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Abstract. We consider a closed Riemann surface S and a group H of conformal automor-
phisms of S . We seek a Schottky uniformization (Ω, G, π: Ω → S) of the surface S with the
property that every element of H can be lifted to a conformal automorphism of the region Ω.
We obtain necessary conditions, called Condition (A), on the set of fixed points of the non-trivial
elements of H in order to find a Schottky uniformization as desired. For instance, Condition (A)
is trivially satisfied by groups acting freely, groups isomorphic to Z/2Z⊕ · · · ⊕Z/2Z and dihedral
groups. We show that Condition (A) is sufficient when H is a cyclic group.

1. Introduction

In the literature there are many characterizations of closed Riemann surfaces
with automorphisms, but in general they do not involve uniformization theory. In
uniformization theory we begin with a surface S , a domain Ω contained in the
Riemann sphere as a regular (Galois) covering space of S , and the corresponding
group G of covering transformations given by fractional linear transformations,
such that the natural projection map π: Ω → Ω/G = S is holomorphic. The triple
(Ω, G, π: Ω → S) is called an uniformization of S .

Schottky groups are in some sense the lowest planar coverings of closed Rie-
mann surfaces. To be more precise, the uniformization (Ω, G, π: Ω → S) is called a
Schottky uniformization of the surface S if there is no non-trivial normal subgroup
N of G such that the quotient surface Ω/N is planar. Schottky uniformizations
are exactly those uniformizations (Ω, G, π: Ω → S) for which G is a Schottky
group and Ω its region of discontinuity. The formal definition of Schottky groups
will be given in Section 2.

We are interested in finding Schottky uniformizations which reflect orientation
preserving symmetries (conformal automorphisms) of closed Riemann surfaces. To
be more precise, let S be a closed Riemann surface and let H be a group of
automorphisms of it. We look for a Schottky uniformization (Ω, G, π: Ω → S) of
S such that, for each transformation h in H there exists an automorphism t of
the region Ω with the property h ◦ π = π ◦ t . We remark that the covering π is
determined by G , Ω and S in the sense that if p: Ω(G) → S is another covering
of S with G as covering group, then p = h ◦ π ◦ t , where h is an automorphism
of S and t is a linear fractional transformation satisfying t ◦ G ◦ t−1 = G .
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A discussion of this problem in the case of orientation reversing involutions
has been given in [15].

An equivalent way to describe our problem in the language of three-manifolds
is the following. Let V be a handle-body of genus g and let S its boundary. The
surface S is a closed orientable surface of genus g . Denote by Diff(S) the group
of orientation preserving diffeomorphisms of S . Let H be a finite subgroup of
Diff(S) . We look for the existence of an element f in Diff(S) such that the group
fHf−1 extends to a group of orientation preserving diffeomorphisms of V .

In 1980 L. Keen ([9]) discussed this problem for hyperelliptic Riemann surfaces
S with H as the group generated by the hyperelliptic involution (a closed Riemann
surface S of genus g is called hyperelliptic if it admits a conformal involution, the
hyperelliptic involution, with 2g + 2 fixed points). In [6] and [7] we gave a similar
discussion for closed Riemann surfaces which admit a general conformal involution.
In [8] we discuss this problem for cyclic groups with some extra properties.

In general, if S is a closed Riemann surface of genus g ≥ 2 and H is a group
of conformal automorphisms of S , the problem of finding those Schottky groups
which uniformize S and reflect the action of H is still open. We obtain necessary
conditions, to be satisfied by the group H in order to find an uniformization as
desired. We show that if H is cyclic, then our conditions are sufficient. Let us also
remark that for abelian groups and dihedral groups these necessary conditions are
again sufficient. This will appear elsewhere.

2. Preliminaries and definitions

A Kleinian group G is a subgroup of the group M of Möbius transformations
(or fractional linear transformations), or equivalently of PSL(2,C) , which acts

discontinuously on some part of the Riemann sphere, Ĉ = C ∪ {∞} . The (open)
set of points where G acts discontinuously is denoted by Ω(G) and it is called the
region of discontinuity of G . The complement of the region of discontinuity of G
is called the limit set of G .

Kleinian groups act in a natural way as orientation preserving isometries of
the hyperbolic three space H3 = {(z, r); z ∈ C, r > 0} . The Riemann sphere can
be thought of as the boundary of this space.

Let G be a Kleinian group. We say that a subgroup H of Möbius transfor-
mations is a finite normal extension of G if H contains G as a normal subgroup
of finite index. Clearly, G and H have the same region of discontinuity.

Schottky groups of genus g . For g ≥ 1, let Ck, C′
k , k = 1, . . . , g , be 2g

Jordan curves on the Riemann sphere, Ĉ = C∪{∞} , which are mutually disjoint
and bound a 2g -connected domain. Call D the common exterior of all the curves,
and suppose that for each k there exists a fractional linear transformation Ak

with the following properties.

(i) Ak(Ck) = C′
k ;
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(ii) Ak maps the exterior of Ck onto the interior of C′
k .

The transformations {Ai : i = 1, . . . , g} generate a subgroup G of Möbius
transformations, necessarily Kleinian with D as a fundamental domain for G ,
called a standard fundamental domain for G . This group is called a Schottky

group of genus g . Observe that necessarily the transformations Ai are loxodromic.
G is a free group on g generators and all its elements, except for the identity, are
loxodromic [13]. These properties define in fact Schottky groups of genus g , for
g ≥ 1. For our purpose, we define the Schottky group of genus zero to be the
group with the identity as its only element, that is the trivial group.

Let us remark that for any set of free generators of a Schottky group there
exists a standard fundamental domain with respect to these generators [4]. Any
Kleinian group that is free of finite rank and purely loxodromic is a Schottky
group [13]. The limit set of a Schottky group G of genus g is empty for g = 0,
consists of two points for g = 1, and a Cantor set otherwise [12].

If G is a Schottky group and A1, . . . , Ag form a set of free generators, then
we say that G = 〈A1, . . . , Ag〉 is a marked Schottky group, and that the set of
transformations A1, . . . , Ag is a marking of G .

Let us remark that if G is a Schottky group of genus g , then Ω(G)/G is
a closed Riemann surface of genus g . Moreover, if A1, . . . , Ag form a set of free
generators for G with D as a standard fundamental domain (for these generators)
with boundary curves Ck, C′

k , k = 1, . . . , g , then these loops project to a set
of g disjoint homologically independent simple loops on S . Reciprocally, the
retrosection theorem ([3]) asserts that we can reverse this situation.

Retrosection Theorem. Every closed Riemann surface S of genus g can

be represented as Ω(G)/G , G being a Schottky group of genus g with region

of discontinuity Ω(G) . More precisely, given a set of g disjoint, homologically

independent, simple closed curves γ1, . . . , γg on S , one can choose G and g gen-

erators A1, . . . , Ag for it, so that there is a standard fundamental domain D for

G , bounded by curves C1 , C′
1, . . . , Cg , C′

g with Ai(Ci) = C′
i , such that γi is in

the free homotopy class of the image of Ci under Ω(G) → Ω(G)/G . The marked

Schottky group G = 〈A1, . . . , Ag〉 is determined by (S, γ1, . . . , γg) except for re-

placing A1, . . . , Ag by BAn1

1 B−1, . . . , BA
ng

g B−1 , where B is a fractional linear

transformation and ni ∈ {−1, 1} .

Remark. This theorem was first stated by Felix Klein in 1883 [10] and
proved rigorously by Koebe [11] much later. See p. 30 in [7] for a proof. Let us
remark that an easy proof of this theorem can be obtained using Bers’ ideas on
quasi-conformal mappings [3].

Since Schottky groups have no parabolic elements, no finite normal extension
of such a group can have parabolic elements. Finite normal extensions of Schottky
groups belong to a nice class of Kleinian groups called geometrically finite Kleinian
groups [12].
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It is known that every conformal automorphism of the region of discontinuity
of a Schottky group is the restriction of a fractional linear transformation (see
p. 241 in [2]).

We will need the following property of finite normal extensions of Schottky
groups.

Theorem 1. Let H be a finite normal extension of a Schottky group G . If

h is any elliptic element of H , then either both fixed points of h belong to the

region of discontinuity or there is a loxodromic element in G commuting with h .

