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Abstract. This article is dedicated to the study of quasinormable injective tensor products
of locally convex spaces and quasinormable spaces of continuous linear operators. The stability of
the quasinormability is obtained in the frame of the class of spaces which are quasinormable by
operators; this class, introduced and studied here, contains many function spaces. The problems
considered in the article are closely related to the problem of topologies of Grothendieck. A
characterization of the quasinormable spaces which are (FBa)-spaces in the sense of Taskinen
is obtained and new examples and counterexamples are given. In particular we show that the
quasinormable space lp+ is a concrete example of a non-(FBa)-space.

Grothendieck (see [30, 31]) studied locally convex properties of function
spaces, such as spaces of sequences, of differentiable functions, analytic functions,
distributions, etc. There are a lot of examples of spaces of vector-valued functions
which can be represented as tensor products or as spaces of continuous and linear
mappings and it is convenient to know their topological structure.

The aim of this article is to study the stability of the property of being quasi-
normable under the formation of injective tensor products or of spaces of con-
tinuous and linear mappings. The class of quasinormable locally convex spaces
was introduced and studied by Grothendieck as a class containing most of the
usual function spaces. Banach spaces and Schwartz spaces are examples of quasi-
normable spaces. The typical examples of quasinormable spaces which are neither
normable nor Montel are the following: the space C(X) endowed with the com-
pact open topology for every completely regular Hausdorff space X , the spaces
Ck(Ω) (k ∈ N , Ω an open subset of RN ), every non-trivial quojection, every
non-trivial (gDF)-space which is not Montel, the spaces B0(RN ) and B(RN ) of
Schwartz and the local spaces Bloc

p,k(Ω) of Hörmander.
More precisely we investigate the following questions:

(P1) If E and F are quasinormable l.c.s., when is E ⊗ε F also quasinormable?

(P2) If E′
b and F are quasinormable l.c.s., when is Lb(E, F ) quasinormable?

In [18] Bonet and the author proved that there are Banach spaces Z and
quasinormable spaces E (Fréchet or (DF)) such that Z⊗̂εE and Lb(Z, E) are
not quasinormable. Here we give conditions for the answer to (P1) to be positive
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if we fix the Banach space Z or the quasinormable space E . Our purpose is to
introduce and investigate certain classes of l.c.s. which constitute a very general
frame in which the problems (P1) and (P2) have a positive answer: the spaces
which are quasinormable by operators, briefly (QNo), and the spaces that satisfy
the strict Mackey condition by operators, briefly (QNo)’. These classes are related
with the (FG) and (DFG)-spaces of Bonet, Dı́az and Taskinen [14] which were
introduced to give positive answers to the problem of topologies of Grothendieck
and other related dual questions. In fact we show that the problem (P1) is some-
what equivalent to the problem of topologies of Grothendieck. We include some
applications to infinite-dimensional holomorphy.

The article is divided in five sections. In Section 1 we introduce some notation
and give preliminary results. Section 2 is devoted to the study of problems (P1)
and (P2) when F is a fixed Banach space. In Section 3 we define and investigate
the classes (QNo) and (QNo)’, establishing some hereditary properties and showing
that the answer to (P1) and (P2) is positive in this context. We also show that
these classes are, in a certain sense, optimal. We provide examples of spaces
in the classes (QNo) and (QNo)’. In particular we give examples of spaces of
continuous functions, holomorphic functions and C∞ functions. In Section 4 we
study the problem of topologies of Grothendieck and some dual questions in the
context of Fréchet spaces (QNo) and (DF)-spaces with condition (QNo)’. The
quasinormable Fréchet spaces which are (FBa)-spaces in the sense of Taskinen [49]
are characterized as the Fréchet spaces E such that E′

b satisfies (QNo)’. From this
we conclude that the space lp+ is not an (FBa)-space. This answers a question
of Taskinen and it is the first natural example of a Fréchet space which is not an
(FBa)-space. In [45] the author showed that there are Fréchet Schwartz spaces
which are not (QNo), thus not (FBa)-spaces. Finally, in Section 5 we apply the
results of the previous sections to obtain new examples of spaces of holomorphic
functions defined on Fréchet or (DF)-spaces which are quasinormable.

Our notation is standard. We refer the reader to [34, 38, 43] for locally convex
spaces and to [24] for infinite holomorphy.

1. Definitions and preliminary results

If X is a Banach space, BX denotes its closed unit ball. For a locally convex
space (l.c.s.) E , FIN(E) denotes the set of all finite dimensional subspaces of E .
If E is a l.c.s., U0(E) and B(E) stand for the families of all absolutely convex
0-neighbourhoods and absolutely convex bounded sets in E respectively. The
absolutely convex hull of a subset A of E is denoted by Γ(A) . If A is an absolutely
convex (abx.) subset of E , we denote by pA the Minkowski functional associated
with A and EA := [A]/ kerpA endowed with the norm induced by pA . By E′

b , E′
co

and E′
i we mean the strong dual of E , E′ endowed with the topology of uniform

convergence on abx. compact subsets of E , and the bornological space associated
with E′

b , respectively. In what follows we will use the spaces Cp (1 < p < ∞) of



Quasinormable spaces and the problem of topologies of Grothendieck 169

Johnson as defined, e.g., in [34] except that we assume C′
p = Cq (1/p + 1/q = 1).

This amounts to choosing a sequence (Fk)k∈N of finite dimensional Banach spaces
which is dense in the set of all finite dimensional Banach spaces endowed with the
Banach Mazur distance and letting Cp be the lp -direct sum of ⊕kFk × ⊕kF ′

k .
The space Cp (1 < p < ∞) is reflexive and has a Schauder basis (cf. [35]). We
recall that a l.c. space E is called quasinormable if

∀U ∈ U0(E) ∃V ∈ U0(E) ∀ε > 0 ∃B ∈ B(E) : V ⊂ εU + B,

and E is said to satisfy the strict Mackey condition if

∀B ∈ B(E) ∃C ∈ B(E) ∀ε > 0 ∃U ∈ U0(E) : U ∩ B ⊂ εC.

If E is quasibarrelled then E is quasinormable if and only if E′
b satisfies

the strict Mackey condition. The strong dual G′
b of a l.c.s. G with the strict

Mackey condition is quasinormable, and the converse is true if G is quasibar-
relled. Every quasinormable Fréchet space is distinguished, i.e. E′

b = E′
i . The

class of quasinormable spaces has good stability properties, for instance quotients
and countable inductive limits of quasinormable spaces are quasinormable, com-
pletions and products of quasinormable spaces are also quasinormable. Concerning
tensor products, Grothendieck showed that the projective tensor product of two
quasinormable spaces is also quasinormable. This is not true in general for the
injective tensor product as was shown by Bonet and the author in [18]. One also
has that the injective tensor product G ⊗ε H of two (DF)-spaces G and H with
the strict Mackey condition always satisfies the strict Mackey condition, but there
are Banach spaces X and strict (LB)-spaces G such that G⊗π X does not satisfy
the strict Mackey condition (see [18]).

A l.c.s. E is a (gDF)-space if it has a fundamental sequence (Bn)n∈N of
bounded subsets such that for every sequence (Un)n∈N of 0-neighbourhoods in
E , there is U ∈ U0(E) such that

U ⊂
⋂

n∈N

(Un + Bn),

that is, the topology τ of E is the finest locally convex topology coinciding with
τ on each Bn , n ∈ N .

Every (gDF)-space is quasinormable and the (gDF)-spaces with the strict
Mackey condition are bornological.

If E and F are l.c.s., by L(E, F ) we denote the space of all linear continuous
mappings from E into F . If A ⊂ E , B ⊂ F and M is a fixed linear subspace of
L(E, F ) we write

W (A, B) := {f ∈ M / f(A) ⊂ B}.
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The space L(E, F ) endowed with the topology of uniform convergence on the
bounded subsets of E will be denoted by Lb(E, F ) . There is a topological iso-
morphism between Lb(E, F ′

b) and the space (E⊗π F )′ endowed with the topology

of uniform convergence on the elements of A :=
{

Γ(B ⊗ C) / B ∈ B(E), C ∈

B(F )
}

. In particular, if E and F are (DF)-spaces, then Lb(E, F ′
b)

∼= (E⊗̂πF )′b
(see [38, 41.4.(7)]), but this isomorphism is not true in general if E and F are
Fréchet spaces as Taskinen showed in [48].

We recall the definitions of (FG)-spaces and (DFG)-spaces given by Bonet,
Dı́az and Taskinen in [14]:

Definition 1.1. A Fréchet space E is said to be an (FG)-space if there is
an increasing fundamental sequence of seminorms (‖ · ‖k)k∈N such that for every
sequence (αk)k∈N , 0 < αk ≤ 1 (k ∈ N) there is a sequence (Pk)k∈N ⊂ L(E, E)
satisfying

(FG1) x =
∑

j∈N
Pj(x) , ∀x ∈ E ,

(FG2) ‖Pk(x)‖k−1 ≤ αk‖x‖k , ∀x ∈ E , ∀k ≥ 2 ,

(FG3) ∀j > k , ∃λjk ≥ 1 : ‖Pk(x)‖j ≤ λjk‖x‖k , ∀x ∈ E .

If we let Uk := {x ∈ E : ‖x‖k ≤ 1} , condition (FG2) is equivalent to Pk(Uk) ⊂
αkUk−1 , ∀k ≥ 2 and (FG3) is equivalent to Pk(Uk) ∈ B(E) , k ∈ N .

Definition 1.2. A (DF)-space (G, t) is said to be a (DFG)-space if there
is an increasing fundamental sequence (Bk)k∈N of closed abx. bounded sets in
G and there is a locally convex topology s in G weaker than t such that (G, t)
has a basis of s -closed abx. 0 -neighbourhoods and, for every sequence (αk)k∈N ,
0 < αk ≤ 1 , there is a sequence of operators (Qk)k∈N in L

(
(G, t), (G, t)

)
such

that

(DFG1) x =
∑

j∈N
Qj(x) , ∀x ∈ G , where the series converges for the topology s ,

(DFG2) Qk(Bk−1) ⊂ αkBk , ∀k ≥ 2 ,

(DFG3) Q−1
k (Bk) is a 0 -neighbourhood in (G, t) for every k ∈ N .

If the topology s can be taken equal to t in the definition we will say that
(G, t) is a strong (DFG)-space.

We need also some definitions and a technical lemma on tensor norms. We
refer to [43] and [21] for the notations.

If E and F are l.c.s. and a is a tensor norm, the topology of E ⊗a F is
given by the system of seminorms (pU ⊗a pV )(z) := a

(
(ΦU ⊗ ΦV )(z); EU , FV

)
,

z ∈ E ⊗ F , U ∈ U0(E) , V ∈ U0(F ) , where ΦU : E → EU , ΦV : F → FV are the
canonical maps.

If A and B are abx. subsets of E and F , respectively, we will denote by
a(A, B) := {x ∈ E ⊗a F / (pA ⊗a pB)(x) ≤ 1} =

{
x ∈ [A] ⊗ [B] / a

(
(ΦA ⊗

ΦB)(x); EA, EB

)
≤ 1

}
.
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Lemma 1.3. If Ei and Fi are l.c.s., Ti ∈ L (Ei, Fi) , i = 1, 2 ; then

(T1 ⊗ T2)
(
a(A, B)

)
⊂ a

(
T1(A), T2(B)

)

for every A ⊂ E1 , B ⊂ E2 absolutely convex.

Proof. The following operators are canonically induced by Ti , i = 1, 2.

T̃1: E1A
→ F1T1A

T̃2: E2B
→ F2T2B

and the following diagram is commutative

[A] ⊗ [B] [T1A] ⊗ [T2B]

E1A
⊗ E2B

F1T1A
⊗ F2T2B

ΦA⊗ΦB

��

T1⊗T2 //

ΦT1A⊗ΦT2B

��
T̃1⊗T̃2 //

Let z ∈ a(A, B) . By definition we have

a
(
(ΦA ⊗ ΦB)(z); E1A

, E2B

)
≤ 1.

This implies

a
([

(T̃1 ⊗ T̃2) ◦ (ΦA ⊗ ΦB)
]
(z); F1T1A

⊗ F2T2B

)
≤ 1

and, by the commutativity of the diagram above,

(T1 ⊗ T2)(z) ∈ a(T1A, T2B).

