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ZETA FUNCTIONS OF RATIONAL

FUNCTIONS ARE RATIONAL
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Abstract. We prove that if f is a rational function of degree at least 2 in the Riemann
sphere then its zeta function exp {

∑

∞

n=1Nnt
n/n} is a rational function. Here Nn denotes the

number of distinct fixed points of the nth iterate of f . Furthermore we show that all the zeros of
the zeta function, if any, have modulus 1.

1. Introduction and results

1.1. Zeta functions have been defined and studied for a great variety of
algebraic structures and dynamical systems. Suppose that Nn is a sequence of
complex numbers, usually integers, defined for n ≥ 1 and associated with an
algebraic or geometric object. The corresponding zeta function is defined first as
a formal power series

(1.1) Z(t) = exp

{ ∞
∑

n=1

Nnt
n

n

}

.

Then the question arises if this series has a positive radius of convergence, if it can
be continued to a meromorphic function in the plane, if it perhaps represents a
rational function, and what can be said about the location of the zeros and poles
of Z . One also describes the case when Z is a rational function by saying that
the numbers Nn can be determined from a finite amount of information, since a
rational function is determined by finitely many parameters.

To give an example of a zeta function arising from an algebraic structure,
let q be a power of a prime and let Fq be the finite field with q elements. Let
f(x1, . . . , xn) be a homogeneous polynomial of degree d with coefficients in Fq ,
such that the partial derivatives of f with respect to the xi have no common
projective zeros in any algebraic extension of Fq . Then Z(t) is defined by taking
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Ns to be the number of solutions to f = 0 in the projective space Pn(Fqs) .
Dwork [3] proved that then Z(t) is a rational function of t . In fact,

Z(t) =
P (t)(−1)n

(1 − t)(1 − qt) · · · (1 − qn−1t)

where P is a polynomial whose degree can be given explicitly in terms of d and n .
Deligne [2] proved that all the zeros of P have modulus q−(n−1)/2 , which was
conjectured by A. Weil [12] and which is the statement corresponding to Riemann’s
hypothesis in this connection. One may consider the function Z(q−s) for a complex
variable s to get a closer analogy with Riemann’s zeta function, and we see that
all the zeros of P (q−s) have real part (n−1)/2. For a more detailed survey of the
above results, see e.g. [6, pp. 151–163]. Deligne [2] has obtained similar results,
conjectured by Weil [12], for more general varieties over finite fields.

In the theory of dynamical systems, zeta functions have been considered for at
least individual functions and flows. We shall only consider individual functions.
Let X be a compact manifold, and let f : X → X be a continuous function. A
point x ∈ X is called a fixed point of f if f(x) = x . We denote the iterates of
f by f1 = f and fn = f ◦ fn−1 for n ≥ 2. The (geometric) zeta function Zf (t)
of f is defined by the right hand side of (1.1), taking Nn to be the number of
distinct isolated fixed points of fn (cf. [11, p. 764], [13, p. 335]). The algebraic zeta
function, obtained by taking Nn to be the sum of the Lefschetz indices of the fixed
points of fn (when X and f are such that these indices are defined), is sometimes
simpler. Properties of such zeta functions have been considered particularly for
diffeomorphisms and other homeomorphisms, and it has been proved in many cases
that the zeta function has a positive radius of convergence or is a rational function
or a root of a rational function. We cannot provide a complete list of references
to such results here, and merely refer to the survey [11] and to [8]. Noninvertible
functions satisfying suitable side-conditions have been considered by some authors.
Zhang [14] has proved that the zeta functions of expanding maps are rational.

It seems to me that zeta functions for rational functions mapping the Riemann
sphere onto itself have not been previously studied, and I have not been able to
find in the literature a more general result that would cover all rational functions
as a special case. Smale’s survey [11] on diffeomorphisms makes passing references
to Julia’s work [7] on the iteration of rational functions [11, pp. 792, 807], but not
in connection with zeta functions.

