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Abstract. The authors obtain new estimates for some conformal invariants in the punctured
unit disk and apply these to derive sharp distortion theorems for plane quasiconformal mappings.

1. Introduction

When one wishes to develop the theory of K -quasiconformal mappings using
only conformal invariants, in the spirit of [A1], one needs to find invariants which
are practical as computational tools and which also have a natural interpretation
in terms of geometric properties of the domains mapped.

In [V2], two conformal invariants given by extremal lengths of curve families
were used to study the distortion and other geometric properties of quasiconformal
mappings in Euclidean n -space, n ≥ 2. In the particular case n = 2, analogous
methods can be used to produce somewhat sharper results, as shown in [LV].

In this paper, we continue to study one of these invariants, namely the invari-
ant λG due to J. Ferrand [LF]. Let G be a proper subdomain of the complex plane
C = R2 , and for z ∈ G let Cz denote any continuum in G joining z to ∂G . For
x, y ∈ G , x 6= y , let

(1.1) λG(x, y) = inf
Cx,Cy

M
(

∆(Cx, Cy; G)
)

(for notation, see Section 2).
Let B be the unit disk and let τ denote the capacity of the Teichmüller ring.

The following theorem was proved in [LV].

1.2. Theorem. For G = B \ {0} and x, y ∈ G with |x| ≤ |y| , x 6= y , the

following inequality holds:

λG(x, y) ≤ C2τ
( |x − y|

min
{

|x|, 1 − |y|
}

)

,

where C < 1.172 .
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In general, it is not possible to replace the constant C by 1 in Theorem 1.2.
However, in the following result, which is a particular case of our Theorem 3.9,
we are able to reduce the coefficient to 1 at the expense of a modification of the
argument of τ .

1.3. Theorem. For distinct x, y ∈ B \ {0} = G , |x| ≤ |y| , we have

λG(x, y) ≤ τ
( |x − y|

(

1 + |x|
)2

2|x|
(

1 − 1
2 |x − y|

)2

)

≤ τ
( |x − y|

(

1 + |x|
)2

2|x|
)

.

As far as we know, there is no explicit formula for λG(x, y) when G = B\{0} .
Note that Theorem 1.3 is weaker than Theorem 1.2 if |y| is close to 1 (for such y
one should use Theorem 3.9 instead of Theorem 1.3).

Results such as this theorem can be interpreted as restrictions on the geom-
etry of the configuration G , x , y . By using the quasi-invariance of λG under
quasiconformal mappings, one can obtain distortion theorems for these maps. For
example, we prove the following theorem, which is the main result in this paper.
Recall the distortion function (cf. [LeVi, p. 63]) ϕK given by

(1.4) ϕK(r) = µ−1
(µ(r)

K

)

,

where µ is the conformal modulus of the Grötzsch ring B \ [0, r] (cf. Section 2).

1.5. Theorem. Let f : B → f(B) ⊂ B be a K -quasiconformal mapping

with f(0) = 0 and let δ = d
(

0, ∂f(B)
)

. Then for all x ∈ B \ {0} , |x| = r ,

r′ =
√

1 − r2 , we have

(1.6)

∣

∣f(x)
∣

∣

(

1 −
∣

∣f(x)
∣

∣

)2 ≤ δ

(1 + δ)2

( ϕ2K(r)

ϕ1/(2K)(r′)

)2

≤ ϕK(r)
(

1 − ϕK(r)
)2 .

There is equality in the second inequality in (1.6) if and only if δ = 1, i.e.
f(B) = B . Hence Theorem 1.5 improves the quasiconformal Schwarz lemma
[LeVi, p. 63].

In the final section of this paper we study the hyperbolic geometry of the unit
disk, obtaining a characterization for non-Euclidean ellipses and hyperbolas, then
finding a relationship between them.
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2. Preliminary results

We shall adopt the relatively standard notation and terminology used in [V2]
and [LV]. For x ∈ R2 and r > 0 we set B(x, r) =

{

z ∈ R2 | |x − z| < r
}

,
B(r) = B(0, r) , S(x, r) = ∂B(x, r) , S(r) = S(0, r) , B = B(1) and, S = S(1).
For x, y ∈ R2 , we set [x, y] =

{

(1 − t)x + ty | 0 ≤ t ≤ 1
}

, and for x 6= 0,
[x,∞] = {tx | 1 ≤ t} ∪ {∞} .