2. L∞ -spaces and quasinormability

In [18] Bonet and the author gave examples of quasinormable Fréchet or (DF)-
spaces E and Banach spaces Z such that E⊗̂εZ is not quasinormable. It is (now)
possible to get a characterization, in terms of the Banach space Z , of the stability
of the property of being quasinormable under the formation of injective tensor
products. First we need a technical lemma.

For Lp -spaces in the sense of Lindenstrauss and Pe lczyński we refer to [39].

Lemma 2.1. Let Z be a Banach space which is not an L∞ -space. Then
there are reflexive Banach spaces X , Y such that Y is a topological subspace of
X , X ′ and Y o (polar in X ′ ) have the bounded approximation property and the
canonical map

j: Y o ⊗π Z ′ → X ′ ⊗π Z ′

is not a monomorphism.
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Proof. We will follow the idea of [22, Proposition 1.1]. If Z is not an L∞ -
space then Z ′ is not an L1 -space. This implies that there are Banach spaces G
and M , with M a topological subspace of G , such that the canonical inclusion
of M ⊗π Z ′ into G ⊗π Z ′ is not a monomorphism (see e.g. [28]). Since the
projective tensor norm is determined by finite-dimensional spaces, there are finite-
dimensional Banach spaces Gn with subspaces Mn and elements zn ∈ Mn ⊗ Z ′ ,
n ∈ N , such that

(∗) ‖zn‖Gn⊗πZ′ < 1 but ‖zn‖Mn⊗πZ′ > n.

Set l2
(
(Gn)n∈N

)
and l2

(
(Mn)n∈N

)
the l2 -sum of (Gn)n∈N and (Mn)n∈N respec-

tively. We define
X :=

(
l2

(
(Gn)n∈N

))′

and
Y :=

(
l2

(
(Mn)n∈N

))o
=

(
l2

(
(Gn)n∈N

)
/l2

(
(Mn)n∈N

))′
.

Let B and C be the unit balls of l2
(
(Mn)n∈N

)
and l2

(
(Gn)n∈N

)
, respec-

tively. If the canonical map j: Y o ⊗π Z ′ → X ′ ⊗π Z ′ is a monomorphism, there
is α > 0 such that

(∗)′ Γ(C ⊗ BZ′) ∩ (Y o ⊗ Z ′) ⊂ αΓ(B ⊗ BZ′)

Defining xn ∈ l2
(
(Mn)n∈N

)
⊗Z ′ as zn in the nth -coordinate and zero in the other

case, we have by (∗) that

xn ∈ Γ(C ⊗ BZ′) but xn 6∈ nΓ(B ⊗ BZ′)

for every n ∈ N . This contradicts (∗)′ .

Definition 2.2. Let λ be a normal Banach sequence space and let X , Y
be Banach spaces such that Y is a topological subspace of X . The standard
quojection of Moscatelli type associated with λ , X and Y is defined as:

λ(X, X/Y ) :=
{

(xn)n∈N ∈ XN / (‖q(xn)‖)n∈N ∈ λ
}
,

where q: X → X/Y is the quotient map. A basis of 0 -neighbourhoods in E is
given by (k−1Wk)k∈N , where

Wk :=
{

(xn)n∈N ∈ XN / ‖
(
(‖xj‖)j<k, (‖q(xj)‖

)
j≥k

)‖λ ≤ 1
}
.

Denoting by Fn the nth -coordinate subspace of E , we can identify Fn with X
and

Wk ∩ Fn =

{
BX + Y if k ≤ n
BX if k > n.

For more details on Fréchet spaces of Moscatelli type we refer to [15].
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Theorem 2.3. Let Z be a Banach space. The following are equivalent

(a) Z is an L∞ -space,
(b) Z⊗̂εE is quasinormable for every quasinormable space E ,
(c) Z⊗̂εE is quasinormable for every reflexive quojection E ,
(d) Z⊗̂εE is quasinormable for every reflexive strict LB-space E .

Proof. (a) implies (b) follows from a result of Defant (see [19, 4.5.5]) while
(b) implies (c) and (b) implies (d) are trivial.

(c) implies (a):
Take X and Y as in Lemma 2.1. Since X and X/Y have the approximation

property and are reflexive, E := l2(X, X/Y ) is a reduced projective limit of Ba-
nach spaces with the approximation property (i.e., E has the strict approximation
property) and it is reflexive (see [15, 2.3, 2.6]). By [18, Lemma 2.6] we know that
the canonical inclusion

Φ: l2(X, X/Y )′b⊗̂πZ ′ →
(
l2(X, X/Y )⊗̂εZ

)′
b

is a continuous bijection such that, for every equicontinuous subset C of(
l2(X, X/Y ) ⊗̂εZ

)′
b
, there are U ∈ U0

(
l2(X, X/Y )

)
and V ∈ U0(Z) satisfy-

ing

C ⊂ Γ(Uo ⊗ V o)
l2(X,X/Y )′b⊗̂πZ′

.

We conclude as in [18, 2.5] that l2(X, X/Y )⊗̂εZ is not quasinormable.
(d) implies (a). Take also X and Y as in Lemma 2.1 and define E :=

l2(X, X/Y )′b . Now the conclusion follows from [22, Proposition 2.2] and the argu-
ment of [18, 3.4].

Remark. If Z is a Banach space which is not an L∞ -space, then there are
quojections (respectively strict LB-spaces) E such that Lb(Z

′, E) is not quasi-
normable (see [18, 2.2, 2.3]).

We can ask the following natural question, related with the Theorem 2.3:
If Z is a Banach L∞ -space and E′

b is quasinormable, is Lb(E, Z) necessarily
quasinormable? This is not true in general and we will give a concrete example
after some technical results.

Let X , Y , Z be Banach spaces such that Y is a topological subspace of X
and consider the restriction map:

R: Lb(X, Z) → Lb(Y, Z); f 7→ f |Y .

We define Y ⊥ := { f ∈ Lb(X, Z) / f(Y ) = 0 } .

Lemma 2.4. If there is s > 0 such that

W (BX , 2BZ) ∩ W (sBY , BZ) ⊂ Y ⊥ + W (BX , BZ),

then R is a homomorphism.
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Proof. First, let us show that

(1)
(
Y ⊥ + W (BX , 2BZ)

)
∩ W (sBY , BZ) ⊂ Y ⊥ + W (BX , BZ).

If f ∈
(
Y ⊥ + W (BX , 2BZ)

)
∩ W (sBY , BZ) ; f = g + h with g ∈ Y ⊥ and

h ∈ W (BX , 2BZ) , then h ∈ W (sBY , BZ) + Y ⊥ = W (sBY , BZ) . Therefore h ∈
W (BX , 2BZ) ∩ W (sBY , BZ) and, by hypothesis, h ∈ Y ⊥ + W (BX , BZ) as well
as f .

Proceeding by induction the inclusion (1) implies

(2)
(
Y ⊥ + W (BX , 2nBZ)

)
∩ W (sBY , BZ) ⊂ Y ⊥ + W (BX , BZ), ∀n ∈ N.

Now (2) implies

W (sBY , BZ) ⊂ Y ⊥ + W (BX , BZ),

and we conclude R
(
W (BX , BZ)

)
⊃ R

(
W (sBY , BZ)

)
∈ U0(Im R) .

By an injective Banach space we mean a Banach space which is complemented
in every (Banach) space containing it. If λ ≥ 1 we say that a Banach space X
belongs to the class Pλ if, for every Banach space Y containing X , there is a
projection from Y onto X with norm less than or equal to λ .

The following lemma was kindly provided by P. Domański.

Lemma 2.5. There are Banach spaces X , Y , Z with Y a topological
subspace of X such that Z is an L∞ -space but R is not a homomorphism.

Proof. By [55, 5. Examples] we can find a sequence (Kn)n∈N of compact
spaces such that C(Kn) is injective but C(Kn) 6∈ Pn . Then there is a sequence
(Xn)n∈N of Banach spaces such that C(Kn) is a topological subspace of Xn and
every projection from Xn onto C(Kn) has norm greater than n , n ∈ N . Define
X := l∞

(
(Xn)n∈N

)
and Y = Z := l∞

(
(C(Kn))n∈N

)
(the l∞ -sum of the respec-

tive sequences of Banach spaces). Let us suppose that R is a homomorphism,
then there is λ > 0 such that

λR
(
W (BX , BZ)

)
⊃ Im R ∩ W (BY , BZ).

Now take fn: Y → Z , y 7→ y · en (en the nth -coordinate vector of l∞ ),
n ∈ N . It easily follows that fn ∈ Im R ∩ W (BY , BZ) , n ∈ N , since C(Kn) is
injective. If there are elements hn ∈ W (BX , BZ) with R(λhn) = fn , n ∈ N , then
choosing n ∈ N with n > λ we have

λhn |Xn
∈ L

(
Xn, C(Kn)

)
, λhn |C(Kn)= fn |C(Kn)= IC(Kn),

that is, gn := λhn |Xn
is a projection from Xn onto C(Kn) . But ‖gn‖ ≤ λ < n ,

which yields a contradiction.
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Proposition 2.6. There are a Banach space X , a closed subspace Y , and a
Banach L∞ -space Z such that Lb

(
λ(X, X/Y ), Z

)
is not quasinormable.

Proof. Choose X , Y , Z as in Lemma 2.5. We can write E := λ(X, X/Y )
and consider the canonical 0-basis (Wk)k∈N in E as in 2.2.

If Lb(E, Z) is quasinormable then, given B :=
⋂

k∈N
Wk ∈ B(E) , there

is C =
⋂

k∈N
λkWk ∈ B(E) such that, for every M > 0, there exists n ∈ N

satisfying

W (C, MBZ) ⊂ nW (Wn, BZ) + W (B, BZ).

Take k > n and intersect the above inclusion with L(Fk, Z) to get

W (M, k) := W
(
λkBX ∩ (λ1BX + Y ), MBZ

)
⊂ nW (BX + Y, BZ) + W (BX , BZ).

We can now find a suitable (bigger) M such that there is s > 0 which satisfies

W (BX , 2BZ) ∩ W (sBY , BZ) ⊂ W (M, k) ⊂ Y ⊥ + W (BX , BZ),

and we have a contradiction by Lemmas 2.4 and 2.5.

Observation. Note that if Z is the dual of an L1 -space and E is a Fréchet
space, then it is known (cf. [22]) that Lb(E, Z) is a (DF)-space (thus quasi-
normable). Proposition 2.6 shows that this assertion does not hold in general
if Z is an L∞ -space which is not a dual space.

3. The classes (QNo) and (QNo)’

Definition 3.1. A l.c. space E is said to be quasinormable by operators,
briefly (QNo), if there is a basis U of absolutely convex closed 0 -neighbourhoods
in E such that:

∀U ∈ U , ∃V ∈ U ∀ε > 0 ∃P ∈ L(E, E) :

(i) P (V ) ∈ B(E) ,
(ii) (I − P )(V ) ⊂ εU .

Definition 3.2. A l.c. space E satisfies the strict Mackey condition by
operators, briefly (QNo)’, if there is a fundamental system B of absolutely convex
bounded subsets of E such that

∀B ∈ B, ∃C ∈ B ∀ε > 0 ∃P ∈ L(E, E) :

(i) P−1(C) ∈ U0(E) ,
(ii) (I − P )(B) ⊂ εC .
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Remarks. (a) It follows easily from the definitions that the l.c.s. which are
(QNo) (respectively satisfy (QNo)’) are “a fortiori” quasinormable (respectively
satisfy the strict Mackey condition).

(b) Definitions 3.1 and 3.2 do not depend on the respective fundamental sys-
tems U and B of 0-neighbourhoods and bounded subsets in E .

(c) A l.c.s. E is (QNo) if and only if, considering the corresponding projective
spectrum {EU , ΦU,V }(U0(E),⊂) , the following property is satisfied: For every U ∈
U0(E) there is V ∈ U0(E) , (V ⊂ U ), such that ΦU,V can be approximated in the
operator norm by linear maps of type {ΦU ◦ P / P ∈ L(EV , E)} . Analogously E
satisfies (QNo)’ if and only if, considering the corresponding inductive spectrum
{EB , ΦC,B}(B(E),⊂) , the following property is satisfied: For every B ∈ B(E) ,
there is C ∈ B(E) , (B ⊂ C ), such that ΦC,B can be approximated in the
operator norm by restrictions to EB of continuous linear maps from E into EC .