It is the purpose of this paper to note that zeta functions of rational functions
are rational, with all the zeros, if any, on the unit circle. In fact, we shall find
a formula for such zeta functions. Furthermore, we raise the question of how to
define zeta functions for transcendental entire or meromorphic functions.

1.2. Let f be a rational function of degree d ≥ 2 defined in the extended
complex plane or Riemann sphere C = C ∪ {∞} where C denotes the complex
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plane. Thus fn is a rational function of degree dn , and so fn has dn + 1 fixed
points in C , with due count of multiplicity. We say that z0 ∈ C is a fixed point
of multiplicity m of a rational function g if g has the expansion

g(z) − z = am(z − z0)
m +O

(

(z − z0)
m+1

)

as z → z0 , where m ≥ 1 and am 6= 0. We say that g has the multiplier λ = g′(z0)
at the fixed point z0 . It follows that we have m ≥ 2 if and only if λ = 1. If
g(∞) = ∞ , we consider 1/g(1/z) at the origin to determine the multiplicity and
the multiplier at infinity. A fixed point of fn whose multiplier is equal to 1 is
called a parabolic fixed point. Thus the multiplicity of a fixed point is greater than
1 exactly for parabolic fixed points. A cycle of distinct points z, f(z), . . . , fp−1(z)
that are parabolic fixed points of some fn , with fp(z) = z , is called a parabolic
cycle of f of length p . Then (fp)′(z) is a root of unity.

Let Nn be the number of distinct fixed points of fn in C , so that 1 ≤
Nn ≤ dn +1. As in the general theory of dynamical systems, the (geometric) zeta
function Zf of f is first defined as the formal power series

Zf (t) = exp

{ ∞
∑

n=1

Nnt
n

n

}

.

Since Nn ≤ dn +1, it follows that the radius of convergence of
∑

∞

n=1Nnt
n/n and,

hence, that of Zf , is at least 1/d . If Nn = dn + 1 for all n ≥ 1 then

(1.2) Zf (t) = (1 − dt)−1(1 − t)−1.

One could define an algebraic zeta function of f by taking Nn to be the
number of fixed points of fn with due count of multiplicity. However, then Nn =
dn + 1 for all n ≥ 1 so that this results in a rather trivial zeta function that is
equal to (1 − dt)−1(1 − t)−1 for every rational function f of degree d ≥ 2.

Theorem 1. Let f be a rational function of degree d where d ≥ 2 . Then
the zeta function of f is a rational function given by

(1.3) Zf (t) ≡ exp

{ ∞
∑

n=1

Nnt
n

n

}

= (1 − dt)−1(1 − t)−1
∏

parabolic cycles

(1 − tpq)ℓ

where the product is taken over all the (finitely many) parabolic cycles of f , and
where p , q , and ℓ denote certain positive integers associated with and depending
on these cycles. The integer p is the length of the cycle, and the multiplier of fp

at each point of the cycle is a primitive qth root of unity. An empty product is
taken to be equal to 1 .

Consequently, all the zeros of Zf , if any, occur at certain roots of unity and
hence lie on the unit circle. The zeta function of f has a simple pole at the point
1/d and, possibly, at the point 1 , and no other poles. There is a pole at the
point 1 if, and only if, f has no parabolic cycles.
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Thus the numbers Nn for a rational f can be deduced from a finite amount
of information. Of course, this is to be expected, not only because f itself depends
on finitely many parameters, but because Nn can differ from dn + 1 only if there
are parabolic cycles, and because there can only be finitely many parabolic cycles.
One may also note that an expanding rational function has no parabolic cycles so
that its zeta function is given by (1.2).

2. Proof of Theorem 1

2.1. Let the assumptions of Theorem 1 be satisfied. We make use of the
Fatou–Julia theory of iteration of rational functions. We define the set of normality
N(f) of f as the set of all z ∈ C that have a neighbourhood U such that the
family { fn | U : n ≥ 1 } of the iterates of f restricted to U is a normal family.
The Julia set J(f) of f is defined by J(f) = C \ N(f) . Clearly N(f) is open,
while J(f) is known to be a nonempty perfect set which coincides with C or
is nowhere dense in C . For the basic results in the iteration theory of rational
functions based on these concepts we refer to the papers of Fatou [4, 5] and of
Julia [7], and to the book of Beardon [1]. First we formulate two lemmas.