Proof. If the group H is torsion free the above result is trivial. Assume from
now on that H has torsion. Let h be any elliptic element in H with fixed points
x and y . Let us assume y is a limit point of H . Let j ∈ G be a primitive elliptic
element fixing y . Let us observe that j(x) = x , otherwise j ◦ h ◦ j−1 ◦ h−1 will
be a parabolic element with y as fixed point. Now the facts that H is a discrete
group and j is a primitive element imply that h is some power of j . Moreover, if
l is in H and l(y) = y , then the same argument shows that l(x) = x . Let L be
the geodesic in H3 with x and y as end points. Such a geodesic L is pointwise
fixed by the transformation j . Let P be any convex fundamental polyhedron
for G . Since y is a limit point which is not a parabolic fixed point, y must be
a point of approximation for G (see p. 128 in [12]). This implies that y cannot
be in the closure of P (see p. 122 in [12]). By the observation above, we can find
a sequence of points yn ∈ L , converging to y , all of them non-equivalent points
by G , and a sequence gn ∈ G , gn 6= gn+1 ◦ jl , all l and n 6= m , such that
gn(yn) = zn ∈ P̄ , where P̄ denotes the Euclidean closure of P . By restricting to
a subsequence, we may assume that zn converges, say to z , gn(y) converges, say
to u , and gn(x) converges, say to t . In this way, the points u and t are limit
points of the group H . Since zn ∈ P̄ , we necessarily have z ∈ P̄ . We have two
possibilities for z , that is, z is a regular point, or z is a parabolic fixed point (see
p. 128 in [12]). Since H does not have parabolic elements, z must be a regular
point. It is clear that the zn are elliptic fixed points, in fact zn = gnjg−1

n (zn) .
This implies that zn must be on some edge of P . Since P has only a finite number
of edges, we may assume all zn on the same edge of P . Let M be the geodesic
in H3 containing this edge. In particular, z belongs to the closure of M . Let us
consider the geodesics Ln = gn(L) passing through zn and with end points gn(x)
and gn(y) . Since gn(x) and gn(y) converge to t and u respectively, Ln converges
either to a point or to the geodesic with end points u and t . If Ln converges to
a point, then we necessarily have u = t = z . This contradicts the fact that z is
a regular point. So we must have that Ln converges to a geodesic Γ, with end
points u and t . In this case, since the end points of Γ are limit points and z
is known to be a regular point, we must have z in Γ ∩ H3 . Any neighborhood
of z contains zn , for n sufficiently large. Since z is a regular point, there exists
a neighborhood U of z which is precisely invariant by the set of elements of H



On Schottky groups with automorphisms 263

that fix z , which is known to be finite. By taking the values n large enough, we
can assume that zn belongs to U , for every n . In this case we must have that
gn◦j◦g−1

n (z) = z , and gn◦j◦g−1
n = t , for some t in H fixing z . In particular, Ln

are all the same geodesic Γ, and gn(x) = t and gn(y) = u . The last observation
implies that g−1

n+1◦gn(x) = x and g−1
n+1◦gn(y) = y , for all n . The transformations

g−1
n+1 ◦ gn also keep L invariant, and are not the identity on L by the choice of

the sequence gn . It follows that g−1
n+1 ◦ gn are loxodromic elements with x and

y as fixed points. In particular, it commutes with j . Since G has finite index in
H , some power of the above transformation must belong to G .

3. Conformal automorphisms of Riemann surfaces

In this section we introduce our main problem and discuss it in the lower
genus cases, that is, for the Riemann sphere and tori. We also recall some basics
from covering space theory.

Let S be a closed Riemann surface of genus g and let H be a group of
conformal automorphisms of it.

A nice result due to Hurwitz says that if the genus g of S is greater than or
equal to two, then the order of H is finite of order at most 84(g − 1) [5].

If the genus of S is either 0 or 1, then the total group of automorphisms is
infinite. In fact, for the genus zero case, it is the three complex dimensional Lie
group PSL(2,C) of Möbius transformations, and for the genus one case, it is a
finite normal extension of the compact real abelian Lie group T2 = S1 × S1 .

We need the following couple of definitions to describe the main problem of
this paper.

Definition. Let S be a closed Riemann surface of genus g . A Schottky
uniformization of S is a triple (Ω, G, π: Ω → S) , where G is a Schottky group of
genus g with region of discontinuity Ω and π: Ω → S is a regular covering with
G as covering group.

Definition. Let S and H be a Riemann surface and a group of conformal
automorphisms of S , respectively. Assume there exists a Schottky uniformization
of S , say (Ω, G, π: Ω → S) , for which every element of H lifts, that is, for
each h ∈ H there exist a conformal automorphism h̃ of the region Ω such that
π ◦ h̃ = h ◦ π . Then we say that H lifts to the uniformization (Ω, G, π: Ω → S) .

We are interested in studying the following question concerning conformal
automorphisms and Schottky groups.

Main Problem. Let S be a closed Riemann surface and let H be a

group of conformal automorphisms of S . Can we find a Schottky uniformization

(Ω, G, π: Ω → S) of S for which H lifts.

The genus zero case is trivial since there is only one Schottky group of genus
zero, this being just the identity group. In this case the region of discontinuity of
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G is the Riemann sphere and we can consider the identity map of the Riemann
sphere as our covering map π .

In the genus one case, for each complex number t with positive imaginary part,
a torus Tt is obtained by quotient of the complex plane by the group generated
by the transformations Z → Z + 1 and Z → Z + t . Up to conformal equivalence,
every torus is constructed in such a way. The torus Tt has as group of conformal
automorphisms the group generated by the projections of the transformations
Z → Z + A + Bt (A and B real numbers) and Z → −Z . Let us denote such
a group by Ht . If α is any simple loop on Tt , then its free homotopy class is
invariant under the action of Ht . It follows that for any Schottky covering of the
torus Tt the group Ht lifts. For generic t , the torus Tt does not have any other
conformal automorphism. There are only two (different classes of) tori with extra
automorphisms. These tori are given by t = i and t = 1

2
(1+ i

√
3 ). In these cases

the extra automorphisms have finite order. We will consider these cases (to finish
the analysis in genus one) at the end of Section 5.

As a consequence of the above analysis in genus zero and one, and the Hurwitz
result for the order of groups of automorphisms in genus greater than one, we only
need to deal (in our problem) with the case when the genus of S is greater or
equal to one and H is a finite group.

Let us recall some basic results from covering space theory.

Lemma 1. Let π: Ŝ → S be a regular covering of S with covering group G .

Let f : S → S be a homeomorphism of S . If there exists a homeomorphism

f̃ : Ŝ → Ŝ satisfying π ◦ f̃ = f ◦ π , then the following holds.

(1) Every lifting of f has the form t ◦ f̃ , where t is in G , and every trans-

formation of the above form is in fact a lifting of f .

(2) If y1 , y2 are preimages of x and f(x) respectively, then there exists

exactly one lifting h of f such that h(y1) = y2 .

(3) If f has a fixed point, then any lifting h of f with fixed points has the

same order as f .

Proof. (1) If h is another lifting of f , then h ◦ f̃−1 is a lifting of the identity
map on S and h ◦ f̃−1 = t belongs to G . On the other hand, if t belongs to G ,
then clearly t ◦ f̃ is a lifting of the map f .

(2) Since f̃(y1) is also a lifting of f(x) , we can find t in G such that t◦f̃(y1) =
y2 . The transformation h = t ◦ f̃ is also a lifting of f by the second part of (1).
To get unicity, assume we have two liftings of f , say h and t , satisfying the
hypotheses. Then h−1 ◦ t is a lifting of the identity, so belongs to G , and it fixes
a point in Ŝ . This only can happen if h−1 ◦ t is the identity, or equivalently, if
t = h .

(3) Let h be a lifting of f having a fixed point, say p . If we denote by q the
projection of p to S , then q is a fixed point of f . In fact, since h is a lifting of
f , we have that q = π(p) = π

(

h(p)
)

= f
(

π(p)
)

= f(q) . If we denote by n the
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order of f , then hn is a lifting of the identity. It follows that hn belongs to G .
The fact that G acts as a fixed point freely implies that hn is the identity. If m
denotes the order of h , then the last assertion implies that m divides n . On the
other hand, the identity map hm is a lifting of fm , which implies that fm is the
identity. In this case n divides m . As a consequence n = m , that is, the order of
f and h are the same.

Proposition 1. Let (Ω, G, π: Ω → S) be a Schottky uniformization of S .

Let f : S → S be a finite order (say n) conformal automorphism of S lifting to the

above Schottky uniformization, that is, there exists a conformal automorphism h
of the region Ω such that π ◦ h = f ◦ π .

(1) If f acts fixed point freely, then either

(1.1) h is an elliptic element of order n and there exists a loxodromic element

k in G commuting with h , or

(1.2) h is loxodromic and hn (the composition of h n -times) belongs to G .

(2) If f has a fixed point x on S and y in Ω is a lifting of x , then there

exists a unique lifting t of f with y as fixed point. Such a lifting is an elliptic

element of order n .

Proof. Denote by K < M the group generated by G and h . One has that
K is a finite normal extension of G .

(1) The liftings of f can only be elliptic or loxodromic, since K cannot have
parabolic elements. If such a lifting is loxodromic we are done. Let us assume that
a lifting, say t , is elliptic. Since f has no fixed points, the fixed points of t must
belong to the limit set of K . Theorem 1 implies the existence of a loxodromic
element k in G commuting with t .

(2) If x is a fixed point of f and y is a lifting of x , then part (2) of Lemma
1 implies the desired result.

