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Abstract. The Royden ideal boundary of a domain is the set of all points in the maximal
ideal space of the domain’s Royden algebra that do not lie in the domain. Elements of the Royden
ideal boundary can be characterized as nets convergent in both the weak∗ and Euclidean topologies
that have no subnet which is a sequence. As with other function algebras, boundary fibers can
be defined as subsets of all points in the ideal boundary that project onto a single Euclidean
boundary point. Quasiconformal mappings have homeomorphic extensions if and only if the adjoint
of the corresponding Royden algebra isomorphism maps boundary fibers to boundary fibers. For
domains with certain homogeneity properties, all boundary fibers are homeomorphic; and for
domains finitely connected on the boundary, fibers are equivalent to prime ends. In any case, each
boundary fiber has a complicated topology which contains the complement of the natural numbers
in the Stone–Cech compactification of the natural numbers.

Introduction

Lewis [L] showed that two domains, Ω and Ω′ , in Euclidean n -space are
quasiconformally equivalent if and only if the corresponding Royden algebras A(Ω)
and A(Ω′) are isomorphic. His proof extends ideas of Nakai [N] who proved the
theorem for domains in two dimensions. It uses methods of functional analysis to
characterize the maximal ideal space Ω∗ of A(Ω) as a compact space containing Ω.
For this reason, Ω∗ is called the Royden compactification of Ω, and the set Ω∗ \Ω
is called the Royden ideal boundary of Ω. Lewis also showed that a quasiconformal
mapping between two domains induces a homeomorphism between their Royden
compactifications which preserves Royden ideal boundaries. Consequently, one
might hope to find necessary conditions for the existence of such quasiconformal
mappings by studying these boundaries.

We wish to examine the structure of the Royden ideal boundary from several
different points of view and present some of its unusual properties. Borrowing
ideas previously applied to the Banach algebra H∞ [H], [Ga], we develop a the-
ory of fibers in Ω∗ over boundary points of Ω. We show that a quasiconformal
mapping f : Ω → Ω′ has a homeomorphic extension from ∂Ω to ∂Ω′ if and only
if the adjoint of the corresponding Royden algebra isomorphism maps boundary
fibers in Ω∗ onto boundary fibers in Ω∗′ . We discuss domains quasiconformally
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homogeneous with respect to the boundary and prove that all fibers in such do-
mains are homeomorphic to each other; but in the special case that Ω is the unit
ball, we prove that the Royden boundary is not the natural product of Sn−1 with
any particular fiber. We prove that if a domain is finitely connected on its bound-
ary, then components of fibers correspond to the domain’s prime ends. Finally, to
exhibit the complicated topology of boundary fibers, we discuss βN , the Stone–
Cech compactification of the natural numbers, and show that each fiber contains
a homeomorphic copy of βN \ N .

1. Preliminaries

N denotes the natural numbers; R , the real numbers; Rn , Euclidean n -
space; and Ω and Ω′ , domains in Rn for n ≥ 2. B(x, r) and S(x, r) denote the
ball and sphere of radius r centered at x , while Bn and Sn−1 denote the unit
ball and sphere. In the context of integration, dx and dy designate n -dimensional
Lebesgue measure. R

n
denotes Rn∪{∞} , the one-point compactification of Rn ,

and ∂Ω refers to the boundary of Ω in R
n
. If {xi} is a sequence in Ω, we write

xi → ∂Ω whenever {xi} has no cluster point in Ω.
The symbols L1

p(Ω) and L1
p,loc(Ω) denote the spaces of functions whose weak

partial derivatives exist and belong to Lp(Ω) and Lp
loc(Ω) respectively. W 1

p (Ω)
and W 1

p,loc(Ω) denote the function spaces Lp(Ω)∩ L1
p(Ω) and Lp

loc(Ω)∩ L1
p,loc(Ω)

respectively.
Let K ≥ 1 be a constant. Then a homeomorphism f : Ω → Rn is K -

quasiconformal if
f ∈ W 1

n,loc(Ω)

and ∣∣Df(x)
∣∣n ≤ KJf (x)

for almost every x ∈ Ω. The references [V1] and [BI] give comprehensive intro-
ductions to quasiconformal mappings.

A Banach space A is a real Banach algebra if A is an algebra over R with
norm ‖ · ‖ satisfying

‖uw‖ ≤ ‖u‖ ‖w‖

for each u, w ∈ A . If I is a subset of a commutative Banach algebra A , then I is
an ideal if uw ∈ I whenever u ∈ A and w ∈ I . An ideal is proper if it is a proper
subset of A , and it is maximal if no proper ideal contains it.

If A is a real Banach algebra, the space A′ of all real-valued bounded linear
functionals on A is called the dual space of A . If A1 and A2 are Banach algebras
with norms ‖ · ‖1 and ‖ · ‖2 , and T : A1 → A2 is a linear transformation, the
norm of T is given by

‖T‖ = sup
{
‖Tv‖2 : v ∈ A1, ‖v‖1 ≤ 1

}
.
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The transformation T is continuous if and only if ‖T‖ < ∞ .
We let A(Ω) denote the Royden algebra (over R) on Ω. This algebra consists

of all real functions

u ∈ C(Ω) ∩ L∞(Ω) ∩ L1
n(Ω),

with multiplication and addition defined pointwise on Ω, and norm

‖u‖ = ‖u‖Ω = ‖u‖
∞

+ ‖∇u‖n,Ω ,

where

‖∇u‖n,Ω =

(∫

Ω

|∇u|n dx

)1/n

.

The algebra A(Ω) is a commutative Banach algebra that is regular on Ω, i.e., for
each closed set F ⊂ Ω and each x ∈ Ω\F , there is a u ∈ A(Ω) such that u(x) = 1
and u|F ≡ 0. As a result, A(Ω) separates points in Ω. Furthermore, A(Ω) is
inverse-closed, which means that if u ∈ A(Ω) and inf{u(x) : x ∈ Ω} > 0 then
(1/u) ∈ A(Ω). The papers [N], [L], [L-F] and [S2] contain detailed discussions of
the Royden algebra. The following theorem summarizes the relationship between
quasiconformal mappings and Royden algebras.