Lemma 1. If α is a fixed point of fp of multiplicity ν where p ≥ 1 and
ν ≥ 2 , then for each n ≥ 1 , the point α is a fixed point of fnp of the same
multiplicity ν . The same applies even if ν = 1 provided that the multiplier
λ = (fp)′(α) is not a root of unity.

If ν = 1 then λ 6= 1 . Now if λ is a primitive qth root of unity, where q ≥ 2 ,
and if q does not divide n , then α is a fixed point of fnp of multiplicity 1 .

Proof of Lemma 1. We provide the simple proof only for completeness. Let α
be a fixed point of fp of multiplicity ν . We may assume without loss of generality
that p = 1 and that α = 0. If ν ≥ 2 then f(z) = z + Azν + O(zν+1) as z → 0,
where A 6= 0, and so fn(z) = z + nAzν + O(zν+1) as z → 0. Thus α = 0 is a
fixed point of fn of multiplicity ν .

If ν = 1 and f ′(0) = λ then f(z) = λz+O(z2) . Therefore we have f(z)−z =
(λ − 1)z + O(z2) while fn(z) − z = (λn − 1)z + O(z2) as z → 0. If λ is not a
root of unity then λn − 1 6= 0 for all n ≥ 1 and therefore α = 0 is a fixed point of
fn of multiplicity 1, for each n ≥ 1. Next if ν = 1 (for f ), we have λ 6= 1. Now
if λq = 1 while λj 6= 1 for 1 ≤ j ≤ q − 1 then λn = 1 if, and only if, q divides
n . So if q does not divide n then α = 0 is a fixed point of fn of multiplicity 1.
This proves Lemma 1.

Lemma 2. Suppose that fp(α) = α and (fp)′(α) = λ where p ≥ 1 and λ
is a primitive qth root of unity for some q ≥ 1 . Define αj = f j(α) and suppose
that the αj are distinct and that αj ∈ C for 0 ≤ j ≤ p− 1 . Then

(2.1) fpq(z) = αj + (z − αj) + bm,j(z − αj)
m +O

(

(z − αj)
m+1

)
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for z in a neighbourhood of αj where bm,j 6= 0 , m ≥ 2 , the number m is
independent of j , and m = 1 + ℓq for some integer ℓ ≥ 1 . There are pairwise
disjoint components Ui,j of N(f) for 1 ≤ i ≤ ℓq and 0 ≤ j ≤ p − 1 such that
αj ∈ ∂Ui,j and

(i) fpq(Ui,j) ⊂ Ui,j ;
(ii) fnp(z) → αj locally uniformly for z ∈ Ui,j as n→ ∞ .

For any z in any Ui,j , the values fnp(z) visit q of the Ur,j cyclically, namely
those with r ≡ i (mod ℓ) provided that the Ui,j are properly labelled. Thus for
each j , the domains Ui,j are divided into ℓ cycles, each consisting of q domains.
The function f maps such a cycle of domains Ui,j into another cycle of domains
Ui,j+1 where Ui,p = Ui,0 . In each cycle of domains there is a component of N(f)
that contains a critical point of f , that is, a point at which f is not locally
homeomorphic.

Furthermore, all these domains Ui,j are disjoint, that is, Ui,j∩Ur,s = ∅ unless
(i, j) = (r, s) where 1 ≤ i , r ≤ ℓq and 0 ≤ j , s ≤ p− 1 .