4. Necessary conditions

In this section we obtain necessary conditions to solve our main problem. As
in the last section, S will denote a closed Riemann surface of genus g ≥ 1 and H
will denote a finite group of conformal automorphisms of S . We assume there is
a Schottky uniformization (Ω, G, π: Ω → S) of the surface S for which the group
H lifts.

Let G̃ be the group generated by G and the liftings of the elements of H .
Since H is finite, G̃ is a finite normal extension of G .

Remark. Proposition 1 implies the following about the liftings of elements
of H to G̃ .

(1) If h is an element of H of order n acting without fixed points, then any
lifting h̃ in G̃ of h must have one of the following properties:

(1.a) h̃ is elliptic of order n and there exists a loxodromic element k in G
commuting with h̃ ; or
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(1.b) h̃ is a loxodromic element with h̃n belonging to G .
(2) If h is an element of H of order n acting with fixed points, then we can

find a lifting h̃ in G̃ of the transformation h which is elliptic of order n with both
fixed points in Ω(G)= Ω(G̃) . Such lifting is unique if we fix a lifting of one fixed
point of h as fixed point of h̃ .

We need the following definitions for the rest of our work.

Definition. Let p and q on S be fixed points of non-trivial elements in H .
We say that p and q are paired, or that they form a pair (p, q) , if there exists
h̃ ∈ G̃ − {I} of finite order with fixed points x and y projecting to p and q
respectively.

Remark. Observe that if p and q are paired as in the above definition, then
k(p) and k(q) are also paired for every k in G̃ .

The following results are obtained under the assumption that we can find a
Schottky group G and a covering π: Ω(G) → S as desired.

Proposition 2. Let S be a closed Riemann surface of genus g ≥ 1 and let

H be a finite group of conformal automorphisms of it. Let us assume there exist a

Schottky uniformization (Ω, G, π: Ω → S) of S for which the group H lifts. Let

p ∈ S be fixed by some element h in H − {I} . Then there exists a unique point

q ∈ S − {p} which is paired to p . Moreover, if t ∈ S − {p, q} is fixed by some

non-trivial element of H , then t cannot be paired either to p or q . In particular,

if h in H − {I} has a fixed point, then it must have an even number of them.

Proof. Let h be an element of H and let p be a fixed point of h . Let x be a
point in the region of discontinuity (Ω(G)) of G projecting onto p . We can find
a lifting h̃ in G̃ of h (of the same order as h) such that h̃(x) = x . Let y be the
other fixed point of h̃ . Theorem 1 implies that y is a regular point for the group
G , hence for the group G̃ . If we show that y projects on S onto a point different
from p , say q , then p and q will be paired. Assume y projects onto p , then there
exists k in G satisfying k(x) = y . If k(y) 6= x , then the commutator [h̃, k◦h̃◦k−1]
is necessarily a parabolic element, and since G̃ has no parabolic elements, this is
not the case. This implies that k(y) = x , and in particular k2=1 (any Möbius
transformation permuting two different points is necessarily an involution. For
instance, if these points are 0 and ∞ , then the transformation is Z → R/Z ).
The last is a contradiction to the fact that G has no elliptic elements. To prove
the second statement of Proposition 2, we assume t ∈ S − {p, q} is fixed by some
element in H − {I} and it is paired to p . Then there exists j in G̃ − {I} of
finite order with fixed points u and v such that u projects onto p and v projects
onto t . Since p and q are paired, there exists h̃ in G̃−{I} of finite order with x
and y as its fixed points, such that x projects onto p and y projects onto q . The
property that x and u project onto the same point p means that there exists l
in G such that l(u) = x . Let us consider k = l ◦ j ◦ l−1 ∈ G̃ . Then k has finite



On Schottky groups with automorphisms 267

order and it is a non-trivial element of G̃ − {I} with x and l(v) as fixed points
projecting to p and t , respectively. Since t is different from q , l(v) is different
from y . The commutator [k, h̃] = k◦h̃◦k−1◦h̃−1 must be parabolic, contradicting
the fact that G̃ has no parabolic elements.

Definition. Let p be a point on S . Then the stabilizer of p with respect to
H is the group H(p) = {h ∈ H; h(p) = p } .

For the next definition, we need a classical result. Let h be in H and let p
be on S such that h(p) = p . We can find a local coordinate system (U, ϕ) such
that ϕ(p) = 0 and ϕ ◦ h ◦ ϕ−1(z) = eiαz , for all z ∈ ϕ(U) . Moreover, we can
assume ϕ(U) = △ , where △ denotes the unit disc in the complex plane C .

Lemma 2. The angle θ = θ(h, p) is well defined up to a multiple of 2π ,

independent of the local coordinate and θ(hk, p) = kθ(h, p) .

Proof. We only need to check the independence from the local chart. Let
(U, R) and (V, T ) be local charts such that p belongs to U ∩V , R(p) = T (p) = 0,
and R(U) = T (V ) = △ . Then R ◦ h ◦R−1(z) = eiαz and T ◦ h ◦ T−1(w) = eiθw ,
since R ◦ h ◦ R−1 and T ◦ h ◦ T−1 are conformal automorphisms of the unit disc
△ fixing the origin (Schwarz’s lemma). Let us consider t(q) = T ◦R−1(q) = eiηq ,
then

eiαz = R ◦ h ◦ R−1(z)

= R ◦ T−1 ◦ T ◦ h ◦ T−1 ◦ T ◦ R−1(z)

= t−1 ◦ T ◦ h ◦ T−1 ◦ t(z)

= e−iηeiθeiηz = eiθz.

This equation implies eiα = eiθ and then α − θ = 2rπ , for some r .

Definition (The rotation number). Let h ∈ H and p ∈ S be such that
h(p) = p and let θ be as before. We normalize θ by assuming that −π < θ ≤ π .
We call such a normalized θ = θ(h, p) the rotation number of h at p .

Proposition 3. Let S , H and G be as in Proposition 2 . Assume that p
and q are paired under H . Then

(1) H(p) = H(q) , and

(2) θ(h, p) = −θ(h, q) , for all h ∈ H(p) − {I} = H(q) − {I} , of order bigger

than two, where I denotes the identity element of H .

Proof. Assume p and q to be paired under H , that is, there exists h̃ in G̃
of finite order with fixed points x and y projecting onto p and q , respectively.
By Lemma 1, we have that for every t in H(p) there is one and only one trans-
formation t̃ in G̃ which is a lifting of t and fixes x . Let z be the other fixed
point of t̃ , which also belongs to the region of discontinuity (by Theorem 1). If
z 6= y , then the commutator [t̃, h̃] in G̃ is a parabolic element of G̃ , a contradic-
tion. Thus, we must have z = y and, in particular, t also belongs to H(q) . By a
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symmetric argument we get H(p) = H(q) . We have also shown that for every t in
H(p) = H(q) , there exists a lifting t̃ of finite order (the same as t) with x and y
as fixed points. Since h̃ ∈ M is an elliptic element with fixed points x and y , we
necessarily have θ(t̃, x) = −θ(t̃, y) . But θ(t̃, x) = θ(t, p) and θ(t̃, y) = θ(t, q) .

Proposition 4. Under the hypotheses of Proposition 2 , assume that p and

q are paired under H . If there exists h in H such that h(p) = q , then h is an

involution, that is, h2 = I . Moreover, if t is a generator of H(p) = H(q) , then

the group generated by h and t is a dihedral group. In particular, if H has no

dihedral subgroups, then any pair (p, q) projects onto two different points on the

quotient Riemann surface S/H .

Proof. Let us assume there exists a pair (p, q) and an element h in H such
that h(p) = q . Let t̃ ∈ G̃ be an elliptic element with fixed points x and y
projecting onto S to p and q , respectively. Without loss of generality, we may
assume t̃ is a lifting of a generator of H(p) = H(q) , say t . Since h is in H
with h(p) = q , there exists a unique lifting h̃ ∈ G̃ such that h̃(x) = y . Let us
consider t̃ and h̃ ◦ t̃ ◦ h̃−1 ; both elliptic elements of the same order with y as
a common fixed point. Since G̃ has no parabolic elements, they must also have
x as a common fixed point, that is, h̃(y) = x . In particular, h̃ is a Möbius
transformation permuting two different points which implies that h̃2 = I and
h̃ 6= I (see proof of Proposition 2). Since G has no elliptic elements, h̃ cannot
belong to G . We can see that h̃ induces h as an involution in S which permutes
the points p and q as we require. Moreover, the transformations h̃ and t̃ satisfy
the equation h̃◦ t̃◦ h̃ = t̃−1 . In fact, normalize such that x = 0 and y = ∞ . Under
this normalization t̃(Z) = eiθZ and h̃(Z) = R/Z , for some non-zero complex
number R . In this case, h̃ ◦ t̃ ◦ h̃(Z) = e−iθZ = t̃−1(Z) . But now h̃ and t̃ project
to h and t respectively, and the above relation says that h has order two and that
h ◦ t has order two. The fact that h permutes the two fixed points of t , implies
that every non-trivial power of t is different from h . In particular, the subgroup
of H generated by h and t is the dihedral group D2n , where n is the order of t .