Theorem 1.1 [L, Theorems 3.2, 7.1], [L-F, Theorem 11.3]. Let Ω and Ω′ be

domains in Rn , n ≥ 2 . Then if f : Ω → Ω′ is K -quasiconformal, the transforma-

tion f∗: A(Ω′) → A(Ω) defined by f∗v = v ◦ f for each v ∈ A(Ω′) is an algebra

isomorphism with ‖f∗‖n ≤ K . Conversely, if T : A(Ω′) → A(Ω) is an algebra

isomorphism, then T induces a ‖T‖n
-quasiconformal mapping f : Ω → Ω′ such

that f∗ = T .

Interpolating sequences will be useful for studying the Royden boundary. A
sequence {xi} of points in Ω is an interpolating sequence for A(Ω) if for each
bounded sequence of real numbers {ri} there exists u ∈ A such that u(xi) = ri

for each i ∈ N .

Theorem 1.2 [S2, Theorem 1.11]. Let {xi} be a sequence of distinct points

in Ω such that xi → ∂Ω , then {xi} is an interpolating sequence for A(Ω) .

2. The Royden compactification

The Royden compactification Ω∗ is the collection of all non-zero, bounded
linear functionals χ on A(Ω) satisfying χ(uw) = χ(u)χ(w) for each u, w ∈ A(Ω).
In other words, χ: A(Ω) → R is a continuous homomorphism, so Ω∗ ⊂ A(Ω)′ .
The original construction of the Royden compactification is in [N], and some of
its important properties are outlined in [S2]. It is not hard to show that ‖χ‖ = 1
for each χ ∈ Ω∗ , and that Ω∗ is a compact Hausdorff space in the relative weak∗
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topology generated by A(Ω). In this topology, if {χα}α∈Λ is a net in Ω∗ , then
χα → χ ∈ Ω∗ if and only if

lim
α

|χα(u) − χ(u)| = 0

for each u ∈ A(Ω).

Definition 2.1. If x ∈ Ω, then x̂ ∈ Ω∗ denotes the point evaluation homo-
morphism defined by x̂(u) = u(x) for each u ∈ A(Ω).

Because A(Ω) separates the points in Ω, the mapping x 7→ x̂ is a homeomor-
phism of Ω onto its image Ω̂ ⊂ Ω∗ . By identifying each x with x̂ , it is possible to
consider Ω a subset of Ω∗ , and we use this convention when convenient. Because
Ω̂ is dense in Ω∗ in the weak∗ topology [L, p. 489], the set ∆ = ∆Ω = Ω∗ \ Ω̂
constitutes a boundary known as the Royden ideal boundary of Ω.

Definition 2.2. If u ∈ A , then û ∈ C(Ω∗) denotes the mapping defined by
û(χ) = χ(u) for each χ ∈ Ω∗ . The mapping u 7→ û is an algebra homomorphism
of A(Ω) onto a set Â ⊂ C(Ω∗) .

By standard methods of functional analysis, it is possible to show that Ω∗

can be identified with M , the space of proper maximal ideals of A(Ω). If χ ∈ Ω∗ ,
the explicit correspondence Mχ ↔ χ is given by

Mχ =
{
u ∈ A : û(χ) = 0

}
= χ−1(0) ∈ M ,

see [S2, p. 1154].
If T = f∗ is the Royden algebra isomorphism described in Theorem 1.1, the

adjoint T ∗ of T defined by T ∗χ = χ◦T is a mapping of Ω into Ω′ . Lewis showed
that T ∗ is in fact a homeomorphism.

Theorem 2.3 [L, p. 490]. If f : Ω → Ω′ is quasiconformal and T : A(Ω′) →
A(Ω) is the corresponding Royden algebra isomorphism, then T ∗: Ω∗ → Ω′∗ is a

homeomorphism such that T ∗(∆) = ∆′ and T ∗|Ω = f .

Certain ideals in A(Ω) are useful in establishing a connection between the
compactification Ω∗ and the algebra A(Ω). For example, if {xi} is a sequence in
Ω then I(xi) denotes the ideal of functions tending to 0 on {xi} , i.e.,

I(xi) = I({xi}) =
{
u ∈ A(Ω) : lim

i→∞

u(xi) = 0
}
.

The fact that A(Ω) is inverse-closed easily implies the following lemma.

Lemma 2.4 [S1, Lemma 5.1]. If u ∈ A(Ω) , then u is contained in a proper

ideal of A(Ω) if and only if u ∈ I(xi) for some sequence {xi} in Ω .
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Definition 2.5. Two sequences {xi} and {zj} in Ω are disjoint if there is
no sequence that is a subsequence of both, i.e., if there exists an integer m such
that

{xi : i ≥ m} ∩ {zj : j ≥ m} = ∅.

Definition 2.6. A subsequence {xk(i)} of {xi} is a proper subsequence if
{xi} has a subsequence disjoint from {xk(i)} .

Lemma 2.7. Let {xi} be a sequence in Ω and {xk(i)} a subsequence of {xi} .

Then I(xi) ⊂ I(xk(i)) . If xi → x ∈ Ω , then I(xi) = I(xk(i)) . If xi → ∂Ω , then

the inclusion I(xi) ⊂ I(xk(i)) is proper whenever {xk(i)} is a proper subsequence

of {xi} .

Proof. I(xi) ⊂ I(xk(i)) because u(xk(i)) → 0 whenever u(xi) → 0. If
xi → x ∈ Ω then continuity of u at x implies u(xi) → 0 whenever u(xk(i)) → 0,
and so I(xk(i)) ⊂ I(xi) .

Suppose xi → ∂Ω and {xk(i)} is a proper subsequence of {xi} . We may
assume {xk(i)} is a sequence of distinct points without altering the contents
of I(xk(i)) . By definition there is a subsequence {xm(i)} of {xi} disjoint from
{xk(i)} , and we may assume {xm(i)} is a sequence of distinct points that does not
intersect {xk(i)} . Let {yi} denote the alternating sequence

{yi} =
{
xk(1), xm(1), xk(2), xm(2), . . .

}
.

Since yi → ∂Ω as i → ∞ , Theorem 1.2 implies {yi} is an interpolating sequence.
Therefore there exists u ∈ A(Ω) such that u(y2j+1) = 0 and u(y2j) = 1 for each
j ∈ N . Thus u ∈ I(xk(i)) while u /∈ I(xi) .