Proof of Lemma 2. The statements in Lemma 2 other than the one involving
critical points follow from the discussion in the paper of Fatou [4, pp. 217–220]
(cf. [1, Theorems 6.5.4 and 6.5.8, pp. 116, 124]). In particular, the fact that m−1
is divisible by q is obtained by considering the identity fpq◦fp = fp◦fpq for power
series at αj . The fact that m is independent of j , can be seen by considering the
set N(f) close to the points αj , as Fatou does. We mention that alternatively,
the independence of m can be proved by purely formal calculations based on the
chain rule, without referring to N(f) , but we omit the details. As was proved by
Fatou and by Julia (cf. [1, Theorem 9.3.2, p. 194]), in each cycle of domains there
is a component of N(f) that contains a critical point of f . This proves Lemma 2.

2.2. We continue with the proof of Theorem 1. Suppose that w is a fixed
point of fp where p ≥ 1. We may assume that w is finite and that z is finite
whenever z = fn(w) or fn(z) = w for some positive integer n , as the analysis is
the same in the general case. Choosing p to be as small as possible, we see that
then w is a fixed point of fn if, and only if, n = kp for some positive integer k .
The point w has multiplicity 1 as a fixed point of fkp unless the multiplier of fkp

at w equals 1. By Lemma 1, w has multiplicity 1 as a fixed point of fkp for all
k ≥ 1 unless the multiplier λ of fp at w is a root of unity, say λ = e2πiK/q where
the positive integers K and q are relatively prime. Then w has multiplicity at
least 2 as a fixed point of fkp exactly when k = mq for some positive integer m .

We have

fpq(z) − w = (z − w) + as(z − w)s +O
(

(z − w)s+1
)

as z → w , where s ≥ 2 and as 6= 0. Here s is the multiplicity of w as a fixed
point of fpq . Furthermore, by Lemma 2, s − 1 is divisible by q , so s = 1 + ℓq
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for some positive integer ℓ . By Lemma 1, w is a fixed point of multiplicity s of
fmpq , for each m ≥ 1.

The function fn has dn + 1 fixed points, with due count of multiplicity. The
number of distinct fixed points of fn is therefore dn + 1−N where N is the sum
of the numbers ν−1 for the multiple fixed points of fn where ν is the multiplicity
of such a point as a fixed point of fn . Thus, corresponding to the fixed point w
of fmpq , we have to subtract s− 1, that is, ℓq , from dmpq + 1.

Consider the points wj = f j(w) for j ≥ 0. The points w = w0, w1, . . . , wp−1

are distinct while wp = w . Suppose that 0 ≤ j ≤ p− 1. Then wj is a fixed point
of fp with the same multiplier as w since by the chain rule,

(fp)′(w) =

p−1
∏

i=0

f ′(wi).

Hence each wj is also a fixed point of fkp for all k ≥ 1, and is a fixed point of
multiplicity at least 2 if, and only if, k is an integral multiple of q . By Lemma 2,
each wj has the same multiplicity s as w as a fixed point of fmpq , for all m ≥ 1.
We deduce that corresponding to the cycle w = w0, w1, . . . , wp−1 of fixed points
of fp , we need to subtract altogether pqℓ from dmpq + 1 when dealing with the
fixed points of fmpq .

2.3. The cycle w = w0, w1, . . . , wp−1 of fixed points of fp determines a
parabolic cycle since each of these points is a parabolic fixed point of fpq . By
Lemma 2, for each j with 0 ≤ j ≤ p− 1, there are ℓq components Ui,j of N(f)
with wj ∈ ∂Ui,j where 1 ≤ i ≤ ℓq , such that fmpq(z) → wj as m → ∞ , locally
uniformly for z ∈ Ui,j . The action of f divides these components into ℓ cycles,
each consisting of pq components permuted by f . Further by Lemma 2, at least
one component in each cycle contains a critical point of f . Since f has at most
2d− 2 distinct critical points, it follows that there are only finitely many (at most
2d− 2) parabolic cycles.