It is possible to establish the following easy hereditary properties of the classes
(QNo) and (QNo)’, which are inspired by the respective hereditary properties of
quasinormability and the strict Mackey condition. We recall that a subspace F
of a l.c.s. E is called large if, for every B ∈ B(E) there is C ∈ B(F ) such that
B ⊂ C .

Proposition 3.3. (1) The complemented subspaces of a l.c.s. E which is
(QNo) (respectively satisfies (QNo)’) are also (QNo) (respectively also satisfy
(QNo)’).

(2) Every normed space is (QNo) and satisfies (QNo)’.
(3) The product (respectively direct sum) of a family of spaces (QNo) (re-

spectively satisfying (QNo)’) is also (QNo) (respectively also satisfies (QNo)’).
(4) The direct sum (respectively product) of a sequence of spaces (QNo)

(respectively satisfying (QNo)’) is also (QNo) (respectively also satisfies (QNo)’).
(5) If E is locally complete and F is a dense (respectively large) subspace

which is (QNo) (respectively satisfies (QNo)’), then E is also (QNo) (respectively
also satisfies (QNo)’).

The main purpose of Definitions 3.1 and 3.2 is to obtain good stability prop-
erties of the quasinormability by taking tensor products and spaces of continuous
and linear operators, as the following results show.

Proposition 3.4. Let a be a tensor norm.
(1) If E and F are (QNo), then E ⊗a F is also (QNo).
(2) If G and H satisfy (QNo)’ and the bounded subsets of G ⊗a H are

“localizable”, i.e., the family of bounded sets {a(A, B)
G⊗aH

/ A ∈ B(G) , B ∈
B(H)} is fundamental in G ⊗a H , then E ⊗a F also satisfies (QNo)’.

Proof. We are going to prove (2). The proof of (1) follows the same pattern.
Given B ∈ B(G ⊗a H) there are B1 ∈ B(G) and B2 ∈ B(H) such that B ⊂
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a(B1, B2)
G⊗aH

. By hypothesis there are C1 ∈ B(G) , C2 ∈ B(H) (Bi ⊂ Ci ,
i = 1, 2) such that ∀λ1 > 0, ∃P1 ∈ L(G, G) and ∀λ2 > 0, ∃P2 ∈ L(H, H)
satisfying:

(a) U := P−1
1 (C1) ∈ U0(G) , (I − P1)(λ1B1) ⊂ C1 ,

(b) V := P−1
2 (C2) ∈ U0(H) , (I − P2)(λ2B2) ⊂ C2 .

Let λ > 0. We take λ1 := 2λ and λ2 := 2λM , where M > 0 satisfies

B1 ⊂ MU . Defining P := P1 ⊗ P2 ∈ L(G ⊗a H, G ⊗a H) , C := a(C1, C2)
G⊗aH

we conclude, on account of Lemma 1.3, that

(i) P
(
a(U, V )

)
⊂ a

(
P1(U), P2(V )

)
⊂ C ,

(ii) (I − P )
(
λa(B1, B2)

)
=

[
(I − P1) ⊗ I + P1 ⊗ (I − P2)

](
λa(B1, B2)

)

⊂ a
(
(I − P1)(λB1), B2

)
+ a

(
P1(B1), (I − P2)(λB2)

)

⊂ 1
2
a(C1, B2) + 1

2
a(MC1, M

−1C2) ⊂ a(C1, C2) .
Thus (I − P )(λB) ⊂ C .

Observation. The hypotheses of Proposition 3.4 (2) are satisfied if, for
instance, a = ε and G , H are both Fréchet or (DF)-spaces which satisfy (QNo)’
(see [20]), or a = π and G , H are both (DF)-spaces satisfying (QNo)’ (cf. [38,
41.4.7]).

In the following proposition we will denote by A the ideal F of finite rank
operators, K of compact operators, M of Montel operators (i.e. those operators
that send bounded sets into relatively compact sets), LB of bounded operators or
L of all operators and, if M and N are locally convex spaces, Ab(M, N) stands
for the space of all operators Φ ∈ A (M, N) , endowed with the topology of uniform
convergence on the bounded subsets of M .

Proposition 3.5. If E satisfies (QNo)’ and F is (QNo) then

(a) Ab(E, F ) is (QNo),
(b) if the bounded subsets of Ab(F, E) are “localizable”, i.e., the family of

bounded sets {W (U, B) / U ∈ U0(F ), B ∈ B(E)} is fundamental in Ab(F, E) ,
then Ab(F, E) also satisfies (QNo)’.

Proof. (a) Given U ∈ U0

(
Ab(E, F )

)
, there are U ′ ∈ U0(F ) and B ∈ B(E)

with W (B, U ′) ⊂ U . By hypothesis we can find V ′ ∈ U0(F ) and C ∈ B(E)
(V ′ ⊂ U ′ , B ⊂ C ) such that ∀ε1 > 0, ∃P1 ∈ L(F, F ) , ∀ε2 > 0, ∃P2 ∈ L(E, E)
satisfying:

(1) D := P1(V ′) ∈ B(F ) , (I − P1)(V ′) ⊂ ε1U
′ ,

(2) Ũ := P−1
2 (C) ∈ U0(E) , (I − P2)(B) ⊂ ε2C .

Given ε > 0, take ε1 := 1
2ε and ε2 := ε/2M , where M > 0 satisfies D ⊂

MU ′ , and define P : Ab(E, F ) → Ab(E, F ) , Φ 7→ P1 ◦ Φ ◦ P2 . If Φ ∈ W (C, V ′) ,
then

(i)
[
P (Φ)

]
(Ũ) = (P1 ◦ Φ ◦ P2)(Ũ) ⊂ P1(V ′) = D,
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[
(I − P )(Φ)

]
(B) = (Φ − P1 ◦ Φ ◦ P2)(B)

=
[
(I − P1) ◦ Φ + P1 ◦ Φ ◦ (I − P2)

]
(B) ⊂ (I − P1)(V ′) + (P1 ◦ Φ)(ε2C)(ii)

⊂ ε1U
′ +

ε

2M
P1(V ′) ⊂

ε

2
U ′ +

ε

2

( 1

M
D

)
⊂ εU ′.

Thus P (Φ) ∈ W (Ũ , D) and (I − P )(Φ) ∈ εU .

Corollary 3.6. (1) If E satisfies (QNo)’ then E′
b is (QNo).

(2) If E is (QNo) and quasibarrelled then E′
b satisfies (QNo)’.

(3) If E is a Fréchet space (respectively a quasibarrelled (DF)-space) (QNo)
and F is (DF) (respectively Fréchet) with (QNo)’, then Ab(E, F ) satisfies (QNo)’.

Proof. (1) and (2) are trivial. (3) is a consequence of 3.5 (b) and [20, Propo-
sition 4].

As we have shown in 3.4 and 3.5, the classes (QNo) and (QNo)’ constitute a
good setting to get stability of the quasinormability and the strict Mackey condi-
tion by taking tensor products or spaces of continuous and linear mappings. But,
how far are these classes from being optimal? Our next objective is to show that
(QNo) and (QNo)’ are, in certain sense, optimal. Our next lemma is an extension
of [45, Proposition 1].

Lemma 3.7. Let E be a quasinormable l.c.s. such that E⊗εC2 (respectively
Lb(C2, E) , C2εE ) is quasinormable, then

∀U ∈ U0(E) ∃V ∈ U0(E) ∀ε > 0 ∃B ∈ B(E) ∀M ∈ FIN(E) ∃PM ∈
L(E, E) :

(i) PM (M ∩ V ) ⊂ B ,
(ii) (I − PM )(M ∩ V ) ⊂ εU .

Proof. We are going to prove the result for the injective tensor product, the
proof will be similar for Lb(C2, E) and C2εE . Setting X := C2 , by hypothesis
E ⊗ε X is quasinormable. Accordingly we have

∀U ∈ U0(E) ∃V ∈ U0(E) (V ⊂ U) ∀ε > 0 ∃B ∈ B(E) :
(1) W (BX′ , V ) ⊂ W (BX′ , B) + εW (BX′ , U) .
Given M ∈ FIN(E) we write M = M ′ ⊕ N with N ⊂ ker pV and M ′ ∩

ker pV = {0} . We select k ∈ N such that for the k th coordinate Fk of X ′ = C2 we
can find an isomorphism T : Fk → (M ′, pV ) satisfying ‖T‖ ≤ 1 and ‖T−1‖ ≤ 2.
We denote by iM ′ : (M ′, pV ) → E the canonical inclusion (which is continuous
since pV is a norm on M ′ ) and we define R: X ′ → E by R

(
(xn)n∈N

)
:=

iM ′(Txk) . Clearly R ∈ E ⊗ X and R ∈ W (BX′ , V ) since ‖T‖ ≤ 1. By
(1) we can find S: X ′ → E with finite rank such that S ∈ W (BX′ , B) and
R − S ∈ εW (BX′ , U) .

Define Q: M → E by Q(x + y) := S
(
jk(T−1(x))

)
for x ∈ M ′ , y ∈ N , where

jk: Fk → X ′ is the canonical inclusion. If a ∈ M ∩ V and a = b + c , b ∈ M ′ ,
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c ∈ N ⊂ ker pV , then pV (b) ≤ 1; hence ‖T−1(b)‖Fk
≤ 2 and jk

(
T−1(b)

)
∈ 2BX′ .

Accordingly Q(M ∩ V ) ⊂ 2B , since S ∈ W (BX′ , B) . On the other hand, if
x = x1 + x2 ∈ M ∩ V , x1 ∈ M ′ , x2 ∈ N , we get

x − Qx = x − S
(
jk

(
T−1(x1)

))
= (R − S)

(
jk

(
T−1(x1)

))
+ x2 ∈ 2εU.

To conclude, if PM is any continuous extension of Q , we have obtained (i)
and (ii).

Proposition 3.8. Let E be a quasinormable l.c.s. such that E ⊗ε C2 (re-
spectively Lb(C2, E) , C2εE ) is quasinormable.

(a) If E is complemented in (E′
b)

′
e (e.g., if E is a dual space) then E is

(QNo).
(b) If E is quasibarrelled then E′

b satisfies (QNo)’.

Proof. By Lemma 3.7 we know that
∀U ∈ U0(E) ∃V ∈ U0(E) ∀ε > 0 ∃B ∈ B(E) ∀M ∈ FIN(E) ∃PM ∈

L(E, E) :

(i) PM (M ∩ V ) ⊂ B ,
(ii) (I − PM )(M ∩ V ) ⊂ εU .
Let J := FIN(E) and consider D any ultrafilter on J containing the filter

generated by the natural order of J . We define P : E → E′′ by setting P (x) :=
σ(E′′, E′) − limD Pi(x) , the limit taken for those i ∈ J such that x ∈ i . Since B
is σ(E′′, E′)-relatively compact in E′′ , P (x) is a well defined element in E′′ , P
is linear and (i) and (ii) above imply now

(1) P (V ) ⊂ Boo ,
(2) (iE − P )(V ) ⊂ εUoo

(where iE : E → E′′ is the canonical inclusion and the bipolars are taken in E′′ ).

(a) If E is a complemented subspace of (E′
b)

′
e , setting P̂ := Q◦P (Q: (E′

b)
′
e →

E is the projection), we obtain from (1) and (2) that

(I) P̂ (V ) ⊂ Q(Boo) ,
(II) (IE − P̂ )(V ) ⊂ εQ(Uoo) ,

which implies the quasinormability by operators in E .

(b) Let P t: E′ → E′ be the transpose of P , then

(I) ′ P t(Bo) ⊂ V o ,
(II) ′ (IE′ − P t)(Uo) ⊂ εV o .

And, since E is quasibarrelled, E′
b satisfies (QNo)’.

The classes (QNo) and (QNo)’ are related to the (FG) and (DFG)-spaces
of Bonet, Dı́az and Taskinen [14] which were introduced to give positive answers
to the problem of topologies of Grothendieck and other related dual questions.
To establish the relation we first need the following lemmas. The first one is
suggested by a characterization of the quasinormability due to J.C. Dı́az (personal
communication).
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Lemma 3.9. (a) A l.c.s. E is (QNo) if and only if there is a basis U of abx.
0 -neighbourhoods in E such that

∀λ: U → R+ \ {0} ∀U ∈ U ∃V ∈ U ∃P ∈ L(E, E) :

(i) ′ P (V ) ∈ B(E) ,
(ii) ′ (I − P )

(
λ(V )V

)
⊂ U .