Theorem 2.8. If {xi} is a sequence in Ω , then I(xi) is a maximal ideal if

and only if xi → x ∈ Ω .

Proof. Sufficiency is straightforward. If xi → x ∈ Ω, then I(xi) = x̂−1(0), a
maximal ideal in A(Ω).

Necessity follows by proving the contrapositive. If it is not true that xi →
x ∈ Ω, then either {xi} has a subsequence xk(i) → ∂Ω or {xi} has distinct
cluster points x1 , x2 in Ω. In the first case, {xi} has infinitely many distinct
points and so has a proper subsequence. Lemma 2.7 then implies I(xi) is not
maximal. In the second case, {xi} has disjoint subsequences {xk(i)} and {xm(i)}
tending respectively to distinct points x1 and x2 in Ω. Lemma 2.7 implies I(xi) ⊂
I(xk(i)) . But because A(Ω) separates points in Ω, there exists u ∈ A(Ω) such
that u(x1) = 0 and u(x2) = 1. Thus u /∈ I(xi) while u ∈ I(xk(i)) , and so the
inclusion I(xi) ⊂ I(xk(i)) is proper.

We let A0(Ω) denote the ideal of functions that tend to 0 at ∂Ω. To be
precise,

A0(Ω) =
{
u ∈ A(Ω) : if xi → ∂Ω then lim

i→∞

u(xi) = 0
}

=
{
u ∈ C(Ω) ∩ A(Ω) : u|∂Ω ≡ 0

}
.
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Clearly, A0(Ω) properly contains the ideal of functions with compact support in Ω.
Elements in the Royden boundary ∆ can be characterized either by the fact that
they annihilate A0(Ω) or by the “size” of their neighborhood bases in the weak∗

topology.

Theorem 2.9 [L, Lemma 6.2], [S2, Theorem 4.7]. The following statements

are equivalent:

1) χ ∈ ∆ .

2) χ has no countable neighborhood basis in Ω∗ .

3) χ(u) = 0 for each u ∈ A0(Ω) .
4) χ(u) = 0 for each u ∈ A with compact support in Ω .

3. Elements of the Royden boundary characterized as nets

Because elements of ∆ have no countable neighborhood bases, we cannot
adequately describe convergence in Ω∗ to elements of ∆ using the theory of se-
quences. We must rely on the more general but less intuitive theory of nets, which
is described well in [K]. Briefly, if Λ is an indexing set directed by a binary relation
≥ , then {xα}α∈Λ is a net in a set E if xα ∈ E for each α ∈ Λ. The net {xα}
is eventually in a set U if there exists β ∈ Λ such that α ≥ β implies xα ∈ U ;
it is frequently in U if for each α ∈ Λ there is a β ∈ Λ such that β ≥ α and
xβ ∈ U . A net in a topological space X converges to x ∈ X if and only if it is
eventually in each neighborhood of x , in which case x is a limit point of the net
and we write limα xα = x . A point s ∈ X is a cluster point of the net if the net
is frequently in each neighborhood of s . A net {yβ}β∈B is a subnet of {xα}α∈Λ

if and only if there exists a function g defined on B with values g(β) ∈ Λ such
that yβ = xg(β) for each β ∈ B , and for each α ∈ Λ there exists γ ∈ B such that
if β ≥ γ then g(β) ≥ α . A net {xα} has s as a cluster point if and only if some
subnet of {xα} converges to s .

The theory of nets allows us to show that elements of ∆ can be characterized
as special kinds of nets for which no subnet is a sequence. Before presenting this
characterization, however, we define a set of functions that will be useful in proving
several results. For each z ∈ Rn , we define a “cutoff” of the distance function:

σz(x) =

{
|x − z|, x ∈ B(z, 1)
1, x ∈ Rn \ B(z, 1).

For z = ∞ , we define

σ∞(x) =
1

1 + |x|
.

These functions have the properties that σz(x) → 0 whenever x → z , σz(x) = 0 if
and only if x = z , and σz(x) ≤ 1 for each x ∈ Rn . Furthermore, straightforward
calculations show that ‖∇σz‖n,Ω < ∞ , so σz ∈ A(Rn) and σz|Ω ∈ A(Ω) for

each z ∈ R
n
. In general, we will let σz denote σz|Ω which, of course, extends

continuously to Ω.
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Theorem 3.1. Let Ω be a domain in Rn . Then χ ∈ ∆ if and only if there

exists a net {zα}α∈Λ in Ω such that

1) ẑα → χ in Ω∗ ,

2) there exists z ∈ ∂Ω for which zα → z in Ω ,

3) {zα} has no subnet that is a sequence.

Proof. First we show necessity. If χ ∈ ∆, then because Ω̂ is dense in Ω∗ ,
there is a net {ẑα} in Ω̂ such that ẑα → χ in Ω∗ . Thus (1) holds.

For (2), Ω is compact in R
n
, and so {zα} has a cluster point z ∈ Ω [K,

p. 136]. If {zα} does not converge to z , then there is a subnet of {zα} which
has no subnet converging to z [K, p. 74]. Because Ω is compact, this subnet has
a cluster point y 6= z . Thus {zα} has a subnet on which the function σz tends
to σz(y) > 0 and a subnet on which σz tends to 0; in other words, limα ẑα(σz)
does not exist. This means {ẑα} does not converge in Ω∗ , a contradiction to (1).
Clearly z ∈ ∂Ω; for if not, ẑα → ẑ ∈ Ω̂ , a contradiction to χ ∈ ∆.

For (3), suppose {zα} has a subnet {zi} that is a sequence. Then zi → z [K,
p. 74], and Theorem 1.2 implies {zi} has a subsequence of distinct points that is
an interpolating sequence. However, {ẑi} is a subnet of {ẑα} and thus ẑi → χ in
Ω∗ . This means

lim
i→∞

u(zi) = χ(u)

for each u ∈ A(Ω), a contradiction to {zi} having an interpolating subsequence.

For sufficiency, assume (1), (2), and (3) hold, and suppose χ = x̂ ∈ Ω̂ .
Property (2) implies limα σz(zα) = 0, and so (1) implies x̂(σz) = 0. However,

x̂(σz) = σz(x) > 0,

a contradition. Thus χ ∈ ∆.