The group of Möbius transformations of R
2

= R2 ∪ {∞} is denoted by

GM (R
2
) . For D ⊂ R

2
, D 6= ∅ , we let GM (D) =

{

f ∈ GM (R
2
) | f(D) = D

}

.

The subgroup of all sense-preserving Möbius transformations is denoted by M (R
2
)

or M (D) . For x ∈ B we denote by Tx the element of M (B) satisfying Tx(x) = 0,
Tx(0) = −x . The hyperbolic tangent and its inverse are denoted by th and arth,
respectively, and the hyperbolic sine by sh.

The Poincaré or hyperbolic metric ̺ of B is defined by

(2.1) th
̺(x, y)

2
=

|x − y|
|1 − xy| =

∣

∣Tx(y)
∣

∣,

where x is the complex conjugate of x (see e.g. [V2, Section 2]). We also call this
metric the non-Euclidean metric of B and sometimes use L. Ahlfors’ abbreviation
n.e. for non-Euclidean [A2]. We denote by J [x, y] the n.e. line segment, that is
the arc, with endpoints x and y , of a circle orthogonal to S .

The modulus of a curve family Γ in R2 is denoted by M(Γ) [Vä]. If

E, F, D ⊂ R
2
, we denote by ∆(E, F ; D) the family of all curves joining E

and F in D . If D = R2 or D = R
2
, this family is denoted by ∆(E, F ) . For

s > 1 and t > 0, the moduli

γ(s) = M
(

∆
(

B, [s,∞]
))

,

τ(t) = M
(

∆
(

[−1, 0], [t,∞]
))

are the capacities of the Grötzsch and Teichmüller rings, respectively. For con-
venience, we set γ(1) = τ(0) = ∞ . The capacities γ and τ satisfy the basic
functional identity [V2]

(2.2) γ(s) = 2τ
(

s2 − 1
)

.

The capacity of the Grötzsch ring can be computed from

(2.3) γ(s) =
2π

µ(1/s)
,

where

µ(r) =
π

2

K
′(r)

K(r)
,
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K(r) =

∫ 1

0

dx
√

(1 − x2)(1 − r2x2)
, K

′(r) = K(r′),

for 0 < r < 1 and r′ =
√

1 − r2 , K(1−) = ∞ , µ(1−) = 0. The following
identities hold [LeVi, p. 64], [V2, p. 68]:

(2.4) µ(r)µ(r′) =
π2

4
, µ(r)µ

(1 − r

1 + r

)

=
π2

2
, µ(r) = 2µ

( 2
√

r

1 + r

)

.

From (2.2) and (2.3) we have, for s > 0,

(2.5) τ(s) =
π

µ
(

1/
√

1 + s
) .

For distinct points x and y on the unit circle S , we let Exy denote the
positively oriented arc from x to y .

Let α ∈ (0, π/2), a = e−iα , b = eiα , and E = Eab . Then, using the confor-

mal mapping z 7→
(

(1−z)/(1+z)
)2

, we obtain from (2.5) and [Vä, Theorem 8.1],

(2.6) M
(

∆
(

E, [−1, 0]; B
))

=
1

2
γ
(

csc
α

2

)

=
4

π
µ
(

cos
α

2

)

= τ
(

| − c̄,−c, c, c̄|
)

,

where c = eiα/2 . Here, for an ordered quadruple a, b, c, d of distinct points in R
2
,

|a, b, c, d| denotes the absolute value of the cross ratio (a, b, c, d) = q(a, c)q(b, d)/

(q(a, b)q(c, d)) , where q is the spherical metric in R
2
. Let G be any Jordan

domain and let E be an arc in ∂G . For z ∈ G , define

(2.7) σ(z, E; G) = inf
Cz

M
(

∆(Cz, E; G)
)

,

where the infimum is taken over all arcs Cz in G joining z and ∂G \ E . When
the domain is clear, the G is omitted in (2.7). Then σ is a conformal invariant:

(2.8) σ
(

f(z), f(E); f(G)
)

= σ(z, E; G)

whenever f is a conformal mapping of a Jordan domain G onto a Jordan domain
f(G) . In particular, (2.8) holds if G = B and f ∈ M (B) .