(b) A l.c.s. G is (QNo)’ if and only if there is a fundamental system B of
abx. bounded subsets in G such that

∀α: B → R+ \ {0} ∀B ∈ B ∃C ∈ B ∃P ∈ L(G, G) :

(i) ′ P−1(C) ∈ U0(G) ,
(ii) ′ (I − P )(B) ⊂ α(C)C .

Proof. We will only prove (a). If E is (QNo), then conditions (i) ′ and (ii) ′

in (a) are satisfied. For the converse, let us suppose that E is not (QNo). Since
Definition 3.1 does not depend on the basis U , we can obtain

(∗) ∃U0 ∈ U ∀V ∈ U ∃λV > 0 ∀P ∈ L(E, E) : (i) or (ii) of 3.1 are not
satisfied.

We can define now λ: U → R+ \ {0} , V 7→ λV . We find V0 ∈ U and
P0 ∈ L(E, E) such that (i) ′ P (V0) ∈ B(E) , (ii) ′ (I − P )(λV0

V0) ⊂ U0 . This
contradicts (∗) .

Lemma 3.10. (a) If E is a Fréchet space then, for every mapping α: B(E) →
R+ \ {0} , there is a 0 -neighbourhood U in E such that, for every B ∈ B(E) ,
there is C ∈ B(E) satisfying B ∩ U ⊂ α(C)C .

(b) If G is a (gDF)-space then, for every mapping λ: U0(G) → R+ \ {0} ,
there is a bounded subset B in G such that, for every U ∈ U0(G) , there is
V ∈ U0(G) satisfying λ(V )V ⊂ B + U .

Proof. We are only going to prove (b). Let (Bn)n∈N be a fundamental
sequence of abx. bounded subsets in G . If (b) is not satisfied then there is
λ: U0(G) → R+ \ {0} such that, for every n ∈ N , there is Vn ∈ U0(G) so
that

(∗) λ(U)U 6⊂ Bn + Vn

for every n ∈ N and U ∈ U0(G) . Since G is (gDF), we can find U ∈ U0(G) with
2U ⊂

⋂
n∈N

(Bn + Vn) . Moreover G is quasinormable, then there is V ∈ U0(G)
and m ∈ N such that

λ(V )V ⊂ 1
2
Bm + U ⊂ Bm + Vm.

This contradicts (∗) .
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Theorem 3.11. (a) If E is a quasinormable (FG)-space (respectively a
barrelled strong (DFG)-space which satisfies the strict Mackey condition) then E
is (QNo) (respectively (QNo)’).

(b) A Fréchet space (respectively (gDF)-space) E satisfies (QNo)’ (respec-
tively (QNo)) if and only if the space LB(E, E) of bounded operators is dense
in Lb(E, E) . In particular, every (FG)-space (respectively (DFG)-space) satisfies
(QNo)’ (respectively (QNo)).

Proof. (a) If E is a quasinormable (FG)-space, let (Un)n∈N be a fundamental
decreasing sequence of abx. and closed 0-neighbourhoods in E given by 1.1. Let
(λn)n∈N be any sequence of strictly positive scalars. Since E is quasinormable,
we know that

∀n ∃m(n) > n ∃Bn ∈ B(E) (Bn−1 ⊂ Bn) : λm(n)Um(n) ⊂ Bn + Un.

Let us consider a sequence (Mn)n∈N of strictly positive scalars with Bn ⊂
MnUn , ∀n ∈ N . Define αk := (2kMk)−1 , k ∈ N , and take (Pk)k∈N ⊂ L(E, E)
corresponding to (αk)k∈N by 1.1. Since

{∑∞

s Pk

}
s∈N

is an equicontinuous subset

of L(E, E) , then given n ∈ N , there is n′ > n such that

( ∞∑

s

Pk

)
(Un′) ⊂ 1

2Un ∀s ∈ N.

Thus

( ∞∑

m(n′)+1

Pk

)
(λm(n′)Um(n′)) ⊂

( ∞∑

m(n′)+1

Pk

)
(Bn′ + Un′)

⊂ 1
2Un +

( ∞∑

m(n′)+1

Pk

)
(Bm(n′)) ⊂

1
2Un +

( ∞∑

m(n′)+1

Pk(MkUk)

)

⊂ 1
2Un +

∞∑

m(n′)

1

2k+1
Uk ⊂ Un.

On the other hand

(
I −

( ∞∑

m(n′)+1

Pk

))
(λm(n′)Um(n′)) =

(m(n′)∑

1

Pk

)
(λm(n′)Um(n′))

⊂ λm(n′)

(m(n′)∑

1

Pk(Uk)

)
∈ B(E) (since Pk(Uk) ∈ B(E) ∀k ∈ N).
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Therefore, if we set P :=
∑m(n′)

1 Pk , we obtain conditions (i) ′ and (ii) ′ of
Lemma 3.9 (a), concluding that E is (QNo).

If E is a barrelled strong (DFG)-space which satisfies the strict Mackey con-
dition, let (Bn)n∈N be a decreasing fundamental sequence of abx. closed bounded
subsets of E given by 1.2. Let (λn)n∈N be a sequence of strictly positive scalars.
Since E′

b is quasinormable, then

∀n ∈ N ∃m(n) > n ∃Un ∈ U0(E) (Un ⊂ Un−1) : λm(n)B
o
m(n) ⊂ Uo

n + Bo
n.

Let us consider a sequence (Mn)n∈N of strictly positive scalars with Uo
n ⊂

MnBo
n , n ∈ N . Define αk := (2kMk)−1 , k ∈ N , and take (Qk)k∈N ⊂ L(E, E)

corresponding to (αk)k∈N by 1.2. Since E is barrelled
{∑m

j=n Qj; n, m ∈ N
}

is

an equicontinuous subset of L(E, E) , hence
{∑m

j=n Q′
j ; n, m ∈ N

}
is an equicon-

tinuous subset of L(E′
b, E

′
b) . Moreover

{∑m
j=1 Q′

j

}
m∈N

converges pointwise, with

respect to σ(E′, E) , to the identity map. On the other hand, by polarity, (Q′
k)k∈N

satisfies (FG2) and (FG3) of 1.1. Now, following the argument above, we can see
that

∀n ∈ N ∃n′ > n such that P :=
∑m(n′)

k=1 Q′
k satisfies

(1) P (Bo
m(n′)) ∈ B(E′

b) ,

(2) (I − P )(λm(n′)B
o
m(n′)) ⊂ Bo

n .

This implies that Q := P ′ satisfies (i) ′ and (ii) ′ of 3.9 (b).

(b) Let E be a Fréchet space which satisfies (QNo)’. Let B ∈ B(E) and U ∈
U0(E) be arbitrary. We can find C ∈ B(E) and a bounded operator P such that
(I − P )(B) ⊂ εC ⊂ U for suitable ε > 0. Then LB(E, E) is dense in Lb(E, E) .
Conversely, if LB(E, E) is dense in Lb(E, E) , given α: B(E) → R+ \{0} we find
U ∈ U0(E) as in Lemma 3.10 (a). Given B ∈ B(E) , we take P ∈ LB(E, E) and
B1 ∈ B(E) such that (I − P )(B) ⊂ U and (I − P )(B) ⊂ B1 . By 3.10 (a), there
is B2 ∈ B(E) (with P−1(B2) ∈ U0(E)) such that

(I − P )(B) ⊂ U ∩ B1 ⊂ α(B2)B2.

This condition, together with P−1(B2) ∈ U0(E) , implies (i) ′ and (ii) ′ of Lemma
3.9 (b), that is, E satisfies (QNo)’. Analogously, if E is a (gDF)-space, then
LB(E, E) is dense in Lb(E, E) if and only if E is quasinormable by operators.

Finally, if E is an (FG)-space or a (DFG)-space, it is easy to see that
LB(E, E) is dense in Lb(E, E) .

Indeed, in the second case, given B ∈ B(E) and U ∈ U0(E) which is s -
closed (s the topology given in 1.2), we take (αk)k∈N such that αkBk ⊂ 2−kU ,
k ∈ N . With (αk)k∈N we find (Qk)k∈N as in 1.2. By [14, Lemma 2.6], V :=⋂

k∈N
αkQ−1

k (Bk) ∈ U0(E) . Let ε > 0 with εB ⊂ V and n ∈ N satisfying
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2−n < ε . Define P :=
∑n

k=1 Qk ∈ LB(E, E) . If x ∈ B then (I − P )(x) =∑∞

k=n+1 Qk(x) , but

l∑

k=n+1

Qk(x) ∈ ε−1
l∑

k=n+1

αkBk ⊂ ε−1
l∑

k=n+1

2−kU ⊂ U.

The series is s -convergent and U is s -closed, this yields (I − P )(x) ∈ U ,
which shows that LB(E, E) is dense in Lb(E, E) .

The last result provides a “good” collection of spaces (QNo) and (QNo)’,
it suffices to see the examples of Bonet, Dı́az and Taskinen of (FG)-spaces and
(DFG)-spaces [14]. For instance, the following spaces are (QNo) (respectively
satisfy (QNo)’):
The quasinormable Fréchet spaces (respectively Fréchet spaces) which are:

- Banach valued Köthe echelon spaces of order p , λp

(
A, (Xi)i∈N

)
, 1 ≤ p <

∞ , p = 0,
- spaces of measurable functions introduced by Reiher L̺(A) (see [46]) with

absolutely continuous ̺ (in particular the spaces Lp((µn)n∈N) of Grothendieck,
1 ≤ p < ∞ , where µn are σ -finite measures),

- weighted spaces of continuous functions CA0(X) ,
and the (DF)-spaces (respectively (DF)-spaces with the strict Mackey condition)
which are

- strong duals of FG-spaces,
- the weighted inductive limits of spaces of continuous functions ind C(vn)0(X) ,

and the projective hulls CV (X) , CV 0(X) of the weighted inductive limits of
spaces of continuous functions.

We want to present more examples of spaces in the classes (QNo) and (QNo)’,
but mainly concentrating in the class (QNo).

If X is a completely regular topological space and E is a l.c.s., we will denote
by Cc(X, E) (respectively Ccm(X, E)) the space of all continuous functions from
X into E endowed with the compact-open topology (respectively the topology of
uniform convergence on metrizable compact subsets of X ).

Proposition 3.12. (a) If X is locally compact and E is quasinormable by
operators then Cc(X, E) is also (QNo).

(b) If E is (QNo) then Ccm(X, E) is also (QNo).

Proof. (a) A basis of abx. 0-neighbourhoods in Cc(X, E) is given by

{W (K, U) / K compact in X and U ∈ U0(E)},

where W (K, U) := {f ∈ C(X, E) / f(K) ⊂ U} . Given U ∈ U0(E) and K
compact in X , we find V ∈ U0(E) according to Definition 3.1 and K ′ compact
in X with K ⊂ K̊ ′ .
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Given ε > 0 there is P ′ ∈ L(E, E) which satisfies (i) and (ii) of 3.1. Take
ϕ ∈ C(X) such that the support of ϕ is contained in K ′ , ϕ is equal to 1 in K
and 0 ≤ ϕ ≤ 1.

Setting P ∈ L
(
Cc(X, E), Cc(X, E)

)
, P (f) := P ′(ϕ · f) ∀f ∈ C(X, E) we

will prove

(i) P
(
W (K ′, V )

)
∈ B

(
Cc(X, E)

)
.

Given K ′′ compact in X and U ′ ∈ U0(E) , take λ > 0 such that P ′(V ) ⊂ λU ′ .
If f ∈ W (K ′, V ) then ϕ · f ∈ W (K ′′, V ) by definition of ϕ ; this implies

P (f) = P ′(ϕ · f) ∈ W
(
K ′′, P ′(V )

)
⊂ λW (K ′′, U ′).

We also show

(ii) (I − P )
(
W (K ′, V )

)
⊂ 2εW (K, U) .