An algebraic restatement of part of Theorem 3.1 yields the following corollary.

Corollary 3.2. If χ ∈ ∆ and M denotes the maximal ideal χ−1(0) in A(Ω) ,
then there exists a net {zα}α∈Λ in Ω converging to z ∈ ∂Ω for which no subnet

is a sequence and

M =
{
u ∈ A(Ω) : lim

α
u(zα) = 0

}
.

Definition 3.3. Let {zα} be a net in Ω. We say {zα} is a Royden net if
ẑα converges to a point χ ∈ ∆. Theorem 3.1 says that each χ ∈ ∆ is determined
by a corresponding Royden net. A particular χ may have many corresponding
Royden nets; however, each must converge to the same point in Ω.

Theorem 3.4. If {zα} and {zβ} are nets in Ω such that ẑα and ẑβ converge

in Ω∗ to a common point χ ∈ ∆ , then zα and zβ converge in Ω to a common

point z ∈ ∂Ω .
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Proof. By Theorem 3.1, zα → z ∈ ∂Ω and zβ → y ∈ ∂Ω. Thus,

0 = lim
α

ẑα(σz) = χ(σz) = lim
β

ẑβ(σz) = lim
β

σz(zβ) = σz(y),

and hence z = y .

4. Fibers in the Royden boundary

By definition, each element in Ω̂ corresponds to a unique point in Ω, and we
have shown that each element in ∆ corresponds to nets in Ω that must converge
in the Euclidean topology to a unique point in ∂Ω. These correspondences can
be expressed explicitly by a projection mapping π: Ω∗ → Ω. Let χ ∈ Ω∗ ; if
χ = x̂ ∈ Ω̂ , then

π(χ) = x;

if χ ∈ ∆, then

π(χ) = the limit point z ∈ ∂Ω of a Royden net corresponding to χ.

Theorem 3.4 shows that π is well-defined, and it is not hard to see that π|Ω̂ is a
bijective mapping of Ω̂ onto Ω with π−1(x) = x̂ for each x ∈ Ω.

Lemma 4.1. If u is continuous on Ω , then χ(u) = u
(
π(χ)

)
.

Proof. If χ = x̂ ∈ Ω̂ , then π(χ) = x , so that x̂(u) = u(x) = u
(
π(χ)

)
. If

χ ∈ ∆, Theorem 3.1 implies there is a corresponding Royden net {zα} in Ω such
that ẑα → χ and zα → z ∈ ∂Ω. Then χ = limα ẑα and continuity of u implies

χ(u) = lim
α

ẑα(u) = lim
α

u(zα) = u(z) = u
(
π(χ)

)
.

Theorem 4.2. The projection mapping π is continuous.

Proof. We must show that if χα → χ in Ω∗ , then π(χα) → π(χ) in Ω. Let
χα → χ ; then the definition of convergence in the weak∗ topology yields

lim
α

∣∣χα

(
σπ(χ)

)
− χ

(
σπ(χ)

)∣∣ = 0.

Lemma 4.1 implies
χ
(
σπ(χ)

)
= σπ(χ)

(
π(χ)

)
= 0;

therefore limα χα

(
σπ(χ)

)
= 0, which, by Lemma 4.1, implies limα σπ(χ)

(
π(χα)

)

= 0. The definition of σπ(χ) then implies π(χα) → π(χ) .

Theorem 4.3. π|∆ is a surjective mapping of ∆ onto ∂Ω .
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Proof. Let χ ∈ ∆ with {zα} a corresponding Royden net such that zα →
z ∈ ∂Ω. By definition, π(χ) = z , and so π(∆) ⊂ ∂Ω. Furthermore, the fact that
π(Ω̂) = Ω implies Ω ⊂ π(Ω∗) ⊂ Ω. Because Ω∗ is compact, the continuity of π
implies π(Ω∗) is a compact subset of Ω. But the only compact subset of Ω that
contains Ω is the set Ω itself. Hence π(Ω∗) = Ω and π(∆) = Ω \ Ω = ∂Ω.

Definition 4.4. If z ∈ Ω, then Φz denotes the fiber over z , defined as

Φz = π−1(z) =
{
χ ∈ Ω∗ : χ corresponds to a Royden net converging to z

}
.

Continuity of π implies Φz is a closed subset of ∆ and hence compact. Also
Φz ∩ Φy = ∅ whenever z 6= y , and Theorem 4.3 implies ∆ = ∪{Φz : z ∈ ∂Ω} .

For bounded domains there is an equivalent definition of π . If Ω is bounded,
then pi , the ith coordinate projection mapping in Rn restricted to Ω, belongs to
A(Ω). We may define π by

π(χ) =
(
χ(p1), . . . , χ(pn)

)
=

(
p̂1(χ), . . . , p̂n(χ)

)
∈ Rn.

For example, if x̂ ∈ Ω̂ , then

π(x̂) =
(
x̂(p1), . . . , x̂(pn)

)
= (x1, . . . , xn) = x;

and if χ ∈ ∆, and {zα} is a Royden net corresponding to χ , then

π(χ) =
(
lim
α

ẑα(p1), . . . , lim
α

ẑα(pn)
)

=
(
lim
α

p1(zα), . . . , lim
α

pn(zα)
)

= z ∈ ∂Ω.

Lemma 4.5. χ ∈ Φz if and only if χ(σz) = 0 .

Proof. Suppose χ ∈ Φz with corresponding Royden net {zα} . Then χ =
limα ẑα , so

χ(σz) = lim
α

ẑα(σz) = lim
α

σz(zα) = 0.

Conversely, suppose χ(σz) = 0. Then Lemma 4.1 implies σz

(
π(χ)

)
= 0. But σz

vanishes only at z , so π(χ) = z , i.e. χ ∈ Φz .

Theorem 4.6. Let u ∈ A(Ω) , z ∈ ∂Ω , and r ∈ R . There exists χ ∈ Φz for

which χ(u) = r if and only if there exists a sequence {zj} in Ω such that zj → z
and u(zj) → r .

Proof. Let χ ∈ Φz and χ(u) = r . Let {zα} be a Royden net corresponding
to χ . Suppose there is no sequence {zj} in Ω for which zj → z and u(zj) → r .
Then there exists ε > 0 such that

|u(x) − r| ≥ c > 0

for each x ∈ B(z, ε) ∩Ω. Consequently |ẑα(u)− r| ≥ c for each zα ∈ B(z, ε)∩Ω,
and hence χ(u) 6= r , a contradiction.