We next compute σ(z, E) in terms of the geometry of the configuration
z, E, G . The next result is essentially due to A. Beurling [B].

2.9. Lemma. Let a, b ∈ S and c ∈ B . Then

σ(c, Eab) =
4

π
µ
(

cos
α

2

)

,
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where α ∈ (0, π/2) is given by

2 sinα =
|a − b|

(

1 − |c|2
)

|1 − ac||1 − bc| .

Proof. Let f ∈ M (B) be such that f(c) = 0, f(a) = e−iα = a′ , f(b) = eiα =
b′ . By (2.6) and (2.8),

σ(c, Eab) = σ(0, Ea′b′) =
4

π
µ
(

cos
α

2

)

.

Further,

|c, a, 1/c, b| = |0, e−iα,∞, eiα|

gives

2 sin α =

(

1 − |c|2
)

|a − b|
|c − a||1 − bc̄| =

(

1 − |c|2
)

|a − b|
|1 − ac̄||1 − bc̄| .

2.10. Corollary. Let f be a K -quasiconformal automorphism of B = B∪S
with f(0) = 0 and a = eiα , b = eiβ , α, β ∈ (0, π/2) . If f(E1a) = E1b , then

ϕ1/K

(

sin
α

2

)

≤ sin
β

2
≤ ϕK

(

sin
α

2

)

.

Proof. Use 2.9 and the inequalities σ(0, E1a)/K ≤ σ(0, E1b) ≤ Kσ(0, E1a) .

2.11. Remark. Corollary 2.10 is essentially due to J. Hersch [H, p. 5].

2.12. Theorem. Let f : B → R2 be a K -quasiconformal mapping such that

f(B) is a Jordan domain, let a, b ∈ S , and suppose that
∣

∣f(x)
∣

∣ ≤ ε < 1 for all

x ∈ Eab . Then

(2.13)
∣

∣f(c)
∣

∣ ≤ ε

ϕ1/(2K)

(

sin(α/2)
) ; 2 sinα =

|a − b|
(

1 − |c|2
)

|1 − ac||1 − bc| ,

for all c ∈ B . Further, if f(B) ⊂ B , then

(2.14)
∣

∣f(c)
∣

∣ ≤ A + ε

Aε + 1
ε, A =

1

ϕ1/(2K)

(

sin(α/2)
) ,

for all c ∈ B .
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Proof. To prove (2.13), fix c ∈ B . Since the inequality is trivial for
∣

∣f(c)
∣

∣ ≤
ε , we may assume that

∣

∣f(c)
∣

∣ > ε . Let F ′ = [f(c),∞] , F = f−1(F ′) , Γ′ =

∆
(

f(Eab), F
′; fB

)

, and Γ = f−1(Γ′) = ∆(Eab, F ; B) . By Lemma 2.9 we obtain

1

2
γ
(

csc
α

2

)

= σ(c, Eab) ≤ M(Γ),

while M(Γ′) ≤ γ
(

|f(c)|/ε
)

by an extremal property of the Grötzsch ring [LeVi,
p. 54]. These two inequalities together with M(Γ) ≤ KM(Γ′) yield

∣

∣f(c)
∣

∣ ≤ εγ−1
( 1

2K
γ
(

csc
α

2

))

=
ε

ϕ1/(2K)

(

sin(α/2)
) ,

as desired.
The proof of (2.14) is similar to that of (2.13) except that we take F ′ =

[

f(c), f(c)/|f(c)|
]

and use the sharper majorant

M(Γ′) ≤ γ
(

∣

∣f(c)
∣

∣ − ε2

ε
(

1 − |f(c)|
)

)

(see e.g. [V2, 5.54 (2)]).

2.15. Remark. Theorem 2.12 is closely related to the so-called two-constants
theorem for quasiconformal mappings. For further results see [R], [V1], [GLM],
[M].