Let f ∈ M(K ′, U) , then f − P (f) = (f − ϕ · f) +
(
ϕ · f − P ′(ϕ · f)

)
and ϕ · f −

P ′(ϕ · f) ∈ εW (K, U) (since ϕ · f ∈ W (K, V ) and (I − P ′)(V ) ⊂ εU ).
On the other hand ϕ ≡ 1 on K , then f − ϕ · f ∈ εW (K, U) concluding the

result.

(b) Let K ′ be a metrizable compact subset of X . By the Borsuk–Dugundji
Theorem there exists a continuous extension operator P ′ ∈ L

(
C(K ′, E), C(X, E)

)

such that, if f ∈ C(K ′, E) , then P ′(f)(X) ⊂ Γ
(
f(K ′)

)
.

Let U ∈ U0(E) and consider the basis of 0-neighbourhoods in Ccm(X, E)
given by {W (K, V ) /K compact and metrizable in X , V ∈ U0(E)} . Now define
P ′′(f) := P ′(f |K′) , f ∈ C(X, E) . P ′′ is linear and, since E is (QNo), there
is V ∈ U0(E) such that ∀ε > 0, ∃P ′′′ ∈ L(E, E) satisfying (i) and (ii) of Defi-
nition 3.1. Thus, if we set P (f)(x) := P ′′′

(
P ′′(f)(x)

)
, x ∈ X , f ∈ C(X, E) , it

easily follows that P is linear and

(i) if f ∈ W (K ′, V ) ⇒ f(K ′) ⊂ V ⇒ P ′′(f)(X) ⊂ V , then

P ′′′
(
P ′′(f)(X)

)
⊂ P ′′′(V ) ∈ B(E),

consequently P
(
W (K ′, V )

)
∈ B

(
Ccm(X, E)

)
;

(ii) if f ∈ W (K ′, V ) and x ∈ K ′ then

(I − P )(f)(x) = f(x) − P ′′′
(
P ′′(f)(x)

)
= f(x) − P ′′′

(
f(x)

)
∈ εU.

This implies (I − P )
(
W (K ′, V )

)
⊂ εW (K ′, U) . We obtain that Ccm(X, E) is

(QNo).

Domański showed (see [26, Proposition 2.2] and [27, Corollary 4.2]) that for
completely regular spaces X such that Cc(X) is Fréchet and, moreover, X is lo-
cally compact or Cc(X) is separable then Cc(X) is isomorphic to a complemented
subspace of a product of Banach spaces. In the second case, assuming a little bit
more, Valdivia even obtained Cc(X) ∼= Cc([0, 1])N [51, III.3.6]. We will later see
an example of a Fréchet space C(X) which is not (QNo).
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For weighted spaces of continuous functions we refer to [8]. For Köthe sets
we refer to [7].

Let X be a completely regular space and let V be a system of weights in
X . F. Bastin and B. Ernst showed [2] that if CV (X) is quasinormable then V
satisfies condition (Q′′′) :

∀u ∈ V , ∃v ∈ V (v ≥ u) such that ∀ε > 0, ∃β ∈ F (X, [0, +∞[) , β upper
semicontinuous and bounded on V (i.e. supx∈X β(x)v(x) < ∞ , ∀v ∈ V ) such
that:

1

v
≤ β +

ε

u
.

The relation between the quasinormability by operators and condition (Q′′′) is
given in the following

Proposition 3.13. (a) If the family of weights V has the continuous dom-
ination property (i.e. ∀v ∈ V , ∃w ∈ V such that w ≥ v and w is continuous),
satisfies (Q′′′) and CV (X) has a fundamental family of bounded subsets generated
by continuous functions, then CV (X, E) is (QNo) for every l.c.s. E (QNo).

(b) If P is a Köthe set on I and 1 ≤ p < ∞ , then λp(I, P) is quasinormable
if and only if it is quasinormable by operators.

Proof. (a) By hypothesis ∀u ∈ V ∩C(X) , ∃v ∈ V ∩C(X) (v ≥ u) such that
∀ε > 0, ∃b ∈ C(X, [0, +∞[ ) with b bounded on V satisfying

1

v
≤ b +

ε

u
.

On the other hand, since E is (QNo), given U ∈ U0(E) , there are V ∈ U0(E)
and P ′ ∈ L(E, E) satisfying (i) and (ii) of Definition 3.1 for some ε′ > 0 with
ε′b(x) ≤ ε/u(x) ∀x ∈ X .

Let P (f)(x) := (bu)(x)/
(
(bu)(x) + ε

)
· P ′

(
f(x)

)
, ∀f ∈ CV (X, E) , ∀x ∈ X .

If f ∈ U(v,V ) :=
{
h ∈ CV (X, E) / h(x)v(x) ∈ V ∀x ∈ X

}
then:

(i) Given w ∈ V we get

w(x)P (f)(x) = w(x)
(bu)(x)

(bu)(x) + ε
P ′(f(x)) ∈ w(x)

(bu)(x)

(bu)(x) + ε
v(x)−1P ′(V )

⊂ w(x)b(x)P ′(V ) ⊂ λP ′(V ) ∈ B(E) ∀x ∈ X,

where λ > 0 satisfies w(x)b(x) ≤ λ ∀x ∈ X . Therefore P (U(v,V )) ∈

B
(
CV (X, E)

)
.

(ii) (I − P )(U(v,V )) ⊂ 2εU(u,U) :

f(x) − P (f)(x) =

(
f(x) −

(bu)(x)

(bu)(x) + ε
f(x)

)
+

(
(bu)(x)

(bu)(x) + ε
f(x) − P (f)(x)

)

=
ε

(bu)(x) + ε
f(x) +

(bu)(x)

(bu)(x) + ε
(I − P ′)

(
f(x)

)

∈ εu−1(x)V + b(x)ε′U ⊂ 2εu−1(x)U, ∀x ∈ X.
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(b) If λp(I, P) is quasinormable then P satisfies condition (Q′′′) and, fol-
lowing the argument of (a) for E = K , we conclude that λp(I, P) is (QNo), since
a basis of 0-neighbourhoods is given by:

Uα :=

{
x = (xi)i∈I ∈ λp(I, P) / qα(x) :=

(∑

i∈I

|α(i)x(i)|p
)1/p

≤ 1

}
, α ∈ P

and a fundamental family of bounded subsets in λp(I, P) is given by:

Bb :=

{
x = (xi)i∈I ∈ λp(I, P) / x(i) = b(i)z(i), i ∈ I :

∑

i∈I

|z(i)|p ≤ 1

}
, b ∈ B

where B is the family of all positive functions bounded on P .

In the above proposition, if E = K and L is a solid subspace of CV (X)
(respectively λp(I, P)), that is

f ∈ L, g : |g| ≤ |f | =⇒ g ∈ L,

then the spaces L and CV (X)/L (respectively λp(I, P)/L) are also (QNo), since
L is invariant by the operators defined. For instance this happens for the space
CV0(X) .

Part (b) of the following theorem was suggested by K.D. Bierstedt.

Theorem 3.14. Let E be a Schwartz space which satisfies
(∗) ∀U ∈ U0(E) , ∃V ∈ U0(E) such that there is a sequence of operators

{Pn}n∈N ∈ F (ÊV , ÊU)

which converges, in the operator norm, to the canonical map ΦU,V : ÊV → ÊU .
Then E is quasinormable by operators.

In particular, (∗) is satisfied in the following cases:

(a) E is a Schwartz space with the bounded approximation property.

(b) E is a Schwartz space such that ∀U ∈ U0(E) , ∃V ∈ U0(E) such that ΦU,V

is compact and admits a (continuous) factorization through a l.c.s. with the
approximation property.

Proof. (Compare with [5, Theorem 1].) If E is a Schwartz space such that,
for every U ∈ U0(E) , ∃V ∈ U0(E) satisfying (∗) , then, given ε > 0, ∃n0 ∈ N
with

(ΦU,V − Pn0
)(Ṽ ) ⊂

ε

2
Ũ

where Ṽ and Ũ are the corresponding unit balls of ÊV and ÊU .
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We can write Pn0
=

∑m
1 ei ⊗ fi with ei ∈ Ṽ o and fi ∈ Ũ , i = 1 · · ·m . Let

hi ∈ E such that ΦU (hi)−fi ∈ (ε/2m)Ũ , i = 1 · · ·m . Then Qn0
:=

∑m
1 ei⊗hi ∈

L(ÊV , E) . Let P := Qn0
◦ ΦV , therefore:

(i) If x ∈ V

P (x) = Qn0
(ΦV (x)) ∈ mΓ

( m⋃

1

{hi}

)
∈ B(E).

On the other hand:

(ii) If x ∈ V

ΦU ◦ (I − P )(x) = ΦU (x) −

m∑

1

ei

(
ΦV (x)

)
ΦU (hi)

= (ΦU,V − Pn0
) ◦ ΦV (x) +

m∑

1

ei

(
ΦV (x)

)(
fi − ΦU (hi)

)

∈
ε

2
Ũ +

ε

2
Ũ = εŨ .

From (i) and (ii) we obtain that E is (QNo).

(a) If E is a Schwartz space with the bounded approximation property then
there is an equicontinuous net {Pt}t∈T of finite rank operators in E which con-
verges pointwise to the identity of E .

Let U ∈ U0(E) and find W ∈ U0(E) such that (I − Pt)(W ) ⊂ U , ∀t ∈ T .
Since E is Schwartz, there is V ∈ U0(E) which satisfies

∀ε > 0 ∃Fε ⊂ E finite : V ⊂ Fε + εW.

Now, given n ∈ N , ∃tn ∈ T with

(I − Ptn
)(F1/2n) ⊂

1

2n
U.

Thus

(I − Ptn
)(V ) ⊂ (I − Ptn

)
(
F1/2n +

1

2n
W

)
⊂

1

n
U,

and (∗) is verified.

(b) Let U ∈ U0(E) . By hypothesis we can find W, V ∈ U0(E) , (V ⊂ W ⊂
U) , such that ΦU,W and ΦW,V are compact and admit a factorization through a
l.c.s. with the approximation property. Let F be a l.c.s. with the approximation
property, A ∈ L(ÊW , F ) and B ∈ L(F, ÊU) such that B ◦ A = ΦU,W . K :=

(A ◦ ΦW,V )(Ṽ ) is a precompact subset of F , hence there are operators Qn in F ,

n ∈ N , of finite rank such that Qn(K) ⊂ (1/n)B−1(Ũ) .
Define Pn := B ◦ Qn ◦ A ◦ ΦW,V to obtain

Pn(Ṽ ) ⊂
1

n
Ũ ∀n ∈ N,

and conclude property (∗) .
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Remarks. (1) Every nuclear l.c.s. is (QNo), since property (b) of Theo-
rem 3.14 is satisfied.

(2) The above theorem extends a result of Nelimarkka [41, Theorem 15, Propo-
sition 7], from Fréchet Schwartz spaces with the bounded approximation property
to Schwartz spaces with the bounded approximation property.

We can characterize the property (QNo) in the context of the standard quo-
jections of Moscatelli type. We first need the following

Lemma 3.15. Let X and Y be Banach spaces with Y topological subspace
of X and suppose that there is P ∈ L(X, X) such that:

(i) Y ⊂ ker P ,
(ii) (I − P )(BX) ⊂ 1

2
BX + Y .

Then Y is a complemented subspace of X .

Proof. Let Q := I − P , then Q(y) = y ∀y ∈ Y . We fix x ∈ BX and define
xn := Qn(x) , n ∈ N . The sequence {xn}n∈N converges:

Q(x) = x1 = 1
2z1 + y1 , with y1 ∈ Y , z1 ∈ BX ; Q(z1) = 1

2z2 + y2 , with
z2 ∈ BX , y2 ∈ Y . Proceeding by induction we find sequences {zn}n∈N , {yn}n∈N

with zn ∈ BX and yn ∈ Y , n ∈ N , such that:

(a) Q(zn) = 1
2zn+1 + yn+1 ,

(b) xn = zn/2n +
∑n

k=1 yk/2k−1 .

On the other hand, there is λ > 0 satisfying ‖yn‖ ≤ λ ∀n ∈ N , since

yn = −1
2zn + Q(zn−1) ∈ ( 1

2 + ‖Q‖)BX ∀n ∈ N.