Conversely, let zj → z and u(zj) → r . Then by Zorn’s lemma, there is a
maximal ideal M containing I(zj) ; and by the Gelfand identification, M = χ−1(0)
for some χ ∈ Ω∗ . But σz ∈ I(zj) ⊂ M , and so χ(σz) = 0. Thus Lemma 4.5
implies χ ∈ Φz . Furthermore, u − r ∈ I(zj) , so χ(u − r) = 0, and hence
χ(u) = r .



156 Nathan Soderborg

Corollary 4.7. If u ∈ A(Ω) and z ∈ ∂Ω , then the range of û on Φz is

exactly the set of all real numbers r for which there exists a sequence {zj} in Ω
with zj → z and u(zj) → r .

Proof. Let r lie in the range of û on Φz . Then there exists χ ∈ Φz such
that χ(u) = û(χ) = r . So Theorem 4.6 implies there exists a sequence {zj} in
Ω such that zj → z and u(zj) → r . Conversely, let {zj} be a sequence in Ω
such that zj → z and u(zj) → r . By Theorem 4.6, there exists χ ∈ Φz for which
r = χ(u) = û(χ) ; hence r is in the range of û on Φz .

If u ∈ A(Ω), we say u has a limit at z ∈ ∂Ω if there is some r ∈ R such
that u converges to r on every sequence in Ω converging to z . A special case of
Corollary 4.7 is the following.

Corollary 4.8. If u ∈ A(Ω) and z ∈ ∂Ω , then u has a limit r at z if and

only if χ(u) = r for each χ ∈ Φz .

Proof. Let u have a limit r at z . Then u converges to r on every sequence
in Ω converging to z . By Corollary 4.7, {r} is the range of û on Φz , and so
r = û(χ) = χ(u) for each χ ∈ Φz . Conversely, let r be such that r = χ(u) = û(χ)
for each χ ∈ Φz . If {zj} is a sequence in Ω converging to z , then Corollary 4.7
implies each convergent subsequence of {u(zj)} converges to r . But {u(zj)} is
bounded, and so this means {u(zj)} converges to r .

It is difficult to rely on our intuition about sequences to fully understand the
behavior of nets. This is illustrated explicitly in the following corollary. Sequences
tending to ∂Ω in Ω are interpolating sequences for A(Ω); however, an analog of
this fact for nets does not hold.

Corollary 4.9. For each z ∈ ∂Ω there is a net {zα} in Ω such that zα → z
in the Euclidean topology and limα u(zα) exists for each u ∈ A(Ω) .

Proof. The surjectivity of π implies Φz is not empty. If χ ∈ Φz and {zα}
is a corresponding Royden net, then χ = limα ẑα in Ω∗ and the definition of
convergence in the weak∗ topology implies

lim
α

ẑα(u) = lim
α

u(zα) = χ(u)

for each u ∈ A(Ω).

5. Homeomorphic boundary extensions of quasiconformal mappings

Because each boundary fiber in a domain’s Royden compactification corre-
sponds explicitly to a particular boundary point, it is possible to use the concept
of boundary fibers to characterize the existence of homeomorphic boundary exten-
sions of quasiconformal mappings. Such extensions exist if and only if the induced
homeomorphism between Royden compactifications maps boundary fibers onto
boundary fibers.
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Theorem 5.1. Let f : Ω → Ω′ be a quasiconformal mapping and T =
f∗: A(Ω′) → A(Ω) be its corresponding Royden algebra isomorphism. Then f

has a homeomorphic extension f : Ω → Ω
′

if and only if for each z ∈ ∂Ω there

exists y ∈ ∂Ω′ such that T ∗(Φz) = Φy , in which case y = f(z) .

Proof. To prove necessity, observe that each χ ∈ Φz has a corresponding

Royden net {zα} . Let yα = f(zα) and y = limα yα = f(z) . Since T ∗x̂ = f̂(x)
for each x ∈ Ω,

T ∗χ = T ∗(lim
α

ẑα) = lim
α

T ∗ẑα = lim
α

ŷα.

Thus T ∗χ has {yα} as a corresponding Royden net, i.e. T ∗χ ∈ Φy . So T ∗(Φz) ⊂

Φy and a similar argument shows T ∗
−1

(Φy) ⊂ Φz . Hence T ∗(Φz) = Φy .

To prove sufficiency, for each z ∈ ∂Ω define f(z) to be that point y ∈ ∂Ω for
which T ∗(Φz) = Φy . We first show f is injective by showing that if z and x are
distinct points in ∂Ω, then T ∗(Φz) 6= T ∗(Φx) . Let v = T−1σz . By Lemma 4.5,
χ ∈ Φz implies χ(σz) = 0 and η ∈ Φx implies η(σz) > 0. If χ′ ∈ T ∗(Φz) , then
there exists χ ∈ Φz for which T ∗χ = χ′ . It follows that

χ′(v) = T ∗χ(v) = χ(Tv) = χ(σz) = 0.

Similarly, if η′ ∈ T ∗(Φx) , then η′(v) = η(σz) > 0. Hence T ∗(Φz) 6= T ∗(Φx) .

We next show f is surjective. Let y ∈ ∂Ω′ . Then there is a sequence {yj}
in Ω′ for which yj → y . Because f is a homeomorphism, f−1(yj) → ∂Ω, and
because Ω is compact, there is z ∈ ∂Ω for which a subseqence {zk} of {f−1(yj)}
converges to z . By hypothesis, there is w ∈ ∂Ω′ for which T ∗Φz = Φw . We show
w = y .

Let u = Tσw . The continuity of σw at w and Corollary 4.8 imply that for
each χ ∈ Φz

χ(u) = T ∗χ(σw) = 0.

This means, again by Corollary 4.8, that u has the limit 0 at z , and so u(zk) → 0.
But

u(zk) = Tσw(zk) = f∗σw(zk) = σw

(
f(zk)

)
,

and so σw

(
f(zk)

)
→ 0. Because f(zk) → y , the fact that σw vanishes only at w

implies w = y .