3. Majorants for conformal invariants

From (2.1) it follows that

(3.1) sh 2 ̺(x, y)

2
=

|x − y|2
(

1 − |x|2
)(

1 − |y|2
)

for x, y ∈ B . Given x, y ∈ B choose z ∈ B such that Tzx = −Tzy . Then it is
easy to show (cf. e.g. [V2, (2.27)]) that

(3.2) |Tzx| = |Tzy| = th
̺(x, y)

4
≥ |x − y|

2
.

For z ∈ B let G = B \ {z} . For x, y ∈ G , define

(3.3) pz(x, y) = inf
Cx,Cy

M
(

∆(Cx, Cy; G)
)

,

where Cx is any curve in G joining x and z and Cy is any curve in G joining y
and S . We abbreviate p0(x, y) as p(x, y) .
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3.4. Definitions. Let a > 0. (1) For b , c ∈ B(a) and t ≥ ̺B(a)(b, c) , the
set

E(b, c, t) =
{

z ∈ B(a) | ̺B(a)(b, z) + ̺B(a)(z, c) = t
}

is called a non-Euclidean or n.e. ellipse with foci b and c .

(2) For b , c ∈ B(a) and t ∈ (0,∞) the set

H(b, c, t) =
{

z ∈ B(a) | |̺B(a)(b, z) − ̺B(a)(z, c)| = t
}

is called a non-Euclidean or n.e. hyperbola with foci b and c .

The next result, which is implied by a result due to R. Kühnau [K, p. 24],
provides a useful characterization of an n.e. ellipse. An independent proof of this
result, as well as an analog for n.e. hyperbolas, will be given in Section 5.

3.5. Theorem. Given a > 0 and b, c ∈ B(a) let fbc be a conformal

mapping of a plane annulus B \B(t) onto the ring B(a) \J [b, c]. A set E ⊂ B(a)
is a non-Euclidean ellipse with foci b , c if and only if fbc(S(u)) = E for some

u ∈ (t, 1) .

3.6. Lemma. Let x, y, z ∈ B . Then

pz(x, y) ≤ M
(

∆
(

[0, s], [t, 1]; B
))

= τ
((t − s)(1 − ts)

s(1 − t)2

)

,

where s = th 1
2̺(x, z) and t = th 1

4 (̺(y, z) + ̺(z, x) + ̺(x, y)) . The bound is

attained if z , x , and y lie on an n.e. line in this order.

Proof. Let c = ̺(y, x) + ̺(y, z) and let fxy: B \ B(r) → B \ J [x, y] be
the mapping as in Theorem 3.5. For y ∈ E(x, z, c) let y′ be the point where
J [z, x] , produced, meets E(x, z, c) . Let L′ be the hyperbolic ray J [y′, w] , where
w is the intersection of S and the hyperbolic ray from z through x and y′ . Let
C′ = f−1

zx (L′) and let C be the rotation of C′ so as to pass through f−1
zx (y) . Take

Fy = fzx(C) . Then, by conformal invariance,

M
(

∆
(

J [x, z], Fy; B
))

= M
(

∆
(

[0, s], [t, 1]; B
))

,

where s = th 1
2̺(x, z) and t = th 1

4

(

̺(y, z)+̺(x, y)+̺(z, x)
)

. This fact, together
with [LV, 2.8], yields the desired estimate for pz(x, y) .

It follows immediately from the definition of λG that for G = B \ {z}
(3.7) λG(x, y) = min

{

pz(x, y), pz(y, x), λB(x, y)
}

for all distinct x, y ∈ G . Since by [V2, 8.6] and (3.1)

(3.8) λB(x, y) =
1

2
τ
( |x − y|2

(

1 − |x|2
)(

1 − |y|2
)

)

=
1

2
τ
(

sh 2 ̺(x, y)

2

)

for distinct x, y ∈ B , we obtain a majorant for λG(x, y) by combining Lemma 3.6
with (3.7) and (3.8) as follows.
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3.9. Theorem. For distinct x , y in G = B \ {0} we have

λG(x, y) ≤ min
{

τ
((t − s)(1 − ts)

s(1 − t)2

)

,
1

2
τ
( |x − y|2

(

1 − |x|2
)(

1 − |y|2
)

)}

,

where t = th 1
4

(

̺(y, 0) + ̺(x, y) + ̺(x, 0)
)

and s = th 1
2 min

{

̺(x, 0), ̺(y, 0)
}

=

min
{

|x|, |y|
}

.