Fix m ∈ N . If p > m we get:

‖xp − xm‖ =

∥∥∥∥
1

2p
zp −

1

2m
zm +

p−1∑

k=m

1

2k
yk+1

∥∥∥∥ ≤
1

2p
+

1

2m
+

λ

2m−1
.

This implies that {xn}n∈N is a Cauchy sequence.
Define R(x) := limn Qn(x) ∀x ∈ X , then R ∈ L(X, X) and R(X) ⊂ Y ,

since Qn(x) ∈ (2−nBX) + Y , ∀n ∈ N , ∀x ∈ BX .
Finally we only have to note that y = Qn(y) , ∀n ∈ N , ∀y ∈ Y .

Proposition 3.16. Let λ be a normal Banach sequence space, X Banach
and Y a closed subspace of X . The standard quojection of Moscatelli type E :=
λ(X, X/Y ) is quasinormable by operators if and only if it is a complemented
subspace of a countable product of Banach spaces.

Proof. We can consider the canonical basis of 0-neighbourhoods in E (Wk)k∈N

defined in 2.2. If E is (QNo), then there are k ∈ N and P ∈ L(E, E) such that

(i) P (Wk) ∈ B(E) ,
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(ii) (I − P )(Wk) ⊂ 1
2W1 .

We set Pn := qn ◦ P ◦ in , where in: Fn → E and qn: E → Fn are the
respective inclusion and projection, for each n ∈ N . Therefore, if n > k :

(a) Pn(BX + Y ) ∈ B(X) ,

(b) (IX − Pn)(BX) = (qn ◦ in − Pn)(BX) ⊂ qn( 1
2W1) = 1

2BX + Y .

From (a) we obtain that Y ⊂ ker Pn and, by Lemma 3.15, we conclude that
Y is a complemented subspace of X . This yields the result.

In contrast with 3.12, one can use an example due to Domański (see [26]) to
obtain completely regular spaces X such that Cc(X) is a standard quojection of
Moscatelli type not isomorphic to a complemented subspace of a countable product
of Banach spaces and, in consequence, it is not (QNo).

Finally we want also to give examples of “classical” spaces of vector valued
differentiable and holomorphic mappings which are quasinormable by operators.

For the notation we refer to Schwartz [47].

Proposition 3.17. Let E be a complete l.c.s. which is (QNo) and Ω an
open subset of RN . The following spaces are quasinormable by operators as a
consequence of the preceding results:

(i) Ck(Ω, E) ∼= Ck([0, 1]N , E)N and Dk(Ω, E) ∼= Ck([0, 1]N , E)N for k ∈ N .
(See [10] for the representations and use that Ck([0, 1]N , E) ∼= Ck([0, 1]N)⊗̂εE.)

(ii) C∞(Ω, E) ∼= s(E)N and D(Ω, E) ∼= s(E)(N) . (We refer again to [10] for
the representations.)

(iii) B0(Ω, E) and B1(Ω, E) , which are isomorphic to λ0

(
s(E)

)
and

λ∞

(
s(E)

)
, respectively (see [17]).

(iv) DLp(E) ∼= lp(s(E)) , 1 ≤ p < ∞ (cf. [9]).
(v) If Ω is an open subset of CN , the space H (Ω, E) = H (Ω)⊗̂εE , endowed

with the compact open topology is (QNo). (See [34] for the representation.)

Proposition 3.18. Let G be an open balanced subset of CN and v: G → R
a radial weight in G (i.e. v(λz) = v(z) if |λ| = 1) such that Hv0

(G) contains the
polynomials. Let E be a l.c.s. (QNo). The spaces Hv0

(G, E) ∼= Hv0
(G)⊗̂εE and

Hv(G, E) ∼= Lb

(
Hv0

(G)′b, E
)

are quasinormable by operators.

For more information about the isomorphisms and notation above we refer to
[4]. This result has some consequences on the quasinormability of the inductive
limits V H (G, E) and V0H (G, E) if E is a l.c.s. (QNo).

Note that if N > 1 and k ∈ N , the space Ck([0, 1]N) is not an L∞ -space
as several authors showed (see [36]). There are also examples due to Kaballo of
radial weights v on the disk G = D of C such that Hv0

(G) and Hv(G) are not
L∞ -spaces (see [4]). Consequently, we can apply Theorem 2.3 and the remark
after 2.3 to obtain examples of quasinormable Fréchet or (DF)-spaces E such that
Ck(Ω, E) , k ∈ N , Ω ⊂ RN open, N > 1; Hv0

(G, E) and Hv(G, E) are not
quasinormable. This should be compared with the examples above.
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We conclude this section with other examples of spaces quasinormable by
operators: the local spaces of Hörmander [33].

Let Ω be an open subset of RN . Let F be a semi-local linear subspace of
D ′(Ω), i.e. ϕu ∈ F for every ϕ ∈ D(Ω), u ∈ F . The local hull of F is defined
as

F
loc :=

{
u ∈ D

′(Ω) / ϕu ∈ F ∀ϕ ∈ D(Ω)
}
.

Let us suppose that F is a normed space with a norm ‖ · ‖ . We can consider
the locally convex topology in F loc defined by the system of seminorms

P :=
{
pϕ / pϕ(u) := ‖ϕu‖ ϕ ∈ D(Ω), u ∈ F

loc
}
.

We also assume that F loc is a Fréchet space.

Proposition 3.19. F loc is isomorphic to a complemented subspace of a
countable product of Banach spaces and, as a consequence, it is quasinormable by
operators.

Proof. We are done if we verify condition (c) of [27, Proposition 4.1]. To
do this, we consider an increasing sequence of compact subsets {Kn}n∈N of Ω
such that Kn ⊂ K̊n+1 , n ∈ N , and a sequence {ϕn}n∈N in D(Ω) such that
ϕn+1 ≡ 1 on Kn and supp ϕn+1 ⊂ Kn+1 , n ∈ N . The corresponding basis of
0-neighbourhoods in E := F loc given by

Un :=
{
u ∈ E / pn(u) := ‖ϕnu‖ ≤ 1/n

}
, n ∈ N.

We prove that there is an operator rn: EUn+1
→ E such that Φn ◦ rn = Φn,n+1 ,

where Φn: E → EUn
and Φn,n+1: EUn+1

→ EUn
are the canonical maps.

Let n ∈ N and define P : E → E , u 7→ ϕn+1u .

(i) P (Un+1) ∈ B(E) :

If u ∈ Un+1 and m > n + 1 then pm(P (u)) = ‖ϕmϕn+1u‖ = ‖ϕn+1u‖ ≤ 1/n .

(ii) (I − P )(Un+1) ⊂ ker pn :

If u ∈ Un+1 , pn(u − P (u)) = ‖ϕn(u − ϕn+1u)‖ = ‖ϕnu − ϕnu‖ = 0.

We conclude the result defining rn as the canonical operator induced by P .

The spaces Lp
loc(Ω) and Bloc

p,k(Ω) (see also [52]) are concrete examples of spaces
which satisfy the hypotheses of Proposition 3.19. See the definition in [33].

More examples of spaces which are (QNo) (respectively (QNo)’) or which are
not will be provided later on.
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4. The problem of topologies of Grothendieck

Grothendieck [30, 31] posed the following questions:

(a) Let E and F be Fréchet spaces. Is every bounded subset B of the
projective tensor product E⊗̂πF localizable, i.e. are there bounded subsets C , D
of E and F , respectively, with B ⊂ Γ(C ⊗ D)? This is the so-called problem of
topologies of Grothendieck (see [31, question non resolue no. 2]).

(b) Let G and H be (DF)-spaces. Is G⊗εH a (DF)-space? (See [31, question
non resolue no. 10]).

(c) Let E be a Fréchet space and let G be a (DF)-space. Is Lb(E, G) a
(DF)-space? (See [30, question non resolue no. 7]).

Taskinen showed (see [48] and [50]) that the answer to these problems is
negative. Partial positive answers were given in [13], [14], [48] and [49]. The
purpose of this section is to show that the answer to the problems of Grothendieck
is also positive in the context of the classes (QNo) and (QNo)’. Moreover it is
possible to establish an equivalence between the problem of the stability of the
quasinormability by the injective tensor product in the context of Fréchet spaces
and the problem of topologies of Grothendieck for quasinormable Fréchet spaces.
The results of this section are also relevant for the conmutativity of inductive
limits and the injective tensor product.

Following Taskinen [48] we say that a pair (E, F ) of Fréchet spaces satisfies
property (BB) if the problem of topologies of Grothendieck has a positive an-
swer for E⊗̂πF . If (E, F ) has property (BB) then Lb(E, F ′

b) = (E⊗̂πF )′b holds
topologically. A Fréchet space E is an (FBa)-space (see [49]) if (E, X) satisfies
property (BB) for every Banach space X .

We want to give positive answers to the problems of Grothendieck in the
context of the classes (QNo) and (QNo)’ even when we deal with spaces of compact
operators.

Proposition 4.1. (1) If E is a metrizable l.c.s. (QNo), then there is a
fundamental decreasing sequence (Uk)k∈N of abx. 0 -neighbourhoods in E such
that, for every increasing sequence (λk)k∈N of scalars, λk > 1 , k ∈ N , there
exists B ∈ B(E) so that, for every n ∈ N , there is a finite collection (Pk)n+1

k=1 of
operators in E satisfying

(Fo1) x =
∑n+1

k=1 Pk(x) , ∀x ∈ E ,
(Fo2) Pk(λkUk) ⊂ B + Un , k = 1 . . . n + 1 .

(2) If G is a (DF)-space which satisfies (QNo)’, then there is an increasing
fundamental sequence (Bk)k∈N of abx. bounded subsets in E such that, for every
decreasing sequence (αk)k∈N of strictly positive scalars, αk < 1 , k ∈ N , there
exists a 0 -neighbourhood U in G so that, for every n ∈ N , there is a finite
collection (Qk)n+1

k=1 of operators in G satisfying

(DFo1) x =
∑n+1

k=1 Qk(x) , ∀x ∈ G ,
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(DFo2) Qk(U ∩ Bn) ⊂ αkBk , k = 1 . . . n + 1 .

Proof. We will show (2); (1) is analogous. We can suppose, without loss of
generality, that there is an increasing fundamental sequence (Bk)k∈N of bounded
subsets in G such that, for every decreasing sequence (αk)k∈N of positive scalars,
αk < 1, k ∈ N , there are sequences (Pk)k∈N ⊂ L(G, G) and (Uk)k∈N ⊂ U0(G)
satisfying

(a) P−1
k (αk+1Bk+1) ⊃ 2Uk (Uk+1 ⊂ Uk ),

(b) (I − Pk)(2Bk) ⊂ αk+1Bk+1 , k ∈ N .

We set U :=
[
1
4

⋂
k≥2(Bk−1 + Uk)

]
∩ U1 ∈ U0(G) and Ck := Bk+1 , k ∈ N .

Given n ∈ N , we define Q1 := P1 , Qk := Pk−Pk−1 , k = 2, . . . , n , Qn+1 := I−Pn

to conclude:

(DFo1)
∑n+1

k=1 Qk(x) = x , ∀x ∈ G ,
(DFo2) Q1(U) ⊂ P1(U1) ⊂ α2B2 ⊂ α1C1 .

For 2 ≤ k ≤ n

Qk(U) = (Pk − Pk−1)(U) ⊂ (Pk − Pk−1)
(

1
4
(Bk−1 + Uk)

)

⊂ 1
4 (Pk − Pk−1)(Bk−1) + 1

4Pk(Uk) + 1
4Pk−1(Uk−1)

⊂ 1
4
(Pk − I)(Bk) + 1

4
(I − Pk−1)(Bk−1) + 1

4
αkBk+1 ⊂ 1

2
αkCk.

Finally

Qn+1(U ∩ Cn) ⊂ (I − Pn+1)(Bn+1) + (Pn+1 − Pn)(U)

⊂ 1
2αn+2Bn+2 + 1

2αn+1Cn+1 ⊂ αn+1Cn+1.

(For the estimate (Pn+1−Pn)(U) ⊂ 1
2
αn+1Cn+1 one proceeds as above.) And the

proof is complete.

In the following theorem we will denote by A the ideal F of finite rank
operators, K of compact operators or LB of bounded operators.