As a particular case, we have the following.

Corollary 1. Let S be a closed Riemann surface and let f : S → S be a

conformal automorphism of S having finite order. Assume there exists a Schottky

uniformization (Ω, G, π: Ω → S) of S for which the group H lifts. If (p, q) is a

pair, then the orbit of p under the action of f does not contain q .

The above three propositions give us a set of necessary conditions, on our
group H , in order to find a Schottky uniformization as desired. We collect these
conditions in the following.

Theorem 2 (Condition A). Let S be a closed Riemann surface of genus g ≥ 1
and let H be a finite group of conformal automorphisms of it. The following is a

set of necessary conditions, called Condition (A), to be satisfied by the group H
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in order to find a Schottky uniformization (Ω, G, π: Ω → S) of S for which the

group H lifts.

(I) The fixed points of the non-trivial elements of H can be paired in the

following way:

(I.1) If (p, q) is such a pair, then p 6= q , H(p) = H(q) and θ(h, p) = −θ(h, q) ,
for all h ∈ H of order greater than two.

(I.2) If (p, q) is a pair and j ∈ H is such that j(p) = q , then j2 = I .

(II) if (p, q) and (r, s) are two different pairs, then {p, q} ∩ {r, s} = ϕ .

Remark. It is very easy to see that if we have a pairing satisfying the
necessary conditions of Theorem 2, Condition (A), then we can get another pairing
of the fixed points of H satisfying these conditions and the following extra technical
condition:

(III) If (p, q) is a pair and h belongs to H , then
(

h(p), h(q)
)

is also a pair.

As a direct application of Theorem 2, we have the following

Corollary 2. Let S be a closed Riemann surface, and let f : S → S be a

conformal automorphism of finite order. Assume that some non-trivial power of f
has an odd number of fixed points. Then there exist no Schottky uniformization

(Ω, G, π: Ω → S) of S for which the automorphism f : S → S lifts.

Proposition 5. A group H of conformal automorphisms of a closed Riemann

surface satisfies Condition (A) if and only if every cyclic subgroup T of H satisfies

Condition (A).

The proof of the above proposition is very easy and it is left for the interested
reader. In any case we do not use it in what follows.

There are examples where the assumptions of Corollary 2 hold. The interested
reader should consider the following example.

Example. We construct a closed Riemann surface of genus three, non-
hyperelliptic, with an automorphism of order three with five fixed points.

Let X be the zero locus, in the projective plane PC2 , of the quartic

aX4 + bY 4 + cXY 3 + dX2Y 2 + eX3Y + fZ3X + gZ3Y = 0.

For suitable complex numbers a , b , c , d , e , f and g , X is a non-singular, irre-
ducible projective algebraic curve of degree 4. In this case X has the structure of
a non-hyperelliptic Riemann surface of genus three. This surface admits an auto-
morphism h of order five which is the restriction to X of the linear automorphism
of the complex projective plane given by

h =





1 0 0
0 1 0
0 0 w



 ,
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where w2 + w + 1 = 0.
It is easy to check (by Bezout’s theorem) that this automorphism has in fact

only five fixed points on the surface X .

5. Sufficient conditions

The natural question at this point is the following: Is Condition (A) sufficient?
When H is a cyclic group, we have the following answer:

Main Theorem. Let S be a closed Riemann surface and let f : S → S be

a conformal automorphism of finite order. Then Condition (A) is necessary and

sufficient for the existence of a Schottky uniformization (Ω, G, π: Ω → S) of the

surface S for which the automorphism f : S → S lifts.

Since every involution trivially satisfies Condition (A), we obtain the follow-
ing.

Corollary 3. Let S be a closed Riemann surface and f : S → S be a

conformal involution. Then there exists a Schottky uniformization (Ω, G, π: Ω
→ S) of the surface S for which the involution f : S → S lifts.

Remark. In the particular case when S is hyperelliptic and f is the hyper-
elliptic involution, Corollary 3 was proven by L. Keen [9]; the general case first
appeared in [7].

Figure 1. The rotation of j at its fixed points.

The proof of the main theorem is done in the next section. Before we go on,
let us finish our analysis in the case of tori. In genus one Riemann surfaces, tori,
there are only two different conformal classes of them with extra automorphisms in
addition to the ones considered in Section 3. These tori are given by the quotient of
the complex plane C by the group Gi generated by the parabolic transformations
A(Z) = Z +1 and B(Z) = Z + i , and by the group G̺ generated by the parabolic
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transformations A(Z) = Z + 1 and C(Z) = Z + ̺ , where ̺ = 1
2 (1 + i

√
3 ). In

the first case, Ti = C/Gi has an automorphism j of order four having two fixed
points, with j2 an involution with four fixed points. It is easy to see that the
rotation number of j at both fixed points is the same. Figure 1 shows the action
of j at its fixed points when we lift it to the universal covering C . In particular
the necessary conditions to find a Schottky group G of genus one uniformizing Ti

such that j can be lifted to a conformal automorphism of Ω(G) are not satisfied
by the cyclic group of order 4 generated by j . In the second case, T̺ = C/G̺

has an automorphism t of order six having only one fixed point. There are three
points in T̺ which are permuted between them by t and another two points which
are permuted between them by t . Figure 2 shows the action of t when we lift to
the universal covering of T̺ . Again, the necessary conditions are violated by the
cyclic group of order 6 generated by t .

Figure 2. The action of t on the universal covering.

The above result is not a surprise. In fact, if we look at the elementary
Kleinian groups with exactly two limit points [12], we can see that it is impossible
to find a finite extension of a Schottky group of genus one with an elliptic trans-
formation of order greater than two having a fixed point as regular point of a such
group. With this we finish the case of genus one.

Let us remark also that if a group of conformal automorphisms H of a closed
Riemann surface S is isomorphic to the group Z/2Z ⊕ · · · ⊕ Z/2Z or a dihedral
group (of order 2p , p a prime) or an abelian group satisfying Condition (A), then
we can find a Schottky uniformization (Ω, G, π: Ω → S) of the surface S for which
the group H lifts. The same holds if S is a closed Riemann surface of genus three
and H is a group of conformal automorphisms of S isomorphic to the symmetric
group in four letters. The proof of these facts will appear elsewhere. The general
case is still an open problem.

We can also generalize this problem for more general uniformizations (∆, F, π:
∆ → S) of closed Riemann surfaces, but in this case it is easy to show that
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our conditions are not in general necessary. We can find examples when these
conditions are necessary but not sufficient. This problem in this generality will be
discussed elsewhere.

6. The proof of the main theorem

In this section we prove our main theorem. It will be a consequence of Proposi-
tion 6 which describes the topological action of conformal automorphisms of finite
order on closed Riemann surfaces of any genus.

From now on, S denotes a closed Riemann surface of genus g ≥ 1 and
f : S → S a conformal automorphism of order n satisfying Condition (A).

Notation. (1) H = 〈f〉 denotes the cyclic group generated by the automor-
phism f .

(2) S̃ denotes the quotient Riemann surface obtained by the action of the
cyclic group H .

(3) fs denotes the composition of f exactly s times.

(4) N(fs) denotes the number of fixed points of fs .

(5) ĝ is the genus of S̃ .

(6) π: S → S̃ is the natural holomorphic projection induced by the action of
H on S .

(7) B denotes the branch locus of π on S̃ , that is, B is the projection under
π of the fixed points of non-trivial powers of f .

(8) For p on S , H(p) denotes the subgroup of H consisting of those elements
fixing p .

In this case Condition (A) implies the following:

(A1) fs has an even number of fixed points, that is, N(fs) = 2n(fs) , for
some non-negative integer n(fs) , for all s = 1, . . . , n − 1;

(A2) The fixed points of the non-trivial powers of f can be paired in the
following sense; if (p, q) is such a pair, then p 6= q , H(p) = H(q) and if fs

generates H(p) = H(q) has order greater than two, then θ(fs, p) = −θ(fs, q) .

(A3) If (p, q) and (r, t) are different pairs as in (A2), then {p, q}∩{r, t} = ϕ ;

(A4) If (p, q) is a pair as in (A2), then q is not in the orbit of p under the
action of f ; and

(A5) If (p, q) is a pair, then
(

f(p), f(q)
)

is also a pair.

We need the following definition.

Definition. Let S , f , H , S̃ , B and π: S → S̃ be as before. Let α be any
loop on the open surface S̃ − B . Choose any point z in such a loop and a point
x in S such that π(x) = z . Lift the loop α at x and let y be the end point of
such a lifting. Since π(y) = z and z is not in B , there exists a unique h in H
such that y = h(x) . We say that α corresponds to h .
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It is easy to see that the above correspondence is well defined, that is, the
correspondence does not depend on the choices of z and x .