3.10. Remark. Let G = B \ {0} , and 0 < x < y < 1. We claim that

(3.11) λG(x, y) = p0(x, y) = τ
( (y − x)(1 − xy)

x(1 − y)2

)

.

First, by Lemma 3.6,

p0(x, y) = τ
( (y − x)(1 − xy)

x(1 − y)2

)

= τ
( th (c/2)

(1 − th (c/2))2
(1 + x)2

x

)

if ̺(x, y) = c . Then g ≡ T−1
y ◦ σ ◦ Ty maps the segment [0, 1] onto itself with

x → y , y → x′ , and ̺(x, y) = ̺(y, x′) , where σ is a circular symmetrization
about 0. Hence

p0(x, y) ≤ p0(y, x′) ≤ p0(y, x).

Next, by (3.8), Lemma 3.6, (2.2), and (2.4),

p0(x, y) <
1

2
τ
( (y − x)2

(1 − x2)(1 − y2)

)

= λB(x, y),

and (3.11) follows.
Hence in this case one of the extremal continua always joins 0 and x , while

the other joins y and S . In particular, the inequality in Theorem 3.9 is sharp.

3.12. Lemma. Let 0 < x < y < 1 and Γxy = ∆
(

[0, x], [y, 1]∪ S; B
)

. Then

M(Γxy) = τ
((y − x)(1 − xy)

x(1 + y)2

)

.

Proof. Let f(z) = (1 − z)/(1 + z) , g(z) = z2 , and h = g ◦ f . Then by
conformal invariance,

M(Γxy) = M
(

h(Γxy)
)

= τ
(h(x) − h(y)

1 − h(x)

)

= τ
( (y − x)(1 − xy)

x(1 + y)2

)

.

3.13. Lemma. Let x , y , z be distinct points in B . Then there exists an

arc F in B joining y and S such that

M
(

∆
(

J [z, x], F ∪ S; B
))

= τ
((t − s)(1 − ts)

s(1 + t)2

)

,

where t and s are as in Lemma 3.6 .
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Proof. Let notation be as in the proof of Lemma 3.6. Let y ∈ E(x, z, c)
and let yo, wo be the points where J [z, x] , produced, meets E(x, z, c) and S ,
respectively. Let L be the hyperbolic ray J [yo, wo] and L′ = f−1

zx (L) . Let F ′ be
the rotation of L′ so as to pass through y′ = f−1

zx (y) , and take F = fzx(F ′) .
Next, there is a Möbius transformation that maps B onto itself and carries

z, x, yo, wo to 0, s, t, 1, respectively, where s and t are as in Lemma 3.6. A second
Möbius transformation takes B onto the right half plane and 0, s, t, 1 onto 1,
(1− s)/(1 + s), (1− t)/(1 + t), 0, respectively. Finally, the square mapping carries
this right half plane configuration onto the Teichmüller ring whose complementary

components are
(

−∞,
(

(1− t)/(1+ t)
)2]∪ {∞} and

[(

(1− s)/(1+ s)
)2

, 1
]

. Thus

if Γ = ∆
(

J [z, x], F ∪ S]; B
)

we have

M(Γ) = τ
(

(

(1 − s)/(1 + s)
)2 −

(

(1 − t)/(1 + t)
)2

1 −
(

(1 − s)/(1 + s)
)2

)

= τ
((t − s)(1 − st)

s(1 + t)2

)

.

3.14. Lemma. Let x , y , z be three distinct points in B . Let E ⊂ B be a

continuum joining x to z and F ⊂ B a continuum joining y to S . Then

M
(

∆(E, F ∪ S; B)
)

≥ M
(

∆
(

[−s, 0], [t, 1]∪ S; B
))

= τ
( t(1 − s)2

s(1 + t)2

)

,

where s = th 1
2̺(x, z) and t = th 1

2̺(x, y) . Equality holds if x ∈ J [z, y] and F is

a subarc of the hyperbolic line through x and y .