So we see that

∞
∑

n=1

Nn
tn

n
=

∞
∑

n=1

(dn + 1)
tn

n
−

∑

par. cycles

∞
∑

m=1

pqℓ
tmpq

mpq

=
∞
∑

n=1

(dt)n

n
+

∞
∑

n=1

tn

n
−

∑

par. cycles

ℓ
∞
∑

m=1

(tpq)m

m

= − log(1 − dt) − log(1 − t) +
∑

par. cycles

ℓ log(1 − tpq).

If there are no parabolic cycles, we consider the resulting empty sum to be equal
to zero. Similarly, we shall consider an empty product to be equal to 1. It follows
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that

Zf (t) = exp

{ ∞
∑

n=1

Nnt
n

n

}

= (1 − dt)−1(1 − t)−1
∏

par. cycles

(1 − tpq)ℓ.

This gives (1.3), and this expression obviously proves all the remaining statements
of Theorem 1. Thus the proof of Theorem 1 is complete.

Remark 1. Let f be a continuous, open, discrete mapping of C onto itself.
By Stöılow’s theorem, we may write f = ϕ ◦ h where ϕ is a rational function
and h is a homeomorphism. Every iterate of f is clearly also of this type. We
define Nn as before, counting only isolated fixed points of fn . Note that already
the set of fixed points of f could be quite complicated since h is an arbitrary
homeomorphism. One may ask to what extent the conclusions of Theorem 1
remain valid. If f is topologically conjugate to a rational function g , that is, if
f = H ◦ g ◦H−1 where H is a homeomorphism, then clearly Nn is the same for
f and g so that Zf ≡ Zg and the conclusions of Theorem 1 hold for f . More
generally, one may ask, in particular, what the situation is if it is assumed that
for every n ≥ 1, the fixed points of fn are isolated.

Remark 2. One can ask if there is any reasonable way to define a zeta
function for a transcendental entire or meromorphic function in the plane. The
problem is to define a formal power series whose properties could then be studied.
Of course, now fn has infinitely many fixed points except possibly for n = 1.
If one tries to approach the question by approximation, one might first consider
finitely many fn in a disk centred at the origin of radius r and then let the number
of iterates as well as r tend to infinity. Or one could consider a sequence fn of
rational functions such that for 1 ≤ k ≤ N = N(n) , the function fk

n has the same
fixed points as fk in a disk centred at the origin of radius rn , with due count of
multiplicity. We assume that N(n) and rn tend to infinity with n . One can ask
if there is any way to choose the fn and then normalize the zeta functions Zfn

(t) ,
possibly after substituting for t a suitable expression depending on n , so that the
sequence of normalized functions tends to a limit that one could define to be the
zeta function of f .

Another possibility is to set, for example,

Zf (t) = exp

{ ∞
∑

n=1

tn

n

∑

fn(z)=z

1

max
{

1, |(fn)′(z)|
}

}

or possibly

Zf (t) = exp

{ ∞
∑

n=1

tn

n

∑

fn(z)=z

1
(

(fn)′(z)
)+

}
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where for a complex number c , we write c+ = c if |c| ≥ 1 and c+ = 1 otherwise,
provided that the sum over the distinct fixed points of fn converges for each
n ≥ 1. More generally, if ψ is a suitable function defined in the complex plane,
such as ψ(z) = max{1, |z|α} for some α > 0, we could set

(2.2) Zf (t) = exp

{ ∞
∑

n=1

tn

n

∑

fn(z)=z

1

ψ
(

(fn)′(z)
)

}

or perhaps

Zf (t) = exp

{ ∞
∑

n=1

tn

n

∑

fn(z)=z

n−1
∏

j=0

1

ψ
(

f ′

(

f j(z)
))

}

.

It might be of some interest to determine if such sums converge for all f in a
reasonable class of functions. In particular, one may ask if (2.2) makes sense for
f(z) = ez whenever ψ(z) = max{1, |z|α} and α > 1. In general, one might expect
that some choice for ψ depending on (the growth of) f might yield a well defined
zeta function for that f . These formulas are somewhat analogous to Ruelle’s
definition of a zeta function for expanding maps on compact manifolds [9, 10].
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