In case that B is non-empty, we write B = {P1, Q1, P2, Q2, . . . , Pt, Qt} , such
that π−1(Pi) = { pi,j : j = 1, . . . , li } , π−1(Qi) = { qi,j : j = 1, . . . , li } and
(pi,j , qi,j) is a pair from (A1)–(A5), for i = 1, . . . , t .

We deal with two cases, that is, (I) ĝ = 0 and (II) ĝ ≥ 1.

Case I: ĝ = 0. In this case S̃ is the Riemann sphere. Since we are assuming
n to be greater than one, the Riemann–Hurwitz formula [5] implies that there are
non-trivial powers of f acting with fixed points, that is, B is non-empty. Choose
disjoint simple arcs η1, . . . , ηt , such that ηi connects Pi with Qi , for i = 1, . . . , t .

Lemma 3. π−1
(

S̃ −
⋃t

i=1ηi

)

consists of n connected components, each one

is mapped topologically by π onto S̃ − ⋃t
i=1ηi .

Proof. Let us consider a point z on S̃ −B , and simple paths δi , i = 1, . . . , t ,
satisfying the following.

(i) δk ∩ δj = z , for k 6= j ;

(ii) δk ∩ ηj = ϕ , for k 6= j ; and

(iii) δk connects z to ηk .

The surface S̃−⋃t
i=1

(

δi ∪ηi

)

is simply connected. We can find n continuous
branches of π−1 . These branches have a continuous extension to δi , for all i , but
they cannot be extended continuously to ηi , for any i .

If π1 be a branch of π−1 , then π1

(

S̃ −
⋃t

i=1ηi

)

is a fundamental domain
for the action of the cyclic group H generated by f . This domain is bounded
by t simple loops, η̃i , i = 1, . . . , t , where each loop η̃i contains exactly two fixed
points of f li and is mapped onto itself by f lisi , for some si relatively prime to
ni determined uniquely by the rotation number θ(f li , pi) .

Choose disjoint simple loops γ1, . . . , γt on S̃ −
⋃i=t

i=1ηi , such that the loop γi

is homotopic to the boundary determined by ηi , for i = 1, . . . , t . As a consequence
of Property (A2), each of these loops lifts to a disjoint set of simple loops on S .
Let us consider the family F of all these liftings, which is a H invariant family
of disjoint simple loops on S . Lemma 3 implies we can choose a subfamily T of
F , consisting of g homologically independent simple loops. By construction the
normalizer of the family of loops T is exactly F . In particular, it is invariant
under the action of H . As a consequence of the retrosection theorem, the family of
loops T determines a Schottky group G (up to conjugation in M), uniformizing
S , for which the automorphism f can be lifted to a conformal automorphism of
Ω(G) . The same theorem asserts that we can find a set of free generators, say
A1, . . . , Ag , for the group G and a lifting, say F , of the automorphism f , such
that the action of F on those generators, given by Ai → F ◦ Ai ◦ F−1 , is totally
described by the action of f on the family F .
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Case II: ĝ > 0. In this case, the proof will be a direct consequence of the
following result on the topology of the action of cyclic groups on closed Riemann
surfaces.

Proposition 6. We use the same notation as in the begining of this section.

Assume ĝ bigger than zero. Then there exist a set of oriented non-dividing simple

loops on S̃ , α1 , β1, . . . , αĝ and βĝ satisfying the following property.

(1) αi and βi are disjoint from B , for all i = 1, . . . , ĝ ;

(2) αi ∩ αj = ϕ , for i 6= j ;

(3) βi ∩ βj = ϕ , for i 6= j ;

(4) αi ∩ βj = ϕ , for i 6= j ;

(5) αi ∩ βi consists of exactly one point;

(6) The above loops are oriented in such a way that the homology intersection

αi · βi = +1 ;

(7) The surface S̃ −
⋃ĝ

i=1(αi ∪ βi) is topologically a sphere with ĝ disjoint

deleted discs; and

(8) β1 , α2 , β2, . . . , αĝ and βĝ lift to loops on S, and the loop α1 lifts to a

path on S corresponding to the automorphism f .

A proof of the above proposition, in the case when n is prime and the auto-
morphism f acts fixed point freely, can be found in [1]. In the case when f has
an even number of fixed points, every non-trivial power of f has the same set of
fixed points and there are half of those fixed points, say p1, . . . , pk , with the same
rotation number θ = θ(f, pi) , and the other half, say q1, . . . , qk , with the same
rotation number −θ = θ(f, qi) ; a proof can be found in [14]. A proof in a slightly
more general situation, that is, when θ(f, pi) = −θ(f, qi) = θi (the values θi may
be all different), can be found in [8]. Before giving a proof of Proposition 6, let us
finish the proof of our Main Theorem in the case ĝ ≥ 1.

Proposition 6 asserts that we can find a set of oriented non-dividing simple
loops (on S̃ ) α1 , β1, . . . , αĝ and βĝ satisfying the conditions (1) to (8) (of that

proposition). If we cut the surface S̃ along the above loops we still have a con-
nected surface. If B is non-empty, we choose a set of disjoint simple paths ηi ,
i = 1, . . . , t , connecting the projections of paired fixed points. The connectivity of
the surface S̃−⋃ĝ

i=1(αi∪βi) ensure that we may take these paths disjoint from the
loops αj and βj , for all j . We consider a set of disjoint simple loops, γ1, . . . , γt ,
disjoint from the loops αi and βi , for all i = 1, . . . , ĝ , satisfying the condition
that γk is homotopic to the boundary of the open surface S̃ −

⋃

i,j(ηi ∪ αj ∪ βj)
determined by the path ηk . Property (A2) implies that each of the loops γi lifts
to a disjoint set of simple loops.

Lemma 4. π−1(S̃ −⋃t
i=1ηi) consists of n connected components. Each one

is mapped topologically by π onto S̃ −
⋃t

i=1ηi .
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Proof. Let us consider a point z on S̃ − B also disjoint from the loops αj

and βj , for all j . Choose simple paths, δi , i = 1, . . . , t , satisfying the following.
(i) δk ∩ δj = z , for k 6= j ;
(ii) δk ∩ αj = ϕ , for all k, j ;
(iii) δk ∩ βj = ϕ , for all k, j ;
(iv) δk ∩ ηj = ϕ , for k 6= j ; and
(v) δk connects z to ηk .

The surface S̃ − ⋃

i,j(δi ∪ ηi ∪ αj ∪ βj) is simply connected. We can find n

continuous branches of π−1 . These branches have a continuous extension to δi ,
for all i . We can also extend these branches continuously to all αj and βj , for all
j , but they cannot be extended continuously to ηi , for any i .

Let π1 be a branch of π−1 , then π1

(

S̃−⋃t
i=1ηi

)

is a fundamental domain for
the action of the cyclic group H generated by f . This domain is bounded by t+2
simple loops, β1,1 , β1,2 , and η̃i , i = 1, . . . , t . Each one of the loops η̃i contains
exactly two fixed points of f li and it is mapped onto itself by f lisi , for some
si relatively prime to ni which is determined uniquely by the rotation number
θ(f li , pi) . The loop β1,1 is mapped by f onto the loop β1,2 and π(β1,1) = β1 .
This ends the proof of Lemma 4.

Lemma 4 and the retrosection theorem imply that the lifting of the loops
αi and γj , for i = 1, . . . , ĝ , and j = 1, . . . , t , to the surface S define a Schottky
uniformization (Ω, G, π: Ω → S) of S for which the automorphism f can be lifted
as a conformal automorphism of Ω. In this way, the main theorem is proved.
Observe that essentially different Schottky uniformizations of S satisfying the
lifting property can be constructed by replacing some of the loops αi by the
correspondent loop βi (of course, the choice of the loops γj , for j = 1, . . . , t , can be
made in many different ways, determining again different Schottky uniformizations
as desired).

In the proof of Proposition 6 we use frequently the following trivial lemma.

Lemma 5. Let α and β be two non-dividing simple loops on a closed

Riemann surface X such that they intersect transversally at exactly one point,

say x . Let d be an integer. Then the loops αdβ and βαd are freely homotopic to

simple loops. Moreover, the loop αdβ (repectively, βαd) is freely homotopic to a

simple loop δ (respectively, η) with the property that α and δ (respectively, α
and η) intersect transversally exactly at x .

Proof. We may assume without loss of generality that X is a surface of
genus one with a hole P such that the commutator of the loops α and β is free
homotopic to the boundary of P . In this case our loops α and β can be thought
of as a canonical basis for the homotopy. It is well known that if a and b are
relative prime integers, then the loop αaβb is free homotopic to a simple loop.
The second part of the lemma is trivial (see Figure 3).

Next we proceed to prove Proposition 6.
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Figure 3. The loops αdβ and βαd .