Moreover, when we write E = projkEk (respectively G = indkGk ) for a
metrizable l.c.s. (QNo) (respectively for a (DF)-space which satisfies (QNo)’) we
suppose Ek = EUk

(respectively Gk = GBk
), k ∈ N , where (Uk)k∈N (respec-

tively (Bk)k∈N ) is the basis of 0-neighbourhoods in E given by Proposition 4.1.(1)
(respectively is the fundamental sequence of bounded subsets in G given by Propo-
sition 4.1.(2)).

Theorem 4.2. Let E = projkEk be a metrizable l.c.s. (QNo) and let G =
indkGk be a (DF)-space which satisfies (QNo)’ then, if F is any l.c.s., we have:

(1) The canonical mapping R: Ab(F,
⊕

k Gk) → Ab(F, G) ; Φ 7→ q ◦ Φ is
surjective and open.

(2) The canonical mapping S: Ab(
∏

k Ek, F ) → Ab(E, F ) ; Φ 7→ Φ ◦ i is
surjective and open.
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Proof. (1) Let B ∈ B(F ) and let (αk)k∈N be a decreasing sequence of
strictly positive scalars, αk < 1, k ∈ N . What we want to know is just if
R

(
W

(
B,

⋃
m

(⊕m
k=1 αkBk

)))
is a neighbourhood of zero in Ab(F, G) .

By 4.1 there exists a 0-neighbourhood U in G such that, for every n ∈ N ,
there is a finite collection (Qk)n+1

k=1 of operators in G satisfying (DFo1) and (DFo2).
Let T ∈ W (B, U) , by hypothesis T is bounded and we can find V ∈ U0(F )
(B ⊂ V ) and n ∈ N such that T ∈ W (V, Bn) . Moreover, if A = K , we can
suppose that T (V ) is relatively compact in Gn , since G satisfies the strict Mackey
condition. Let (Qk)n+1

k=1 ⊂ L(G, G) satisfy (DFo1) and (DFo2). By (DFo2), Tk :=
Qk ◦ T ∈ A (F, Gk) , k = 1, . . . , n + 1 (if A = K , T (V ) is relatively compact in
Gn , hence Qk

(
T (V )

)
is relatively compact in Gk ) and we can define the operator

T̃ :=
⊕n+1

k=1 Tk ∈ A (F,
⊕

k Gk) which satisfies

(a) R(T̃ ) = q ◦ T̃ =
(∑n+1

k=1 Qk

)
◦ T = T by (DFo1),

(b) T̃ (B) =
⊕n+1

k=1 Qk(T (B)) ⊂
⊕n+1

k=1 Qk(U ∩Bn) ⊂
⊕n+1

k=1 αkBk by (DFo2),

that is, T̃ ∈ W
(
B,

⋃
m

(⊕m
k=1 αkBk

))
. This implies that R is open.

(2) Let U ∈ U0(F ) , Ũk the unit ball of Ek and (λk)k∈N an increasing
sequence of positive scalars. We set U := W (

∏
k λkŨk, U) and claim that S(U )

is open in Ab(E, F ) .

By 4.1 there exists an abx. bounded subset B in E associated with {2k+1λk}k

such that, for every n ∈ N , there is a finite collection (Pk)n+1
k=1 of operators in E

satisfying (Fo1) and (Fo2). Let T ∈ W (B, U) . By hypothesis there is n ∈ N with
T (Un) bounded in F

(
T (Un) ⊂ U

)
, hence by (Fo2) T ◦ Pk induces an operator

Tk ∈ A (Ek, F ) with Tk ◦ i = T ◦ Pk , k = 1 · · ·n + 1, and we can define the

operator T̃ :=
∑n+1

k=1 Tk ∈ A
(∏

k Ek, F
)

which satisfies

(a) S(T̃ ) = T̃ ◦ i = T ◦
(∑n+1

k=1 Pk

)
= T by (Fo1),

(b) T̃
(∏

k λkŨk

)
=

∑n+1
k=1 λkTk(Ũk) =

∑n+1
k=1 λkT

(
Pk(Uk)

)

⊂
∑n+1

k=1 T
(
2−k−1(B + Un)

)
⊂

∑n+1
k=1 2−kU ⊂ U by (Fo2).

And we conclude that S is open.

Corollary 4.3. (1) If E = projkEk is a metrizable l.c.s. (QNo), G = indkGk

satisfies (QNo)’ and if A = F , K or L , then Ab(E, G) is a bornological (DF)-
space.

(2) If G and H are (DF)-spaces which satisfy (QNo)’ then G⊗̂εH is a
bornological (DF)-space.

(3) If E and F are Fréchet spaces (QNo) then the pair (E, F ) satisfies the
property (BB).

Proof. (1) By Theorem 4.2 Ab(E, G) is a quotient of Ab

(∏
k Ek,

⊕
k Gk

)

(L(E, G) = LB(E, G) by [20, Proposition 4]) which is isomorphic to⊕
k Ab(Ek, Gk) , hence Ab(E, G) is a (DF)-space and, moreover, it satisfies the
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strict Mackey condition by Proposition 3.5 (b). This implies that Ab(E, G) is
bornological.

(2) The spaces Kb(C2, G) = C2⊗̂εG and Kb(C2, H) = C2⊗̂εH are bornolog-
ical (DF)-spaces by (1). We conclude (2) by [12, 1.6.(1)].

(3) We only have to note that (E, F ) satisfies the property (BB) if Lb(E, F ′
b)

is a (DF)-space (see [14, Proposition 2]) and the result follows from (1).

It is possible to characterize when we have positive answers for the problems
of Grothendieck in the context of quasinormable Fréchet spaces and (DF)-spaces
with the strict Mackey condition. First we need the following result due to Kaballo
and Vogt [37].

Theorem 4.4 ([37, 1.1]). Let 0 → H
J

−→G
K
−→Q → 0 be a topological exact

sequence of locally convex spaces. The following are equivalent:

(1) IX⊗εK: X⊗εG → X⊗εQ is a homomorphism for every Banach space X .
(2) IX⊗πJ : X⊗πH → X⊗πG is a monomorphism for every Banach space X .

Following Kaballo, Vogt [37] a topologically exact sequence 0 → H
J

−→G
K
−→

Q → 0 of locally convex spaces is called a tensor sequence if one of the equivalent
conditions (1)–(2) of the theorem above are satisfied. In this case the sequences

0 → E ⊗ε H → E ⊗ε G → E ⊗ε Q → 0,

0 → E ⊗π H → E ⊗π G → E ⊗π Q → 0,

are topologically exact for every locally convex space E (see [37, 1.1]).
We mainly concentrate in the following algebraically exact sequence

(∗) 0 →
⊕

n∈N

Gn
σ

−→
⊕

n∈N

Gn
q

−→G → 0,

where (Gn)n∈N is an increasing sequence of normed spaces, G := indnGn , q(x) :=∑
n xn , σ(x) := (xn − xn−1)n∈N , x0 := 0, for all x ∈

⊕
n Gn .

The map q is a homomorphism, but σ need not to be a monomorphism.
Following Palamodov [42], the spectrum G1 →֒ G2 →֒ · · · is called acyclic if
σ is a monomorphism. By a version of Palamodov of a result of Retakh (see
[42, Theorem 6.2]), if σ is a monomorphism then G satisfies the strict Mackey
condition and, if indnGn is regular, the converse is also true (cf. [42, Theorem 6.1]).
Obviously G1 →֒ G2 →֒ · · · is acyclic if and only if Ĝ1 →֒ Ĝ2 →֒ · · · is acyclic, and
this implies that Ĝ = indnĜn , since G is a topological subspace of indnĜn , which
is complete (see [42, Corollary 7.1]). For a detailed study of acyclic (LF)-spaces
we refer to [53].
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In the following theorem (Gn)n∈N is an increasing sequence of normed spaces
with continuous embeddings such that G := indnGn is a regular inductive limit.
This generalizes a proposition in [4] (where the inductive limit was supposed to
be a (DFS)-space, i.e., the strong dual of a Fréchet–Schwartz space).

Theorem 4.5. Let G satisfy the strict Mackey condition.

(a) Then the following are equivalent:
(1) G⊗̂εX is a bornological (DF)-space for every Banach space X ,
(2) G⊗ε X = indn(Gn ⊗ε X) holds topologically for every Banach space X ;

that is, the space G = indnGn is an inductive limit with local partition
of unity in the sense of Hollstein [32, 2.2, 3.2],

(3) G ⊗ε E = indn(Gn ⊗ε E) holds topologically for every locally convex
space E having the countable neighbourhood property,

(4) G⊗̂εX = indn(Gn⊗̂εX) holds algebraically and topologically for every
Banach space X .

(b) Properties (1)–(4) imply the following equivalent conditions:
(5) G⊗̂πX satisfies the strict Mackey condition for every X Banach,
(6) G′

b is quasinormable by operators.

(c) If G is a complemented subspace of its bidual we have that (1)–(6) are equiv-
alent.

Proof. (a) (1) =⇒ (2) ⇐⇒ (3). We note that ĜεC2 = G⊗̂εC2 since C2 has
the approximation property. Moreover, as indnĜn is compactly regular, it follows
from [6, 3.13] that the spaces ĜεC2 and indn(ĜnεC2) = indn(Gn⊗̂εC2) are equal
algebraically. We then have the topological identity G⊗̂εC2 = indn(Gn⊗̂εC2) by
Grothendieck’s factorization theorem. Now the density of Gn ⊗ε C2 in Gn⊗̂εC2

for each n ∈ N implies the topological identity G ⊗ε C2 = indn(Gn ⊗ε C2) (use
[43, 6.3.1]). Hollstein showed (see [32, 3.2]) that this is equivalent to (2) and (3).

(2) implies (4). G1 ⊗ε X →֒ G2 ⊗ε X →֒ · · · is an acyclic spectrum, since
indnGn ⊗ε X is regular and G⊗ε X satisfies the strict Mackey condition (see [42,
Theorem 6.1]). Then G1⊗̂εX →֒ G2⊗̂εX →֒ · · · is also an acyclic spectrum and,
by [42, Corollary 7.1], indnGn⊗̂εX is complete. But, as G⊗ε X = indn(Gn ⊗ε X)
holds topologically, indn(Gn⊗̂εX) induces in G⊗X the ε-topology and G⊗X is
a dense subspace of indn(Gn⊗̂εX) ; this implies the topological identity G⊗̂εX =
indn(Gn⊗̂εX) (see [8, 1.2]).

(4) implies (1) is trivial.

(b) (5) ⇐⇒ (6). Taking duals, G ⊗π X satisfies the strict Mackey condition
for every X Banach if and only if Lb(X, G′

b) is quasinormable for every X Banach,
which is equivalent to (6) by Propositions 3.5 and 3.8.

(2) =⇒ (6). Let us consider the canonical topologically exact sequence:

0 →
⊕

n∈N

Gn
σ

−→
⊕

n∈N

Gn
q

−→G → 0.
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Hollstein showed (see [32, 1.2, 2.4, 3.2]) that (2) holds if and only if

(∗) 0 →
⊕

n∈N

(Gn ⊗π C2)
σ⊗IC2−→

⊕

n∈N

(Gn ⊗π C2)
q⊗IC2−→ indn(Gn ⊗π C2) → 0

is a topologically exact sequence, which is equivalent to the acyclicity of the fol-
lowing spectrum: G1 ⊗π C2 →֒ G2 ⊗π C2 →֒ · · · . This implies that

G ⊗π C2 = indn(Gn ⊗π C2)

satisfies the strict Mackey condition and, in consequence, Lb(C2, G
′
b) is quasi-

normable. By Proposition 3.8 (a) G′
b is quasinormable by operators.

(c) If G is a complemented subspace of its bidual and G′
b is (QNo) then G

satisfies (QNo)’ by Corollary 3.6 (2) and Proposition 3.3 (1). We conclude (1) by
Corollary 4.3 (2).

Lemma 4.6. Let E and F be Fréchet spaces such that F is quasinormable
and reflexive, E′

b or F ′
b has the strict approximation property (cf. [38]) and

E′
b⊗̂πF ′

b is bornological. Then (E⊗̂εF )′i = E′
b⊗̂πF ′

b .

