(x, t) ≥ 0

for µ-almost all and mq -almost all x ∈ Z .

Proof. If v = KµZ , then Lemma 1 implies that

K(µ − µZ)(x, t) = o
(

v(x, t)
)

as t → 0 for µZ -almost all x . Therefore u(x, t) ∼ v(x, t) for the same values of
x , so that (17) holds for µZ -almost all x because the corresponding inequality for
v is obvious.

For the second part, we may suppose that mq(Z) < ∞ . Let ω = mqZ and
w = Kω . By Theorem 2,

f(x) = lim
t→0

u(x, t)

w(x, t)

is defined and finite for ω -almost all x , and there is an ω -singular measure σ on
Z such that dµZ = f dω + dσ . The function f is positive because µZ is, and
since

lim inf
t→0

tδ(n−q)w(x, t) ≤ c−1
n,q lim sup

r→0
r−qω

(

B(x, r)
)

< ∞

for ω -almost all x by (3) and [7, Corollary 2.5], it follows that

lim inf
t→0

tδ(n−q)u(x, t) = f(x) lim inf
t→0

tδ(n−q)w(x, t) ≥ 0

for ω -almost all x .

We shall prove in Theorem 8 that, if (17) holds for µ-almost all x ∈ Z then
µZ is positive. The alternative hypothesis that (17) holds mq -a.e. is not generally
sufficient. If q = 0, Z is countable, and (17) holds for (m0 -almost) all x ∈ Z ,
then (3) shows that

µ
(

{x}
)

= lim
r→0

µ
(

B(x, r)
)

= cn,0 lim
t→0

tδnu(x, t) ≥ 0

for all x ∈ Z , so that µZ is positive. However, if q ∈]0, n] then −tδ(n−q)K(0, t) =
−c−1

n,0t
−δq → −∞ and −tδ(n−q)K(x, t) → 0 as t → 0 if x 6= 0, so that (17)

can hold mq -a.e. on Z without µZ being positive. Hence an extra condition is
required in this case, which is labelled (19) in the theorem below. Observe that if
q = 0 then condition (18) below is assumed to hold for all x ∈ Z , so that (19) is
vacuous.
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Theorem 7. Let u = Kµ for some signed measure µ , let q ∈ [0, n] and

let Z be a Borel subset of Rn which is σ -finite with respect to mq . Then µZ is

positive if and only if both

(18) lim inf
t→0

tδ(n−q)u(x, t) ≥ 0

for mq -almost all x ∈ Z , and

(19) lim inf
t→0

tδ(n−q)u(x, t) > −∞

for µ-almost all x ∈ Z .

Proof. Suppose that (18) and (19) hold as described. We may suppose that
mq(Z) < ∞ . If ν = mqZ then

lim sup
r→0

r−qν
(

B(x, r)
)

≥ 1

for ν -almost all x , by [7, Corollary 2.5] if q ∈]0, n[ . It therefore follows from (10)
that

lim sup
t→0

tδ(n−q)Kν(x, t) ≥ κ−1

for the same values of x . This combines with (18) to yield

lim sup
t→0

u(x, t)

Kν(x, t)
≥ 0

for ν -almost all x , so that it follows from (19) and Theorem 6(i) (with Y the set
of x ∈ Z for which the last inequality fails) that µZ is positive.

The converse is given in Lemma 2.

In Theorem 7, if µ is negative and mq(Z) = 0, then the result reduces to
Theorem 5(i) and its converse. However, if we suppose only that µ is negative,
then we do not obtain Theorem 5(ii), but the following variant thereof.

Corollary. Let u = Kµ for some positive measure µ and let Z be a Borel

subset of Rn which is σ -finite with respect to mq . Then µ(Z) = 0 if and only if

both

lim
t→0

tδ(n−q)u(x, t) = 0

for mq -almost all x ∈ Z , and

lim sup
t→0

tδ(n−q)u(x, t) < ∞

for µ-almost all x ∈ Z .
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Theorem 8 below reduces to Theorem 5(ii) and its converse when µ is neg-
ative. In its proof, we use the following terminology from [12]. For any q ∈]0, n]
and x ∈ Rn the convex upper q -derivate of a positive measure ν at x is the
supremum of the set of extended-real numbers l such that there exists a sequence
of convex sets {Cj} , with strictly positive diameters d(Cj) , such that x ∈ Cj for
all j , d(Cj) → 0 as j → ∞ , and

lim
j→∞

ν(Cj)

d(Cj)q
= l.

It is denoted by Dqν(x) .

Theorem 8. Let u = Kµ for some signed measure µ , let q ∈ [0, n] , and

let Z be a Borel subset of Rn which is σ -finite with respect to mq . Then µZ is

positive if and only if

(20) lim inf
t→0

tδ(n−q)u(x, t) ≥ 0

for µ-almost all x ∈ Z .

Proof. If µZ is positive, then Lemma 2 shows that (20) holds for µ-almost
all z ∈ Z .

For the converse, we may suppose that mq(Z) < ∞ and that (20) holds for
all x ∈ Z . If q ∈]0, n] then, by [12, Theorem 3], there is a finite, positive measure
ν such that Dqν(x) ≥ 1 for all x ∈ Z . If x ∈ Z and C is a convex superset of
{x} with diameter d(C) > 0, then

ν(C)

d(C)q
≤

ν
(

B
(

x, d(C)
))

d(C)q

and hence

(21) 1 ≤ Dqν(x) ≤ lim sup
r→0

r−qν
(

B(x, r)
)

.