Proof of Proposition 6. Let us write n as a product of prime numbers, that
is,

n = p1p2 · · ·ps,

where the integers pi are (not necessarily distinct) primes. We proceed to prove
this proposition by induction on the integer s .

(I) s = 1, that is, n = p , p a prime.
Choose a set of oriented non-dividing simple loops, αi , βi , i = 1, . . . , ĝ ,

satisfying conditions (1) to (7) of the proposition. We proceed to modify them,
without destroying the above properties, such that they also satisfy condition (8).

First of all, note that every simple loop α either lifts to a loop on S or every
power αk , k = 1, . . . , p − 1, lifts to a path.

For each i , 1 ≤ i ≤ ĝ , we have the following possibilities.
(1) Both αi and βi lift to loops on S .
(2) αi lifts to a loop and βi lifts to a path on S .
(3) αi lifts to a path and βi lifts to a loop on S .
(4) Both αi and βi lift to paths on S .

We may assume that for each i either case (1) or case (2) holds. In fact, if
we are in case (3) we can change the loops αi and βi by the loops βi and α−1

i

respectively. In case (4) we change our loops as follows. The loops αi and βi

correspond to non-trivial powers fn and fm , respectively. Since the order of f
is prime, fn is also a generator of the cyclic group generated by f . In particular,
there exists an integer ki such that αk

i corresponds to f−m and as a consequence
the loop αki

i βi lifts to a loop. From Lemma 5, the loop αki

i βi is free homotopic
to a simple loop, say Q . Now replace the loops αi and βi by the simple loops Q

and α−1
i respectively.

Case 1. Let us assume there exists some i such that αi and βi satisfy (2).
For each such index i we may assume that βi corresponds to the automorphism f .
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In fact, the loop βi corresponds to some non-trivial power of f , say f ti . This
non-trivial power also generates the cyclic group generated by f (f has prime
order). There exists an integer ki such that βki

i lifts to a path corresponding

to f . The loop αiβ
ki

i is free homotopic to a simple loop P (by Lemma 5). We
replace the loops αi and βi by the simple loops P and βi respectively. After this
change, we have that the loop αi corresponds to f and the loop βi corresponds to
f ti . The loop α−ti

i βi is free homotopic to a simple loop K . Finally, we replace
the loops αi and βi by the simple loops K and α−1

i respectively.
After permuting the indices if necessary, we may assume that our set of loops

satisfies the following:
(a) αi lifts to a loop, for i = 1, . . . , ĝ ;
(b) βj corresponds to the automorphism f , for j = 1, . . . , l ; and
(c) βk lifts to a loop, for k = l + 1, . . . , ĝ .

If l = 1, we are done. Assume now l ≥ 2.

Figure 4. The loops α1β
−1
1 αiβ1 , β1 , αi and βiαiβ

−1
1 .

For 2 ≤ i ≤ l , we change our loops α1 , β1 , αi and βi by simple loops
homotopic to α1β

−1
1 αiβ1 , β1 , αi and βiαiβ

−1
1 , respectively (see Figure 4). After

realizing this change, we have that α1 , αi and βi lift to loops and the loop β1

corresponds to f .
Performing the above change for each i , 2 ≤ i ≤ l , we obtain the set of loops

as required.

Case 2. Now we must take care of the case when every i satisfies (1). In this
case the connectivity of the surface S implies the existence of a fixed point of the
automorphism f . Let p be the projection to S̃ of some fixed point of f . Let q
be a point on S̃ which belongs neither to the B , the branch locus of π , nor to
some of the loops αi , βi . Consider a simple loop η around p and disjoint from
the loops αi and βi , for every i . Take simple paths δ1 and δ2 such that:

(i) δ1 ∩ δ2 = {q} ;
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(ii) δ1 connects q to α1 ;

(iii) δ2 connects q to η ;

(iv) δi ∩ βj = ϕ , for every j and i ;

(v) δ1 ∩ αk = ϕ , for all k ≥ 2;

(vi) δ2 ∩ αj = ϕ , for every j .

Give orientations to the paths δi such that q is the initial point. Also ori-
ent the loop η such that p is at the left side of such a loop when going in the
positive orientation. Now replace the loop α1 by a simple loop free homotopic to
δ1α1δ

−1
1 δ2ηδ−1

2 . At this point all the loops αj and βk lift to loops, for j ≥ 2 and
every k , and the loop α1 corresponds to some power of f , say f l , generating the
cyclic group H . There exists r such that f rl = f . Now, replace the loops α1 and
β1 by simple loops free homotopic to αr

1β1 (Lemma 5) and α1 , respectively. Now
the new loop α1 corresponds to f and the new loop β1 corresponds to f l . Again,
change the loops α1 and β1 by simple loops free homotopic to α1 and α−l

1 β1 . In
this way we obtain a set of loops as required.

(II) Let us assume the proposition is true for conformal automorphisms of
order q1 · · · qs−1 , with qi a prime number.

(III) Let f : S → S be a conformal automorphism of S of order n = p1 · · · ps ,
where pi is prime. Denote by ḡ the transformation fp1···ps−1 , by S1 the quotient
Riemann surface S/〈ḡ〉 , by π1: S → S1 and π2: S1 → S̃ the natural holomorphic
branched coverings induced by the actions of ḡ on S and the action of F on S1 ,
where F is the conformal automorphism of S1 induced by f such that π1 ◦ f =
F ◦ π1 . The automorphism F has order m = p1 · · · ps−1 .

We can apply the induction hypotheses (II) to the covering (branched) π2: S1

→ S̃ and the automorphism F . Choose a set of oriented non-dividing simple loops
on S̃ , say αi , βi , i = 1, . . . , ĝ , satisfying conditions (1) to (8) of our proposition
for S1 and F .

Observe that we can assume those loops to be disjoint from B , the branch
locus of π . We need the following.

Lemma 6. If η is a loop on S1 , disjoint from the branch locus of π1 , then

the loops η and F k(η) lift to S in the same way, that is, both correspond to the

same power of ḡ .

Proof. Let x0 be a point in η and let x1 = F k(x0) . Choose z0 in S such
that π1(z0) = x0 . Denote by η̃ the lifting of η at z0 and by η∗ the lifting of
F k(η) at fk(z0) . If z is the end point of η̃ , then the end point of η∗ is fk(z) .

Denote by α1,1 the lifting of α1 to S1 and by αj,i , βj,i and β1,i the liftings
of αj , βj and β1 respectively, for i = 1, . . . , p1 · · · ps−1 and j = 1, . . . , ĝ .

As a consequence of Lemma 6, we may assume that for each j ≥ 2 we have
one of the following four possibilities.



On Schottky groups with automorphisms 279

(1) αj,1 and βj,1 lift to loops on S , in which case αj and βj lift to loops
on S .

(2) αj,1 lifts to a loop on S and βj,1 lifts to a path on S , in which case αj

lifts to a loop on S and βj lifts to a path on S .

(3) αj,1 lifts to a path on S and βj,1 lifts to a loop on S , in which case αj

lifts to a path on S and βj lifts to a loop on S .

(4) αj,1 and βj,1 lift to paths on S , in which case αj and βj lift to paths
on S .

In case (3) we can change the loops αj and βj by the loops βj and α−1
j

respectively. After this change, we are in case (2). From now on, we can assume
(3) does not happen.

If there exists j ≥ 2 satisfying (2) we proceed with the same kind of changes
realized in (I), so we may assume that our set of loops satisfies the following.

(1) αj lifts to a loop on S and βj lifts to a path on S corresponding to the
transformation ḡ , for all j = 2, . . . , l .

(2) αk and βk lift to loops on S , for k = l + 1, . . . , ĝ .

Figure 5. The loops α1 , β1 , α2β
−1
2 αjβ2 , αj and αjβ

−1
2 βj .

If l ≥ 3 we proceed to do the following changes; for each j ∈ {3, . . . , l} , we
change our loops α2 , β2 , αj and βj by simple loops free homotopic to α2β

−1
2 αjβ2 ,

β2 , αj and αjβ
−1
2 βj , respectively (see Figure 5). After this change, the loops αj ,

βj , α2 lift to loops on S and the loop β2 lifts to a path on S corresponding to ḡ .
We proceed with this kind of change for all j ∈ {3, . . . , l} . After this procedure,
we change our loops α2 and β2 by β2 and α−1

2 , respectively.

At this point we may assume that our loops αj and βj satisfy one of the next
two properties. Either the loops αj and βj lift to loops on S , for every j ≥ 2,
or the loops αk , βm lift to loops on S , for every k ≥ 2, for every m ≥ 3 and the
loop β2 corresponds to ḡ .
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Observe that αk
1 cannot lift to a loop on S for k = 1, . . . , p1 · · · ps−1−1, since

it does not do it at S1 . We have the following two possibilities for the loop β1 .
(a) β1 lifts to a loop on S .
(b) β1 lifts to a path on S .

Case (a): (a.1) β1 lifts to a loop on S , α1 lifts to a path on S and α
p1···ps−1

1

lifts to a path on S . In this case αk
1 lifts to a path on S , for k = 1, . . . , n − 1.