Proof. The proof is a standard symmetrization argument consisting of two
steps (cf. also [LV, 3.7]). First apply Tx and then perform a circular symmetriza-
tion with center 0. Application of Lemma 3.12 completes the proof.

4. Applications

We now apply the majorants for λG derived in the previous section to quasi-
conformal mappings. Additional results of this type can be obtained by combining
Lemma 3.6 or Theorem 3.9 with results from [LV]. We begin by proving a technical
lemma.

4.1. Lemma. Let x, y, z ∈ B with ̺(z, x) ≤ ̺(z, y) . Let u = th (̺(x, y)/4) ,
s = th

(

̺(z, x)/2
)

, t = th
(

1
4

(

̺(x, y) + ̺(y, z) + ̺(z, x)
))

. Then

u

s
≤ (t − s)(1 − st)

s(1 − t)2
.

Proof. For each s ∈ (0, 1), f(t) ≡ (t − s)(1 − st)/
(

s(1 − t)2
)

is increasing on
(s, 1). Now

t ≥ th
(1

4

(

̺(x, y) + 2̺(z, x)
)

)

=
u + s

1 + us
.
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Hence

f(t) ≥ f
( u + s

1 + us

)

=
u(1 + s)2

s(1 − u)2
≥ u

s
.

4.2. Theorem. Let : B → f(B) ⊂ B be a K -quasiconformal mapping with

f(0) = 0 . Then, for x, y ∈ B \ {0} , 0 < |x| ≤ |y| ,
∣

∣f(x) − f(y)
∣

∣

2
≤ th

̺(f(x), f(y))

4
≤

∣

∣f(x)
∣

∣τ−1

(

1

K
τ
( |y|

(

1 + |x|
)2

|x|
(

1 − |y|
)2

)

)

.

Proof. It follows from [LV, (3.8)] and Lemma 3.6 that

τ
( |y|

(

1 + |x|
)2

|x|
(

1 − |y|
)2

)

≤ p(x, y) ≤ Kp
(

f(x), f(y)
)

≤ Kτ
((t − s)(1 − ts)

s(1 − t)2

)

,

where t = th 1
4

(

̺
(

f(y), 0
)

+ ̺
(

f(x), f(y)
)

+ ̺
(

f(x), 0)
)

and s =
∣

∣f(x)
∣

∣ . We

consider two cases. If
∣

∣f(x)
∣

∣ ≤
∣

∣f(y)
∣

∣ , then the asserted inequality follows from

Lemma 4.1. If
∣

∣f(x)
∣

∣ >
∣

∣f(y)
∣

∣ , then by the previous case the inequality holds

with
∣

∣f(x)
∣

∣ in place of
∣

∣f(y)
∣

∣ . Since now
∣

∣f(y)
∣

∣ <
∣

∣f(x)
∣

∣ , the result follows.

We observe that by [V2, 7.53]

τ−1
( 1

K
τ(t)

)

=
ϕ2

K(r)

ϕ2
1/K(r′)

≤ 16K−(1/K)(1 + t)K−(1/K) t1/K

for K > 1 and t > 0, where r =
√

t/(1 + t), r′ =
√

1/(1 + t) .

4.3. Proof of Theorem 1.3. With notation as in Theorem 4.1, we have

λG(x, y) ≤ p(x, y) ≤ τ
((t − s)(1 − ts)

s(1 − t)2

)

≤ τ
( th

(

̺(x, y)/2
)

(

1 − th
(

̺(x, y)/2
))2

(

1 + |x|
)2

|x|
)

≤ τ
( |x − y|

2
(

1 − 1
2
|x − y|

)2

(

1 + |x|
)2

|x|
)

≤ τ
( |x − y|

(

1 + |x|
)2

2|x|
)

.

4.4. Remark. By conformal invariance, we can replace the expression

|y|
(

1 + |x|
)2

/
(

|x|(1 − |y|)
)2

in Theorem 4.2 by |Txy|
(

1 + |x|
)2

/
(

|x|(1 − |Txy|
)2)

.
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4.5. Proof of Theorem 1.5. Let Γ′ = ∆
(

f [0, x], ∂f(B); f(B)
)

and let
Γ = f−1(Γ′) . Then by Lemma 3.14,

M(Γ′) ≥ τ
(δ(1 − s)2

s(1 + δ)2

)

; s =
∣

∣f(x)
∣

∣.