Proof. We know that {Γ(Uo ⊗ V o)
E′

b⊗̂πF ′

b / U ∈ U0(E) , V ∈ U0(F )} is a
fundamental family of bounded subsets of E′

b⊗̂πF ′
b (see [38, 41.4.(7)]). Now we

conclude the topological identity (E⊗̂εF )′i = E′
b⊗̂πF ′

b by [18, Lemma 2.6].

Theorem 4.7. If E is a quasinormable Fréchet space then the following
assertions are equivalent:

(a) E is an (FBa)-space,
(b) E⊗̂εX is quasinormable for every X Banach,
(c) E′

b satisfies (QNo)’.

Proof. (a) implies (b). If E is an (FBa)-space, taking duals we have that
Lb(X, E′

b) is (DF) (then (gDF)) for every Banach space X . If {Bn}n∈N is a
fundamental sequence of abx. bounded subsets in E′

b and {Un}n∈N is a sequence
of abx. 0-neighbourhoods in E′

b , following the argument of 3.7 and 3.8, it is
possible to find a sequence {Pn}n∈N of continuous operators from E′

b into E′
b

and an abx. 0-neighbourhood U in E′
b such that

(i) Pn(U) ⊂ Bn ,
(ii) (I − Pn)(U) ⊂ Un .

Thus, as in the proof of 3.4, we have that X⊗̂εE
′
b is a (gDF)-space for every X

Banach. Moreover X⊗̂εE
′
b satisfies the strict Mackey condition and this implies

that X⊗̂εE
′
b is bornological for every X Banach. By Theorem 4.5 E′

b⊗̂πX sat-
isfies the strict Mackey condition for every X Banach, in particular for X = C2 .
C2 is reflexive and it has the approximation property, hence, by Lemma 4.6, we
have that (E⊗̂εC2)′i = E′

b⊗̂πC2 and, in consequence, E⊗̂εC2 is quasinormable
(see [11]), therefore E⊗̂εX is quasinormable for every X Banach by [12, 1.6.(1)].
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(b) implies (c) follows from Proposition 3.7.

(c) implies (a). If E′
b satisfies (QNo)’ then Corollary 4.3 implies that

Lb(X, E′
b) is a bornological (DF)-space for every X Banach and, by the quasi-

normability of E , we obtain that E is an (FBa)-space (see [14, 1.2.(i)]).

Now, with the characterizations and precedent results, we can get new exam-
ples which answer positively or negatively the problem of topologies of Grothen-
dieck and the related questions.

Positive examples. (1) If G is a Silva space (i.e. the strong dual of a
Fréchet Schwartz space) which is an inductive limit of Banach spaces with injective
linking maps such that the linking maps are approximable, in the operator norm,
by finite rank operators, then G satisfies (QNo)’ by Theorem 3.14 and G⊗ε X is
bornological for every X normed. This result was proved directly in [5] and was
successfully applied to the study of vector valued germs of holomorphic mappings
on Fréchet Schwartz spaces by Bierstedt, Bonet and the author in [5].

(2) The known examples of Fréchet Schwartz spaces which are (FBa)-spaces
always satisfy the approximation property, and it is a natural question if every
(FBa)-space which is Fréchet Schwartz necessarily satisfies the approximation
property. This is not true because we can find examples of Fréchet Schwartz
spaces F which are (QNo) but without the approximation property (see [45]), us-
ing examples, due to Willis [54], of Banach spaces with the compact approximation
property but without the approximation property (compare with counterexample
(3) below).

(3) If E (respectively G) is a quasinormable hilbertizable Fréchet space (re-
spectively a countable inductive limit of Hilbert spaces which satisfies the strict
Mackey condition) then it is reflexive and, by [12, 1.7], it is an (FBa)-space (re-
spectively G⊗̂εX is a bornological (DF)-space for every Banach space X ). The-
orem 4.7 (respectively Theorem 4.5) implies that E is (QNo) (respectively G
satisfies (QNo)’). We refer to [44] for a direct proof.

Counterexamples. (1) Let λ be a normal Banach sequence space such that
ϕ is dense in λ and let Y be a Banach space such that Y ′ has the approximation
property. By Theorem 4.7 the space λ(X, X/Y )⊗̂εZ is quasinormable for every
Banach space Z if and only if λ(X, X/Y ) is an (FBa)-space, and this is equivalent
to the property that λ(X, X/Y )′b is a complemented subspace of a countable direct
sum of Banach spaces (see [23]). Compare with 3.16. We refer to [44] for a direct
proof.

(2) The space lp+ = projnlp+1/n , 1 ≤ p < ∞ is a quasinormable reflexive
Fréchet space (see [40]) which is not (QNo); thus, by 4.7, it is not an (FBa)-space.
To see that lp+ does not satisfy (QNo) we use the facts that every bounded
operator in lp+ is compact (cf. [16, Example 6]) and that, if there is a compact
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operator P in lp+ such that (I − P )(ei) ∈
1
2Bn (Bn the unit ball of lp+1/n and

{ei}i∈N the canonical basis of lp ) then {P (ei)}i∈N has a cluster point which,
necessarily, must be zero, since {ei}i∈N is weakly convergent to zero and P is
compact. But ‖P (ei)‖n ≥ 1

2
, i ∈ N , (where ‖ · ‖n is the norm of lp+1/n ) which

is a contradiction. This is the first concrete (and natural) example (as far as the
author knows) of a Fréchet space which is not an (FBa)-space.

(3) It was an open problem of Bierstedt, Meise [6] and Hollstein [32] (re-
spectively Taskinen [49]) if, for every Silva space G and for every Banach space
X (respectively every Fréchet Schwartz E ) the space G⊗̂εX is bornological
(respectively E is an (FBa)-space). In [45] we gave an example of a Fréchet
Schwartz space F without the compact approximation property (hence not satisfy-
ing (QNo)), obtaining as a consequence that F is not an (FBa)-space (respectively
F ′

b⊗̂εC2 is not a (DF)-space).

5. Infinite holomorphy

In this section we suppose that E is a complex locally convex space. H (E)
stands for the space of (all) holomorphic functions on E . The compact-open
topology in H (U) is denoted by τ0 . We write Hb(E) for the space of (all)
holomorphic functions bounded on the bounded subsets of E , endowed with the
topology τb of uniform convergence on the bounded subsets of E .

P(nE) stands for the space of the C -valued continuous polynomials on E ,

n ∈ N . If f ∈ H (E) we denote by
∑∞

1 d̂nf(0)/n! the Taylor series of f in 0.

We have d̂nf(0)/n! ∈ P(nE) , n ∈ N . Define

S :=
{

(αn)n∈N / αn ∈ C and lim sup
n→∞

|αn|
1/n ≤ 1

}
.

For every element f in H (E) (respectively Hb(E)) and every (αn)n∈N ∈ S ,
the series

∞∑

1

αn
d̂nf(0)

n!

belongs to H (E) (respectively Hb(E)) and, if p is a continuous seminorm in(
H (E), τ0

)
(respectively

(
Hb(E), τb

)
), then the seminorm

p̃(f) :=

∞∑

1

αnp
( d̂nf(0)

n!

)

is also continuous in
(
H (E), τ0

)
(respectively in

(
Hb(E), τb

)
) (see [24, Chapter 3]

and [25, 1.3]). That is,
{(

P(nE), τ0

)}
n∈N

(respectively
{(

P(nE), τb

)}
n∈N

) is

an S -absolute decomposition for
(
H (E), τ0

)
(respectively

(
Hb(E), τb

)
) (cf. [24,

p. 114]).
If f ∈ H (E) and A ⊂ E , we write ‖f‖A := sup{ |f(x)| / x ∈ A } .
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There are recent studies about spaces of holomorphic functions which are
quasinormable (see e.g. [25]). We want to present a result which, in view of the
examples obtained in Section 3, extends some results of Dineen in [25]. We will
make use of the following lemma, which is a particular case of [29, Lemma 1.3].

Lemma 5.1. Let E be a l.c.s. and n ∈ N . There exists a linear extension
operator

Rn: P(nE) → P(nE′′)

such that ‖P‖A = ‖Rn(P )‖Aoo , ∀P ∈ P(nE) , for every abx. subset A of E .

Theorem 5.2. If E is a l.c.s., then

(a) E′
b is (QNo) if and only if

(
Hb(E), τb

)
is (QNo).

(b) E′
co is (QNo) if and only if

(
H (E), τ0

)
is (QNo).

Proof. We will show (a). ((b) is analogous replacing bounded sets by compact
subsets of E .)

If
(
Hb(E), τb

)
is (QNo) then E′

b is also (QNo) because it is a complemented

subspace of
(
Hb(E), τb

)
.

Conversely, let us suppose that E′
b is (QNo). Then, for every B ∈ B(E) ,

there is B′ ∈ B(E) (B ⊂ B′) such that ∀ε > 0, ∃P ∈ L(E′
b, E

′
b) satisfying

(i) P (B′o) =: C ∈ B(E′
b) ,

(ii) (I − P )(B′o) ⊂ εBo .

Let us consider the τb -norm

p(f) := |f(0)| +

∞∑

1

1

n!
‖d̂nf(0)‖2B′; f ∈ Hb(E).

Given ε > 0 (ε < 1), take no ∈ N with 2−no < ε and P ∈ L(E′
b, E

′
b)

satisfying (i) and (ii). Now define

Q: Hb(E) → Hb(E)

f 7→ Q(f) := f(0) +

no∑

1

Tn(f) ◦ P t |E

where Tn(f) := Rn

(
d̂nf(0)/n!

)
, f ∈ Hb(E) , and P t |E is the transpose of P

restricted to E .
Let A ∈ B(E) and λ > 1 with A ⊂ λCo , then, given f ∈ Hb(E) :

‖Q(f)‖A ≤ |f(0)| +

no∑

1

∥∥Tn(f) ◦ P t |E
∥∥

A
≤ |f(0)| +

no∑

1

λn
∥∥Tn(f) ◦ P t |E

∥∥
Co

≤ |f(0)| +

no∑

1

λn‖Tn(f)‖B′oo = |f(0)| +

no∑

1

λn

n!
‖d̂nf(0)‖B′ ≤ λnop(f),
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and we obtain that Q
({

f ∈ Hb(E)/p(f) ≤ 1
})

∈ B
((

Hb(E), τb

))
. On the other

hand,

‖(I − Q)(f)‖B ≤

no∑

1

∥∥Tn(f) ◦ (I − P )t |E
∥∥

B
+

∞∑

no+1

1

n!
‖d̂nf(0)‖B

≤

no∑

1

εn‖Tn(f)‖B′oo +
∞∑

no+1

1

2nn!
‖d̂nf(0)‖2B′

≤ ε

no∑

1

1

n!
‖d̂nf(0)‖B′ +

1

2no

∞∑

no+1

1

n!
‖d̂nf(0)‖2B′ ≤ εp(f).

This yields that
(
Hb(E), τb

)
is (QNo).

Ansemil and Ponte showed [1] that, for E normed, the space
(
Hb(E), τb

)
is

quasinormable. In recent work of Dineen [25] it is shown that, for instance, the
space

(
H (E), τ0

)
is Schwartz if E is a compact or strict inductive limit of Fréchet

spaces. Dineen also characterized (under some mild restrictions) the standard
strict LB-spaces of Moscatelli type E such that

(
Hb(E), τb

)
is quasinormable.

Example. If E is a Fréchet space which has the approximation property
then E′

co is a Schwartz (gDF)-space with the approximation property and, by
Theorem 3.11 (b), it is (QNo). This implies that

(
H (E), τ0

)
is also (QNo).

Corollary 5.3. If E is a l.c.s. such that
(
Hb(E), τb

)
is not (QNo), then

there is a Banach space X such that
(
Hb(E × X), τb

)
is not quasinormable.

Proof. If E is a l.c.s. such that
(
Hb(E), τb

)
is not quasinormable by operators

then, by the theorem above, E′
b is not (QNo) and, by Proposition 3.8, there is a

Banach space X such that Lb(X, E′
b) is not quasinormable. Define F := E ×X .

By [18, Lemma 8] we obtain (taking duals) that Lb(X, E′
b) is a complemented sub-

space of
(
P(2F ), τb

)
, hence

(
P(2F ), τb

)
is not quasinormable and, consequently,(

Hb(F ), τb

)
is also not quasinormable.

It is possible to formulate more applications to infinite-dimensional holomor-
phy. We will come back to this topic somewhere else.
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