There exists r such that αr
1 corresponds to the transformation f . We change the

loops α1 and β1 by simple loops free homotopic to αr
1β1 and α−1

1 (Lemma 5),
respectively. Now, α1 corresponds to f and β1 corresponds to some power of f ,
say f t . We change again the loops α1 and β1 by simple loops homotopic to α1

and α−t
1 β1 (Lemma 5), respectively. Now, the loop α1 corresponds to f and the

loop β1 lifts to a loop on S .

(a.2) β1 lifts to a loop on S , α1 lifts to a path on S and α
p1···ps−1

1 lifts
to a loop on S . In this case, there exists r such that αr

1 corresponds to fps .
We change our loops α1 and β1 by simple loops homotopic to β1α

r
1 and α−1

1

(Lemma 5), respectively. Now, α1 corresponds to fps and β1 corresponds to
f tps , for some t . Let us change α1 and β1 by simple loops homotopic to α1 and
α−t

1 β1 (Lemma 5), respectively. Now, the loop α1 corresponds to fps and the
loop β1 lifts to a loop on S .

Case (b): (b.1) β1 lifts to a path on S , α1 lifts to a path on S and α
p1···ps−1

1

lifts to a path on S . In this case, there exist k and r such that αr
1 corresponds to

f and β1 corresponds to ḡk = fkp1···ps−1 . Change the loops α1 and β1 by simple

loops homotopic to α1 and α
−rkp1···ps−1

1 β1 (Lemma 5), respectively. The loop αr
1

corresponds to f and β1 lifts to a loop. Now we are in case (a.1).

(b.2) β1 lifts to a path on S , α1 lifts to a path on S and α
p1···ps−1

1 lifts
to a loop. In this case, there exists r , where r and p1 · · · ps−1 are relatively
prime, α1 corresponds to f rps , and there exists k , where k and ps are relatively
prime, such that β1 corresponds to ḡk . There exist integers N and M such that
f = f rpsN+kp1···ps−1M . Let d be the maximum common divisor of N and M .
Write N1 = N/d and M1 = M/d , then if we write T = rpsN1 + kp1 · · · ps−1M1 ,
we have that f = fTd . In particular, T and n are relatively prime. Since N1

and M1 are relatively prime, there exists an oriented non-dividing simple loop α
generated by α1 and β1 such that it corresponds to the transformation fT . Let η
be another oriented non-dividing simple loop generated by α1 and β1 such that α
and η meet exactly at one point, α·η = +1 and S̃−(α∪η) is topologically a sphere
with a hole. Replace the loops α1 and β1 by the loops α and η , respectively. Now,
the loop α1 corresponds to fT and β1 corresponds to f l for some l . The loop αd

1

corresponds to f . We change the loops α1 and β1 by simple loops homotopic to
α1 and α−dl

1 β1 (Lemma 5), respectively. Now α1 corresponds to fT and β1 lifts
to a loop on S . We change the loops α1 and β1 by simple loops free homotopic
to αd

1β1 and α−1
1 (Lemma 5), respectively. Now α1 corresponds to f and β1
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corresponds to f−T . We make the last change as follows. Replace the loops α1

and β1 by simple loops homotopic to α1 and αT
1 β1 (Lemma 5), respectively. Now

the loop α1 corresponds to f and the loop β1 lifts to a loop.
Finally, we may assume that our set of loops satisfies either of the following:
(P1) αj and βk lift to loops on S , for j = 3, . . . , ĝ , and k = 1, . . . , ĝ , α1

corresponds to f and α2 corresponds to ḡ .
(P2) αj and βk lift to loops on S , for j = 3, . . . , ĝ , and k = 1, . . . , ĝ , α1

corresponds to fps and α2 corresponds to ḡ .
(P3) αj and βk lift to loops, for every j ≥ 2 and every k , the loop α1 either

corresponds to f or fps .

Figure 6. The loops α1β2 , β1 , α2β2β1 and β2 .

Case (P1). We proceed to change our loops α1 , β1 , α2 and β2 by simple

loops homotopic to α1β2 , β1α
−p1···ps−1

1 , α2β2β1α
−p1···ps−1

1 and β2 , respectively.
To see these loops, we apply a Dehn twist along the loop α1 (−p1 · · · ps−1 times)
to the loops α1β2 , β1 , α2β2β1 and β2 , shown in Figure 6. Now the loops α2 and
β2 lift to loops on S , the loop α1 corresponds to f and the loop β1 corresponds
to ḡ−1 . We change the loops α1 and β1 by simple loops homotopic to α1 and
α

p1···ps−1

1 β1 (Lemma 5), respectively. The loops αi , βi , i = 1, . . . , ĝ , above found
are the required ones.

Case (P2). Let us call q = p1 · · · ps−1 and p = ps . Since p and q are
relatively prime, there exist integers N and M also relatively prime such that
1 = Np + Mq and, in this case, f = fNp+Mq . Change the loops α1 and β1

by simple loops homotopic to αN
1 αM

2 β2β1 and β1α
N−1
1 , respectively. To see the

above loops, apply a Dehn twist along α1 (N times) and a Dehn twist along
α2 (M times) to the loops β2β1 and β1α

−1
1 in Figure 7. Next, we change the

loops α2 and β2 by two oriented simple loops α and η such that they are disjoint
from all other loops, they intersect exactly at one point with intersection number
α · η = +1 and S̃ −

⋃

i6=2(αi ∪ βi) − (α ∪ η) is topologically a sphere with ĝ
deleted discs. Now the loop α1 corresponds to f , the loop β1 corresponds to
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Figure 7. The loops β2β1 and β1α
−1
1 .

Figure 8. The loops β−1
2 α−1

1 , β1 , α2β2β1 and β2 .

the power f (N−1)p , the loop α2 corresponds to some power of f , say fL1 and
β2 corresponds to some other power of f , say fL2 . Change the loops α1 and

β1 by simple loops homotopic to α1 and α
−(N−1)p
1 β1 (Lemma 5), respectively.

Now the loop α1 corresponds to f and β1 lifts to a loop. Now we proceed to
change the loops α2 and β2 as follows. The group generated by fL1 and fL2

is a cyclic group generated by some fT . There exist integers N1 and M1 such
that fT = fN1L1+M1L2 . Let d the maximum common divisor of N1 and M1 .
Denote by N = N1/d and by M = M1/d . If we write L = NL1 + ML2 , then
fT = fdL . In particular, fL also generates the same group as fT . Since N
and M are relatively prime, there exists an oriented non-dividing simple loop α
generated by α2 and β2 which corresponds to fL . Now, consider an oriented
non-dividing simple loop η also generated by α2 and β2 such that they have the
same topological properties as α2 and β2 . Change the loops α2 and β2 by α and
η , respectively. Now, the loop α2 corresponds to fL and the loop β2 corresponds
to fJL for some J . Change the loops α2 and β2 by simple loops homotopic to α2

and α−J
2 β2 (Lemma 5), respectively. Now the loop α2 corresponds to fL and the

loop β2 lifts to a loop. Proceed to change the loops α1 , β1 , α2 and β2 by simple
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loops homotopic to α−1
1 β1α

−L+1
1 , β−1

2 α−1
1 , α−L

1 α2β2β1 and β2 , respectively. To
see the above loops, apply a Dehn twist along α1 (−L times) to the loops β1 ,
β−1

2 α−1
2 , α2β2β1 and β2 in Figure 8. Now the loops α2 and β2 lift to loops on S .

The loop α1 corresponds to f−L and the loop β1 corresponds to f−1 . Change α1

and β1 by simple loops homotopic to β−1
1 and α1 , respectively. Now the loop α1

corresponds to f and the loop β1 corresponds to f−L . We change again the loops
α1 and β1 by simple loops homotopic to α1 and αL

1 β1 (Lemma 5), respectively.
We obtain in this way the set of loops as required.

Figure 9. The paths M1 , M2 , Ni .

Case (P3). If f corresponds to α1 we are done. We may now assume α1

corresponds to fps . Denote Z = p1 · · · ps−1 and L = ps . The connectivity of S
implies that B is non-empty. Write B = {X1, . . . , XT} and let Y1, . . . , YT , be
points on S such that π(Yi) = Xi , for i = 1, . . . , T . Let Ki be a divisor of n such
that fKi generates the cyclic group of powers of f keeping fixed the point Yi , for
i = 1, . . . , T . Let us consider disjoint small oriented simple loops δi around Xi .
We assume the same orientation for each of these loops. We may also assume that
δi ∩αj = δi ∩βj = ϕ , for all i, j . Denote by ∆i the closure of the topological disc

bounded by the loop δi . Let p ∈ S̃ −⋃T
i=1∆i and disjoint from the loops αj and

βj , for all j . Consider simple paths Ni , M1 and M2 , i = 1, . . . , T , satisfying the
following properties (see Figure 9).