The inequality M(Γ) ≤ γ
(

1/|x|
)

= 2τ
(

(1/|x|2) − 1
)

is obvious. Since M(Γ′) ≤
KM(Γ) (cf. [V2, 10.14]) we obtain

(1 − s)2

s
≥ (1 + δ)2

δ
τ−1

(

2Kτ
( 1

|x|2 − 1
))

.

Using (2.2) we obtain

(4.6)

∣

∣f(x)
∣

∣

(

1 −
∣

∣f(x)
∣

∣

)2 ≤ δ

(1 + δ)2
ϕ2K

(

|x|
)2

1 − ϕ2K

(

|x|
)2 ,

which proves the first inequality. The second inequality follows from [LV, Sec-
tion 3.2, p. 64] and the fact that g(t) ≡ t/(1 + t)2 is strictly increasing on [0, 1] .

4.7. Remark. Theorem 1.5 holds for quasiregular mappings as well if we
make the additional assumption that B \ f(B) contains a connected set E with
S(t) ∩ E 6= ∅ 6= E ∩ S .

5. Hyperbolic geometry

In this section we first give a direct proof of Theorem 3.5, then obtain an
analog for non-Euclidean hyperbolas, and finally derive a relationship between
n.e. ellipses and n.e. hyperbolas.

5.1. Proof of Theorem 3.5. By conformal invariance we may take a =
1/

√
r , 0 < r < 1, and b = −1, c = 1 as foci. Thus we consider the conformal

mapping [BF, 129.51], [N, p. 295, (49)]

w = f(z) = sn(ζ, r), ζ =
2iK

π
log

z

t
+ K, z = x + iy, w = u + iv,

of the plane annulus B \ B(t) onto the ring B(1/
√

r ) \ [−1, 1] , t, r ∈ (0, 1),
t = exp

(

−πK
′/(4K)

)

, where K, K′ are elliptic integrals as in Section 2, and sn is
the Jacobian elliptic sine function. Here there is no ambiguity in the logarithm,
since we may first define the mapping f in the portion of the annulus in the
first quadrant, using the principal branch of the logarithm, and then complete
the mapping by reflecting in both axes. Let D be the quarter disk

{

w : |w| <

1/
√

r, u > 0, v > 0
}

. Under the mapping ζ = ζ(z) the quarter circles |z| = τ ,
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x > 0, y > 0, t < τ < 1, correspond to the horizontal line segments joining the
vertical sides of the rectangle

R =
{

ζ = (α, β) : 0 < α < K, 0 < β < K
′/2

}

.

By symmetry it will be sufficient to prove that an arc in D is an arc of an n.e.
ellipse with foci ±1 if and only if it is the image of a horizontal line segment
joining the vertical sides of R .

Let z ∈ B \B(t) be in the first quadrant, and let Ω = B(1/
√

r ) . If we denote

(5.2) a = | sn ζ − 1|, A = | sn ζ − 1

r
|, â = | sn ζ + 1|, Â = | sn ζ +

1

r
|,

then by [Bo, p. 46]

(5.3)

a =
1 − sd1

√

1 − d2s2
1

, â =
1 + sd1

√

1 − d2s2
1

,

A =
d1 − rs

r
√

1 − d2s2
1

, Â =
d1 + rs

r
√

1 − d2s2
1

,

where

s = sn(α, r), c = cn(α, r), d = dn(α, r),

s1 = sn(β, r′), c1 = cn(β, r′), d1 = dn(β, r′).

Hence

â + a =
â − a

sd1
=

r(Â + A)

d1
=

Â − A

s
=

2
√

1 − d2s2
1

.