Finally, we show f and f
−1

are continuous. Because f and f−1 are homeo-
morphisms, it suffices to show f is continuous on ∂Ω. A similar argument shows

f
−1

is continuous on ∂Ω′ . Let zj converge in Ω to z ∈ ∂Ω. We must show f(zj)

converges in Ω
′

to f(z) .
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Suppose this is not true. Then because Ω
′

is compact, {f(zj)} has a
subsequence {yk} converging to y 6= f(z) , and because f is a homeomor-

phism, y ∈ ∂Ω′ . Let zk denote the sequence {f
−1

(yk)} . Because f is sur-
jective, there exists x ∈ ∂Ω for which T ∗(Φx) = Φy . Clearly x 6= z , because
T ∗(Φz) = Φf(z) 6= Φy . If v = T−1σz , then for each χ ∈ Φx

T ∗χ(v) = χ(σz) = σz(x) > 0.

Because T ∗ maps Φx onto Φy , this inequality means η(v) > 0 for each η ∈ Φy .
We claim the existence of a sequence {wk} in Ω′ such that

|wk − yk| <
1

k
and |v(wk)| < 2σz(zk)

for each k . Then wk → y ; and since σz(zk) → 0, it follows that v(wk) → 0 as
k → ∞ . By Theorem 4.6, there exists η ∈ Φy for which η(v) = 0, a contradiction.
Therefore, our argument is complete if we prove the claim.

We construct {wk} in two steps. First, if yk ∈ Ω′ , let wk = yk . Then
|wk − yk| = 0 and

v(wk) = T−1σz(yk) = (f−1)∗σz(yk) = σz(zk).

Second, if yk ∈ ∂Ω′ , then for each ξ ∈ Φyk
there is χ ∈ Φzk

such that T ∗χ = ξ .
Hence,

ξ(v) = T ∗χ(v) = χ(σz) = σz(zk)

for each ξ ∈ Φyk
. Corollary 4.8 now implies that v has the limit σz(zk) at yk .

Thus, it is possible to choose wk ∈ Ω′ close enough to yk to satisfy the two
conditions in the claim.

6. Boundary fibers and homogeneity

As a result of Theorem 5.1, it is possible to show that all boundary fibers of
domains satisfying certain homogeneity conditions on the boundary are homeo-
morphic to each other. To describe this condition precisely, we define the concept
of transitivity. If Γ is a family of homeomorphisms of a set X onto itself then
Γ acts transitively on a set E ⊂ X if for each a, b ∈ E there exists g ∈ Γ such
that g(a) = b . Let Γ(Ω) denote the family of self-homeomorphisms f : Ω → Ω
such that f |Ω is quasiconformal. In this section, we consider the class of domains
for which Γ(Ω) acts transitively on ∂Ω. Using terminology from Gehring and
Palka [GP], we might say that such domains are quasiconformally homogeneous

with respect to the boundary. A typical domain of this type is Bn , on which the
family of rotations of Bn acts transitively. We will show, however, that even for
Bn , the Royden boundary ∆Bn is not the natural product of its boundary Sn−1

with any particular boundary fiber.
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Theorem 6.1. Let Γ(Ω) act transitively on ∂Ω . If y, z ∈ ∂Ω , then Φz is

homeomorphic to Φy .

Proof. Let f ∈ Γ(Ω) be such that f(z) = y . Then f |Ω is quasiconformal,

(f |Ω)∗ = T : A(Ω) → A(Ω)

is a Royden algebra isomorphism, and T ∗: Ω∗ → Ω∗ is a homeomorphism. We
only need to show that T ∗(Φz) ⊂ Φy , for then Theorem 5.1 implies T ∗(Φz) = Φy

and T ∗|Φz is the desired homeomorphism.
Let χ ∈ Φz with corresponding Royden net {zα} and f(zα) = yα → y . Then

T ∗χ = T ∗(lim
α

ẑα) = lim
α

T ∗ẑα = lim
α

ŷα,

so {yα} is a Royden net for T ∗χ , i.e. T ∗χ ∈ Φy .

Let e denote the unit vector (1, 0, 0, . . . , 0) ∈ Sn−1 , and ∆ = ∆Bn . Because

∆ = ∪{Φz : z ∈ Sn−1},

and because ∆ can be identified with Sn−1×Φe by rotations of Bn , Theorem 6.1
leads to the question of whether or not ∆ is homeomorphic to Sn−1 × Φe in the
natural way. In other words, if for each z ∈ Sn−1 , T ∗

z : Φe → Φz denotes the
homeomorphism induced by the rotation of Bn mapping e to z , is the function
h: Sn−1 × Φe → ∆ given by h(z, η) = T ∗

z (η) a homeomorphism? Theorem 6.4
shows the answer is no. This is a result of the nonexistence of continuous sections
between Sn−1 and ∆, a fact we prove in Theorem 6.3.

Lemma 6.2. If {χj} is a convergent sequence in ∆ , then {χj} is eventually

in a single fiber Φz , z ∈ Sn−1 .

Proof. Let χj → χ ∈ (Bn)∗ , and let

zj = π(χj) ∈ Sn−1

and z = π(χ) . Suppose {zj} has a subsequence {zk} such that for each k , zk 6= z .
Then we consider two cases.

First, suppose some point y 6= z appears infinitely often in the sequence {zk} .
Then the sequence {χj(σz)} assumes the value |y − z| > 0 an infinite number of
times. However, the fact that χj → χ implies

χj(σz) → χ(σz) = 0,

a contradiction.
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Second, suppose each point in the sequence {zk} appears only finitely many
times. Then {zk} contains a subsequence of distinct points, again denoted by
{zk} . Let {Bk} be a sequence of balls in Rn with mutually disjoint closures
centered at zk . There exist functions wk ∈ A(Rn) such that wk(zk) = (−1)k ,
|wk| ≤ 1, wk|R

n \ Bk ≡ 0 and

(∫

Rn

∣∣∆wk(x)
∣∣n dx)

)1/n

≤ 2−k

for each k ∈ N , (this follows from the fact that the conformal capacity of a
spherical ring with a degenerate boundary component is 0 [G1, p. 138]). Therefore

v(x) =

∞∑

i=1

wk(x)

is a function in A(Rn) . Furthermore, because v is the sum of continuous func-
tions with disjoint support, u = v|Ω ∈ C(Ω). Thus u ∈ A(Ω), and u can be
continuously extended to each of the boundary points zk such that

u(zk) = wk(zk) = (−1)k.