(1) L ∩ L′ = {p} , for all L, L′ ∈ {N1, . . . , NT} , L 6= L′ ;

(2) L ∩
(
⋃ĝ

j=1(αj ∪ βj)
)

= ϕ , for all L ∈ {N1, . . . , NT} ;

(3) M1 ∩ α1 and M2 ∩ β1 consist of exactly one point each;

(4) M1 ∩
(
⋃

j>1,k≥1(αj ∪ βk)
)

= ϕ , M2 ∩
(
⋃

j≥1,k>1(αj ∪ βk)
)

= ϕ ;

(5) Ni ∩ ∆j = ϕ , for i 6= j ;

(6) Ni ∩ ∆i consists of exactly one point.
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Figure 10. T=3, l1 = 1, l2 = 2 and l3 = 3.

We orient the above paths so that p is the initial point. Observe that
we must have the existence of non-negative integers, l1 , l2, . . . , lT , such that
fZ = f l1R1+···+lT RT , where Ri = niKi , ni is relatively prime to n/Ki and
it is determined in the following way. Choose a point zi in δi and a point xi

in S such that π(xi) = zi . Lift the loop δi at xi . The end point of such a
lifting is fRi(xi) . We may assume l1 ≤ l2 ≤ · · · ≤ lT . Write l2 = l1 + r1 ,
l3 = l1 + r1 + r2, . . . , lT = l1 + r1 + r2 + · · ·+ rT−1 , where ri is a positive integer
for i = 1, . . . , T − 1. Replace the loops α1 and β1 by simple loops homotopic
to η and α1 , respectively, where η is defined as follow. Let Ei = NiδiN

−1
i , for

i = 1, . . . , T , ET+1 = M1α1M
−1
1 and ET+2 = M2β1M

−1
2 . Then we define η (see

Figure 10) as

η = (E1 · · ·ET+1)
l1(E2 · · ·ET+1)

r1 · · · (ET ET+1)
rT−1E−lT +1

T+1 E−1
T+2ET+1.

Now the loop α1 corresponds to fZ and the loop β1 corresponds to fL .
There exist integers r and k , relatively prime, such that f = fLr+Zk . Since r
and k are relatively prime, there exists an oriented simple loop, α , generated by
α1 and β1 corresponding to f . Consider another oriented simple loop, η , also
generated by α1 and β1 such that α and η meet at exactly one point, α ·η = +1,
disjoint from the loops αj and βj for all j = 2, . . . , ĝ , and such that S̃ − {α ∪ η}
is topologically a closed surface of genus ĝ − 1 with a deleted disc. Replace the
loops α1 and β1 by α and η , respectively. Now the loop α1 corresponds to f and
the loop β1 corresponds to some power of f , say fJ . Replace again the loops α1

and β1 by simple loops free homotopic to α1 and α−J
1 β1 (Lemma 5), respectively.

The set of loops constructed above satisfies the conditions of our proposition.

7. Explicit construction of Schottky groups

In this part we construct, with the help of Proposition 6, explicit examples
of Schottky groups uniformizing closed Riemann surfaces with cyclic groups of
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automorphisms. The general theory of deformations by quasiconformal mappings
permit us to obtain all the possible cyclic actions.

As before let S be a closed Riemann surface of genus g and let f be a
conformal automorphism of S of order n . Let H be the cyclic group generated
by f and let S/H and π: S → S/H be the quotient Riemann surface and the
natural holomorphic branched covering induced by the action of H on S . Let us
also denote by ĝ the genus of S/H and by B the branch locus of the covering
map π .

If B is non-empty, we can pair the fixed points of non-trivial powers of f
in such a way that they satisfy the properties of Condition (A) and if (p, q) is
a pair, then

(

f(p), f(q)
)

is again a pair. In this way we can write B as the set
{Pj, Qj; j = 1, . . . , t } , such that

(i) π−1(Pj) = { pj,i; i = 1, . . . , lj } ;
(ii) π−1(Qj) = { qj,i; i = 1, . . . , lj } ;
(iii) pj,i is paired to qj,i .

Observe that the integers lj above necessarily divide n . In this case the
stabilizer in H of pj,i is generated by f lj . If we denote by vj = n/lj , then S/H
has signature

(ĝ, 2t; v1, . . . , vt), if t > 0; or

(ĝ, 0; ), if t = 0.

For the case of t > 0, let bj ∈ {1, . . . , vj −1} relatively prime to vj such that
the rotation number of f bj lj at pj,1 is 2π/vj .

Case ĝ > 0. In this case, Proposition 6 implies the existence of a set of
oriented simple loops, αi and βi , satisfying the properties (1) to (8) in that
proposition.

(1) Assume f has fixed points. In this case we may assume v1 = n , that
is l1 = 1. Let us consider a Kleinian group G̃ generated by the transformations
T, Tj , Ak such that T is elliptic of order n , Tj is elliptic of order vj and Ak

is loxodromic, for j = 2, . . . , t and k = 1, . . . , ĝ . We also assume G̃ to have a
fundamental domain as shown in Figure 11.

Let G be the smallest normal subgroup containing the elements Ak , T ljbj T−1
j ,

for k = 1, . . . , ĝ , and j = 2, . . . , t . Then G satisfies the following properties:
(i) G is torsion free;
(ii) G has index n on G̃ ;
(iii) G uniformizes a Riemann surface K of genus g which admits a cyclic

group F = G̃/G of order n as conformal group of automorphisms;
(iv) on the surface K/F there exists a set of simple loops α̃i and β̃i such

that they satisfy the properties in Proposition 6;
(v) the coverings π: S → S/H and π∗: K → K/F are topologically equiva-

lent.



286 Rubén A. Hidalgo

Figure 11.

Figure 12. The loops ηl for the group of Figure 11.

As a consequence of the techniques on quasi-conformal mappings, we may
assume K = S and F = H . To obtain a Schottky group uniformizing S for
which we can lift the group H , let us consider the projection of the translate by
T of loops ηl , shown in Figure 12, to the surface S . These projections define a
Schottky group as desired.

(2) Assume f has no fixed points. In this case we have vj 6= n , for all j .

Let us consider a Kleinian group G̃ generated by the transformations T , Tj , A ,
Ak , such that T is elliptic of order n , Tj is elliptic of order vj , A and Ak are
loxodromic, for j = 1, . . . , t and k = 1, . . . , ĝ − 1, and T ◦ A = A ◦ T . We also
assume G̃ to have a fundamental domain as shown in Figure 13.

Let us consider the smallest normal subgroup containing the elements A , Ak ,
T ljbj T−1

j , for k = 1, . . . , ĝ − 1 and j = 1, . . . , t . Denote this group by G . The
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Figure 13.

group G satisfies the following properties:
(i) G is torsion free;
(ii) G has index n in G̃ ;
(iii) G uniformizes a Riemann surface K of genus g which admits a cyclic

group F = G̃/G of order n as conformal group group of automorphisms;
(iv) On the surface K/F there exists a set of simple loops α̃i and β̃i , such

that they satisfy the properties in Proposition 6;
(v) the coverings π: S → S/H and π∗: K → K/F are topologically equiva-

lent.

Figure 14. The loops ηl for the group of Figure 13.

As a consequence of the techniques on quasi-conformal mappings, we may
assume K = S and F = H . To obtain a Schottky group uniformizing S for
which we can lift the group H , let us consider the projection of the translate by
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T of loops ηl , shown in Figure 14, to the surface S . These projections define a
Schottky group as desired.

Case ĝ = 0. (1) Assume f has fixed points. In this case we may assume
v1 = n , that is l1 = 1. Let us consider a Kleinian group G̃ generated by the
transformations T , Tj such that T is elliptic of order n , Tj is elliptic of order

vj , for j = 2, . . . , t . We also assume G̃ to have a fundamental domain as shown
in Figure 15.

Figure 15.

Let us consider the smallest normal subgroup containing the elements T ljbj T−1
j ,

for j = 2, . . . , t . Call this group G . Then G has the following properties:
(i) G is torsion free;
(ii) G has index n in G̃ ;
(iii) G uniformizes a Riemann surface K of genus g which admits a cyclic

group F = G̃/G of order n as conformal group of automorphisms;
(iv) the coverings π: S → S/H and π∗: K → K/F are topologically equiva-

lent.

As a consequence of the techniques on quasi-conformal mappings, we may
assume K = S and F = H . To obtain a Schottky group uniformizing S for
which we can lift the group H , let us consider the projection of the translate by
T of loops ηl , shown in Figure 16, to the surface S . These projections define a
Schottky group as desired.

In the case ĝ = 0 and all vi 6= n it is more difficult to write all possible
examples in a short way. This is because we have a lot of different possibilities.
They correspond to the different presentations of a cyclic group of order n with
generators ai , for i = 1, . . . , M , and containing the relations avi

i = 1, where
vi 6= n , for all i .
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Figure 16. The loops ηl for the group in Figure 15.
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