If q = 0 we take ν = m0Z , and the corresponding inequality is then trivial. It
now follows from (10) that

(22) κ−1 ≤ lim sup
t→0

tδ(n−q)Kν(x, t)

for all x ∈ Z . Furthermore, (20) and (22) together imply that

lim sup
t→0

u(x, t)

Kν(x, t)
≥ 0

for all x ∈ Z , and so it follows from Theorem 6 that µZ is positive.
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6. Absolute continuity with respect to Hausdorff measures

Here we establish the following characterization of those Borel sets Z of σ -
finite mq -measure for which µZ is absolutely continuous with respect to mq .

Theorem 9. Let u = Kµ for some signed measure µ , let q ∈ [0, n] , and let

Z be a Borel subset of Rn which is σ -finite with respect to mq . If

(23) lim sup
t→0

tδ(n−q)|u(x, t)| < ∞

for µ-almost all x ∈ Z , then µZ is absolutely continuous with respect to mq .

Conversely, if µZ is absolutely continuous with respect to mq , then (23) holds for

mq -almost all x ∈ Z .

Proof. Suppose that (23) holds µ-a.e. on Z . Since it suffices to prove the
result locally, we may suppose that |µ|(Rn) < ∞ . We may also assume that
mq(Z) < ∞ .

Let ν = mqZ . By Theorem 2, if

f(x) = lim
t→0

u(x, t)

Kν(x, t)
,

then f is defined and finite ν -a.e., and there is a ν -singular measure τ such that
dµZ = f dν + dτ . The measures µ + τ− and τ− are mutually singular, so that

K(µ + τ−)(x, t) = o
(

Kτ−(x, t)
)

as t → 0 for τ− almost all x , by Lemma 1. Therefore

lim
t→0

u(x, t)

Kτ−(x, t)
= −1

for the same values of x , and so it follows from (23) that

lim sup
t→0

tδ(n−q)Kτ−(x, t) < ∞

for τ− -almost all x . Since τ− is ν -singular, it is concentrated on a subset Y of Z
such that mq(Y ) = 0, and it therefore follows from Theorem 5(i) that τ−(Y ) = 0,
so that τ− is null. Similarly τ+ is null, so that dµZ = f dν .

For the converse, we need consider only the case where µ is positive and
0 < mq(Z) < ∞ .

Let ν = mqZ again, and f be the Radon–Nikodým derivative of µ with
respect to ν . Then

f(x) = lim
r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
) < ∞
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for ν -almost all x , by [4, Theorem 6] and [3, Theorem 2]. Furthermore,

lim sup
r→0

r−qν
(

B(x, r)
)

≤ 2q

for ν -almost all x , by [7, Corollary 2.5] if q ∈]0, n[ . In view of (3), it follows that

cn,q lim sup
t→0

tδ(n−q)u(x, t) ≤ lim sup
r→0

r−qµ
(

B(x, r)
)

= f(x) lim sup
r→0

r−qν
(

B(x, r)
)

< ∞

for ν -almost all x .

Theorem 9 gives rise to the following apparently weaker test for absolute
continuity.

Corollary. Let q ∈]0, n] , let {qi} be a sequence in [0, q[ , let u = Kµ for

some signed measure µ , let Z be a Borel subset of Rn which is σ -finite with

respect to mq , and let {Zi} be a sequence of disjoint Borel subsets of Z such that

mqi
(Zi) = 0 for all i . If

lim sup
t→0

tδ(n−q)|u(x, t)| < ∞

for µ-almost all x ∈ Z \
⋃

∞

i=1 Zi , and for every i

lim sup
t→0

tδ(n−qi)|u(x, t)| < ∞

for µ-almost all x ∈ Zi , then µZ is absolutely continuous with respect to mq .

Proof. Let Y = Z \
⋃

∞

i=1 Zi . By Theorem 9, µY is absolutely continuous
with respect to mq ; and each µZi

is absolutely continuous with respect to the
corresponding mqi

, and hence is null.

Remarks. If q is an integer and Z is a countably (mq, q) rectifiable set, we
know from Theorem 4 that the Radon–Nikodým derivative f of µZ with respect
to mqZ is given by

f(x) = 2−qcn,q lim
t→0

tδ(n−q)u(x, t).

In general, such precise information is not available. However, if µ is positive we
can obtain estimates for f in terms of the upper limits in (23), as follows. We
know from [4, Theorem 6] and [3, Theorem 2] that if ν = mqZ then

f(x) = lim
r→0

µ
(

B(x, r)
)

ν
(

B(x, r)
) < ∞,
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and from [7, Corollary 2.5] that

1 ≤ lim sup
r→0

r−qν
(

B(x, r)
)

≤ 2q,

for ν -almost all x . It therefore follows from (3) and (10) that

2−qcn,q lim sup
t→0

tδ(n−q)u(x, t) ≤ 2−q lim sup
r→0

r−qµ
(

B(x, r)
)

= 2−qf(x) lim sup
r→0

r−qν
(

B(x, r)
)

≤ f(x)

and
κ lim sup

t→0
tδ(n−q)u(x, t) ≥ lim sup

r→0
r−qµ

(

B(x, r)
)

= f(x) lim sup
r→0

r−qν
(

B(x, r)
)

≥ f(x)

for ν -almost all x .
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