But Corollary 4.8 implies χk(u) = u(zk) , and so {χk(u)} is not a convergent
sequence, a contradiction to the hypothesis that {χj} is convergent in (Bn)∗ .

Theorem 6.3. If s: Sn−1 → ∆ is any function for which π ◦ s is the identity

on Sn−1 , then s cannot be continuous.

Proof. Suppose π ◦ s is the identity on Sn−1 (i.e. s is a section) and s is
continuous. Let {zj} be a sequence of distinct points in Sn−1 with zj → z ∈ Sn−1 .
Then s(zj) → s(z) in Ω∗ , and Lemma 6.2 implies there exists an integer m and
y ∈ Sn−1 such that s(zj) ∈ Φy for each j ≥ m . Hence zj = π

(
s(zj)

)
= y for each

j ≥ m , a contradiction.

Theorem 6.4. ∆ is not homeomorphic to Sn−1 × Φe in the natural way.

Proof. Suppose the function h: Sn−1×Φe → ∆ defined by h(z, η) = T ∗

z (η) is
a homeomorphism. If η is fixed in Φe , then the function s: Sn−1 → ∆ defined by
s(z) = h(z, η) is a continuous function. But π ◦ s is the identity on Sn−1 because

π ◦ s(z) = π
(
T ∗

z (η)
)

= z

for each z ∈ Sn−1 . This contradicts Theorem 6.3.
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7. Correspondence between prime ends and boundary fibers

Generalizations of the theory of homeomorphic boundary extensions lead nat-
urally to a discussion of prime ends. Theorem 5.1 indicates a possible connection
between the boundary fibers and prime ends of Ω. We make this connection ex-
plicit by showing that whenever Ω is finitely connected on the boundary, the set
of components of boundary fibers and the set of prime ends are one and the same.

A domain Ω is finitely connected at z ∈ ∂Ω if z has arbitrarily small neigh-
borhoods in Rn whose intersection with Ω has a finite number of components. If
this number is one, Ω is locally connected at z . The domain Ω is finitely con-

nected on the boundary or locally connected on the boundary if these conditions
hold for each z ∈ ∂Ω.

The theory of prime ends provides a method for defining connectedness of
domains at their boundaries. Caratheodory initiated this theory by showing that
each conformal mapping f : B2 → Ω has a homeomorphic extension from B2

onto a compactification Ω̃ of Ω obtained by combining Ω with its set of prime
ends. Näkki and Zorich applied this idea to domains in higher dimensions and
obtained similar results for quasiconformal mappings of domains in n -space [Nk],
[Z]. Väisälä gave a particularly simple description of prime ends for domains finitely
connected on the boundary [V2]. We use his description to prove our theorem.

If Ω is a domain in Rn , then an endcut of Ω is a path γ: [a, b) → Ω such
that γ(t) → z ∈ ∂Ω as t → b . We associate z to γ by the notation z = h(γ) . A
subendcut of γ is a restriction of γ to a subinterval [a1, b) . If U is a neighborhood
of h(γ) , then there is a unique component P (U, γ) of U∩Ω containing a subendcut
of γ . Two endcuts γ and λ are equivalent if h(γ) = h(λ) and if P (U, γ) = P (U, λ)
for each neighborhood U of h(γ) . The equivalence class γ̃ of γ is a prime end

of Ω, and the collection P of all prime ends is the prime end boundary of Ω.
The set Ω̃ = P ∪Ω is the prime end compactification of Ω. A natural impression
map θΩ: Ω̃ → Ω is defined by θΩ(γ̃) = h(γ) for γ̃ ∈ P and θΩ(x) = x for
x ∈ Ω. If Ω is locally connected at z ∈ ∂Ω, then θ−1

Ω (z) is a single point. Thus
if Ω is locally connected on the boundary, P can be identified with ∂Ω. The
following lemmas show that analogous equivalences can be defined for elements in
the Royden boundary.

Lemma 7.1. Let Ω be finitely connected on the boundary with z ∈ ∂Ω . If

χ ∈ Φz and U is a neighborhood of z in R
n
, then there is a unique component

Q(U, χ) of U∩Ω such that each Royden net {zα} corresponding to χ is eventually

in Q(U, χ) .

Proof. Let ẑα → χ . First we claim that {zα} is eventually in a single
component of U ∩Ω. If not, then since U ∩Ω has a finite number of components,
there must be a component V of U ∩ Ω such that {zα} is both frequently inside
and frequently outside V . We define a variant of the function σz by choosing n
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small enough so that B(z, 1/n) ⊂ U and letting

u(x) =

{
|x − z|, x ∈ V ∩B(z, 1/n),
1/n, x ∈ Ω \

(
V ∩ B(z, 1/n)

)
.

Then u ∈ A(Ω), and the net {ẑα(u)} has a subnet converging to 0 and a subnet
converging to 1/n ; hence {ẑα(u)} does not converge to χ(u) , a contradiction.

Furthermore, let {zα} and {zβ} be distinct Royden nets corresponding to χ .
If there are distinct components V and W of U ∩Ω such that {zα} is eventually
in V and {zβ} is eventually in W ⊂ Ω\V , then for u defined as above, we obtain
χ(u) = limα ẑα(u) = 0 and χ(u) = limβ ẑβ(u) = 1/n , a contradiction.

Theorem 7.2. Two elements χ and η in Φz are in the same component of

Φz if and only if Q(U, χ) = Q(U, η) for each neighborhood U of z in R
n
.

Proof. Suppose there is a neighborhood U of z for which Q(U, χ) 6= Q(U, η) .
If n is chosen small enough so that B(z, 1/n) ⊂ U and

u(x) =

{
|x − z|, x ∈ Q(U, χ) ∩B(z, 1/n),
1/n, x ∈ Ω \

(
Q(U, χ) ∩B(z, 1/n)

)
,

then u ∈ A(Ω), and by Corollary 4.7 the range of û on Φz is the two point
set {0, 1/n} . The fact that û is continuous on Ω∗ implies Φz has at least two
components, one of which contains χ and one of which contains η , a contradiction.