We then have by (5.3),

̺1 ≡ ̺Ω(w, 1) = 2arth
(√

r
∣

∣

∣

1 − w

1 − rw

∣

∣

∣

)

= 2arth
( a

A
√

r

)

,

̺2 ≡ ̺Ω(w,−1) = 2arth
(√

r
∣

∣

∣

1 + w

1 + rw

∣

∣

∣

)

= 2arth
( â

Â
√

r

)

,

so that

1 +
a√
rA

1 − a√
rA

1 +
â√
rA

1 − â√
rA

=
(d1 +

√
r )(1 −√

rs)(d1 +
√

r )(1 +
√

rs)

(d1 −
√

r )(1 +
√

rs)(d1 −
√

r )(1 −√
rs)

=
(d1 +

√
r

d1 −
√

r

)2

by (5.3) and algebraic simplification. Thus

̺1 + ̺2 = 2 log
dn(β, r′) +

√
r

dn(β, r′) −√
r

is constant if and only if β is constant.
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5.4. Theorem. Let fbc be a conformal mapping of a plane annulus B \B(t)
onto the ring B \ J [b, c] . A set E ⊂ B is a non-Euclidean hyperbola with foci b, c
if and only if fbc(E) = Lϑ for some ϑ ∈ (0, π/2) , where

Lϑ =
{

z ∈ B \ B(t) : |Arg z| = ϑ or |π − Arg z| = ϑ
}

.

Proof. By conformal invariance it is sufficient, as in the proof of Theorem 3.5,
to take a = 1/

√
r , 0 < r < 1, and b = −1, c = 1 as foci. Thus we consider the

conformal mapping f of the plane annulus B\B(t) onto the ring B(1/
√

r )\[−1, 1] ,
where t, r ∈ (0, 1) and t = exp

(

−πK
′/(4K)

)

. With the same notation as in the
previous proof, we have

1 +
a√
rA

1 − a√
rA

1 − â
√

rÂ

1 +
â

√
rÂ

=
(d1 +

√
r)(1 −√

rs)(d1 −
√

r)(1 −√
rs)

(d1 −
√

r)(1 +
√

rs)(d1 +
√

r)(1 +
√

rs)
=

(1 −√
rs

1 +
√

rs

)2

.

Thus

̺1 − ̺2 = 2 log
1 −√

r sn(α, r)

1 +
√

r sn(α, r)

is constant if and only if α is constant.

5.5. Theorem. The right ( left) branch of a non-Euclidean hyperbola in the

unit disk |w| < 1 is a subarc of a non-Euclidean ellipse in the right ( left) half

plane H , Re w > 0 (Re w < 0) .

Proof. By symmetry it will be sufficient to prove the result for the right
branch. In the right half plane the hyperbolic density is |dw|/(Rew) , and the
hyperbolic distance between two points w1, w2 in the right half plane H is

̺H(w1, w2) = 2arth
∣

∣

∣

w1 − w2

w1 + w2

∣

∣

∣
.

Let ̺1 = ̺H(w, 1), ̺2 = ̺H(w, 1/r) . Then, using (5.3), we have

1 +
|w − 1|
|w + 1|

1 − |w − 1|
|w + 1|

1 +
|w − (1/r)|
|w + (1/r)|

1 − |w − (1/r)|
|w + (1/r)|

=
â + a

â − a

Â + A

Â − A
=

1

r
(

sn(α, r)
)2 .

Thus ̺1 + ̺2 = ̺H(w, 1) + ̺H(w, 1/r) is constant if and only if α is constant,
that is, if and only if w is on the right branch of a fixed n.e. hyperbola in the unit
disk.
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5.6. Theorem. The right ( left) branch of an n.e. ellipse in the unit disk

|w| < 1 is a subarc of an n.e. hyperbola in the right ( left) half plane H , Re w > 0
(Re w < 0) .

Proof. By symmetry it will be sufficient to prove the result for the right half
of an n.e. ellipse. Using the notation of the previous theorem we have

1 +
|w − 1|
|w + 1|

1 − |w − 1|
|w + 1|

1 − |w − (1/r)|
|w + (1/r)|

1 +
|w − (1/r)|
|w + (1/r)|

=
â + a

â − a

Â − A

Â + A
=

r
(

dn(β, r′)
)2 .

Thus ̺1−̺2 = ̺H(w, 1)−̺H(w, 1/r) is constant if and only if β is constant, that
is, if and only if w is on the right half of a fixed n.e. ellipse in the unit disk.
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