Conversely, let Q(U, χ) = Q(U, η) for each neighborhood U of z , and let
{zα} and {yβ} be nets in Ω such that ẑα → χ and ŷβ → η . Suppose that χ and
η are in different components Ψ and Π of Φz . Since Φz is a closed subset of ∆,
the component Ψ and the set Φz \ Ψ are also closed. By the Urysohn Lemma,
there is a g ∈ C(Ω∗) such that g|Ψ ≡ 1 and g|(Φz \ Ψ) ≡ 0. Because Â is dense
in C(Ω∗) , there is v̂ ∈ Â so that the range of v̂ restricted to Ψ lies in ( 2

3 , 4
3 )

and the range of v̂ restricted to Φz \ Ψ lies in (−1
3 , 1

3) . Because χ is equivalent
to η , Q

(
B(z, 1/n), χ

)
= Q

(
B(z, 1/n), η

)
= Qn for each positive integer n . Thus

{zα} is eventually in Qn and v(zα) is eventually greater than 1
2 , while {yβ} is

eventually in Qn and v(yβ) is eventually less than 1
2
. Because Qn is connected

and v is continuous, for each n there exists xn ∈ Qn such that v(xn) = 1
2 .

Corollary 4.7 then implies that 1
2

lies in the range of v̂ on Φz , a contradiction.

Corollary 7.3. If Ω is locally connected at z ∈ ∂Ω , then Φz is connected.

Proof. By Theorem 7.2, it is enough to show that if χ, η ∈ Φz then Q(U, χ) =
Q(U, η) for each neighborhood U of z . Let U be a neighborhood of z . Then
because Ω is locally connected on the boundary there exists a neighborhood V of z
such that V ⊂ U and V ∩Ω is connected. Thus Q(V, χ) = Q(V, η) . By definition,
both Q(U, χ) and Q(U, η) are components of U∩Ω that contain Q(V, χ) ; therefore
they are the same.
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Theorem 7.4. Let Ω be finitely connected on the boundary. The set C of

components of boundary fibers in ∆ is identical to the set P of prime ends of Ω .

Proof. We define the function κ: P → C by the rule κ(γ̃) = Ψ if and
only if h(γ) = π(Ψ) and, for each χ ∈ Ψ and neighborhood U of z in R

n
,

P (U, γ) = Q(U, χ) . The fact that κ is well-defined and injective follows from
Theorem 7.2. We show that κ is surjective and hence a bijection. Let Ψ ∈ C
and χ ∈ Ψ; then

{
Q

(
B(z, 1/j), χ

)}
= {Qj} is a sequence of connected open

sets in Rn with Qj+1 ⊂ Qj for each j ∈ N . For each j , let xj be a point
in Qj . Since Qj is an open connected set in Rn , there is a path γj joining xj

to xj+1 in Qj . Let γ be the path defined by joining γ1 to γ2 to γ3 , etc. Then
h(γ) = z . If U is a neighborhood of z , then there is m large enough so that
Qm ⊂ U . By definition, each Royden net {zα} corresponding to χ is eventually
in the connected set Qm ⊂ U , so Q(U, χ) must be the component of U ∩ Ω
containing Qm . On the other hand, Qm contains a subendcut of γ , and therefore
P (U, γ) is the component of U ∩ Ω containing Qm . Thus P (U, γ) = Q(U, χ) .

8. The Royden boundary and Stone–Cech compactification of N

Finally, we examine the topology of individual boundary fibers. Because
each sequence tending to ∂Ω is an interpolating sequence for A(Ω), Corollary 4.9
highlights how differently nets converging to a boundary point may behave with
respect to A(Ω) than sequences converging to a boundary point. Boundary fibers
are determined by nets, so one might guess that whenever z ∈ ∂Ω, the fiber
Φz is a large and complicated set. This is true. If βN denotes the Stone–Cech
compactification, then each such fiber contains a homeomorphic copy of βN \N .

Up to homeomorphism, βN is the unique compactification of N on which
each real-valued bounded continuous function on N can be uniquely extended.
The space βN can also be characterized as the compactification of N that has
the properties outlined in the following theorem.

Theorem 8.1 [Ga, Theorem 1.4, p. 186]. Let Y be a compact Hausdorff

space and let τ : N → Y be a continuous mapping. Then the mapping τ has a

unique continuous extension τ : βN → Y . If τ(N) is dense in Y and if the images

of disjoint subsets of N have disjoint closures in Y , then the extension τ is a

homeomorphism of βN onto Y .

The Stone–Cech compactification of N is a huge space. For example, if Z
is any infinite closed subset of βN , then card (Z) = card (II) where I = [0, 1] ,
[D, p. 244]. In fact, βN can be mapped onto any separable compact Hausdorff
space; however, no point of βN \ N can be exhibited concretely [Ga, p. 187].
This is unfortunate for the study of fibers in the Royden boundary because of the
following theorem.

Theorem 8.2. For each z ∈ ∂Ω , Φz contains a homeomorphic image of

βN \N .
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Proof. Let {zj} be a sequence of distinct points in Ω such that zj → z ∈ ∂Ω,
and let Y be the closure of {ẑj} in Ω∗ . Then as a subspace of Ω∗ , Y is compact
and Hausdorff. We define τ : N → Y by τ(j) = ẑj for each j ∈ N , and thus
τ(N) = {ẑj} is dense in Y .

If S = {s1, s2, . . .} and Q = {q1, q2, . . .} are disjoint subsets of N , then be-
cause {zj} is an interpolating sequence, there exists u ∈ A(Ω) for which u(zsi

) = 1
and u(zqk

) = 0 for each i and k . This means û(ẑ) = 1 for each ẑ ∈ τ(S) ; and

since û ∈ C(Ω∗) , χ ∈ τ(S) implies χ(u) = û(χ) = 1. Similarly, η ∈ τ(Q) implies
η(u) = 0. Thus τ(S) ∩ τ(Q) = ∅ , and by Theorem 8.1, τ has a homeomorphic
extension τ of βN onto Y . Because zj → z and Y is the closure of {ẑj} minus
any finite set, it follows that σ̂z is identically 0 on Y \ {ẑj} ; i.e. χ(σz) = 0 for
each χ ∈ Y \ {ẑj} , so

τ(βN \ N) = Y \ {ẑj} ⊂ Φz.
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