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ON MULTIPLIERS FOR BMOφ ON GENERAL DOMAINS

Yasuhiro Gotoh

Kyoto University, Faculty of Science, Department of Mathematics

Kyoto 606, Japan

Abstract. We characterize pointwise multipliers for BMOφ,p,loc on general domains in
Euclidean space under certain conditions for φ , where BMOφ,p,loc is the space of functions of
locally bounded p mean oscillation with respect to φ .

1. Introduction

Let φ: R+ → R+ be a measurable function, D a domain lying in Rn , and
BMOφ,p(D) , 1 ≤ p <∞ , the space of all Lp

loc functions f on D such that

sup
Q
φ
(

l(Q)
)−1

(

m(Q)−1

∫

Q

|f − fQ|p dm
)1/p

<∞

where the supremum is taken over all cubes in D whose sides are parallel to the
coordinate axes. Let BMOφ,p,loc(D) be its local version.

As a generalization of Janson’s result [4] for (pointwise) multipliers of
BMOφ,p space on the n -dimensional torus, Nakai–Yabuta [9] characterized the
BMOφ,p(R

n) multipliers under certain conditions for φ , and Nakai [8] extended
this result to multipliers of weighted BMO spaces on Rn . See also Maz’ya–
Shaposhnikova [7], where they characterized multipliers for BMO space on Rn ,
but their BMO is different from ours.

Here we investigate BMOφ,p(D) and BMOφ,p,loc(D) multipliers for general
domains D in Rn . We give geometrically simple characterizations which partially
extend Nakai’s result and also extend our former result [2] for multipliers of the
standard BMO space on general domains D in Rn .

The author would like to thank the referee for his helpful comments and
suggestions.
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2. Notation and results

For a measurable function φ: R+ → R+ we consider the following conditions
[A] and [Bm] , m ∈ R :

[A] There exists a constant M > 0 such that

tφ(l) ≤Mφ(tl), 0 < t ≤ 1, l > 0,

M−1 ≤ φ(s)/φ(t) ≤M, 2−1 ≤ s/t ≤ 2.

[Bm] There exists a constant M > 0 such that

tφ(l) ≤Mφ(tl), 0 < t ≤ 1, l > 0,
∫ l

0

φ(t)tm−1 dt ≤Mlmφ(l), l > 0.

We have [Bm] ⇒ [Bm′ ] ⇒ [A] when m ≤ m′ . The second inequality of [B0]
is called the Dini condition. In the following we say φ ∈ [A] (or [Bm] ) when φ
satisfies the condition [A] (or [Bm] ). If φ ∈ [A] is non-decreasing, it satisfies [Bm]
for every m > 0. In case of φ(t) = tα , φ ∈ [Bm] if and only if −m < α ≤ 1.

In the following ‘cube’ means a closed cube in Rn whose sides are parallel
to the coordinate axes, l(Q) denotes its side length, tQ , t > 0, denotes the cube
having the same center as Q and tl(Q) as its side length, d(·, ·) denotes the
Euclidean distance and dm denotes n -dimensional Lebesgue measure.

Let D be a domain in Rn and set λ = A
√
n , where A > 0 is a sufficiently

large absolute constant. (For example A = 1000 suffices.) We say that a cube Q
lying in D is admissible if it satisfies d(Q, ∂D) ≥ λl(Q) and we denote the set of all
admissible cubes in D by A (D) . A sequence of admissible cubes Q0, Q1, . . . , Qk

in D satisfying the conditions

Qi ∩Qi+1 6= ∅, 0 ≤ i ≤ k − 1,

2−1 ≤ l(Qi+1)/l(Qi) ≤ 2, 0 ≤ i ≤ k − 1,

is called an admissible chain. Let Q,Q′ be two admissible cubes in D . We define

δφ
D(Q,Q′) = inf

{ k
∑

i=0

φ(l(Qi)) |Q = Q0, Q1, . . . , Qk = Q′ is an admissible chain

}

.

Since we define δφ
D so that δφ

D > 0 for technical reasons, δφ
D is not a distance

function; however, the triangle inequality still holds. Note that when φ ∈ [A] ,

then δφ
D corresponds to the metric

kφ
D(x, x′) = inf

∫

γ

φ
(

d(y, ∂D)
)

d(y, ∂D)
ds(y), x, x′ ∈ D,
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where the infimum is taken over all rectifiable curves γ ⊂ D joining x to x′ .
Let φ ∈ [A] and 1 ≤ p < ∞ . Let BMOφ,p(D) be the space of all Lp

loc

functions f on D such that

‖f‖∗,p,D = ‖f‖∗,p = sup
Q
φ
(

l(Q)
)−1

Mp(f,Q) <∞

where

Mp(f,Q) =

(

m(Q)−1

∫

Q

|f − fQ|p dm
)1/p

and the supremum is taken over all cubes Q lying in D . (See also [3] for two
other versions of the definition of BMOφ,p(D) . We can rewrite Proposition 1 be-
low for these versions.) Let BMOφ,p,loc(D) be the space of all Lp

loc functions f
on D defined in the same way by restricting the supremum to cubes in A (D) .
Let ‖f‖∗,p,D,loc = ‖f‖∗,p,loc denote this supremum. The space BMOφ,p,loc(D) is
determined independent of the choice of λ (cf. [5, Lemma 2.3], [10, Hilfssatz 2,
p. 4]). It holds that BMOφ,p(D) ⊂ BMOφ,p,loc(D) by definition. If φ ∈ [B1/p] ,
BMOφ,p,loc(D) and BMOφ,p(D) coincide for every domain D ⊂ Rn (see Propo-
sition 1).

We say a measurable function g on D is a (pointwise) BMOφ,p(D) (respec-
tively BMOφ,p,loc(D)) multiplier if gf ∈ BMOφ,p(D) (BMOφ,p,loc(D)) for every
f ∈ BMOφ,p(D) (BMOφ,p,loc(D)). To consider BMOφ,p(D) or BMOφ,p,loc(D)
multipliers it is convenient to introduce the norm

‖f‖∗∗,p,D,Q0
= ‖f‖∗∗,p = ‖f‖∗,p + |f |Q0

φ
(

l(Q0)
)−1

, f ∈ BMOφ,p(D),

‖f‖∗∗,p,D,Q0,loc = ‖f‖∗∗,p,loc = ‖f‖∗,p,loc + |f |Q0
φ
(

l(Q0)
)−1

, f ∈ BMOφ,p,loc(D),

where Q0 is a fixed cube in A (D) and |f |Q0
= m(Q0)

−1
∫

Q0
|f | dm . Let g be

a BMOφ,p(D) (respectively BMOφ,p,loc(D)) multiplier. Then the closed graph
theorem shows that the operator Tg: f 7→ gf on BMOφ,p(D) (BMOφ,p,loc(D)) is
bounded with respect to the norm ‖f‖∗∗,p (‖f‖∗∗,p,loc ). Let ‖Tg‖φ,p (‖Tg‖φ,p,loc )
denote its operator norm.

Let

Φ(t) =

∫ t

1

φ(s)s−1 ds, t > 0

and set

ψφ(Q,Q′) = Φ
(

2
(

l(Q)+l(Q′)+d(Q,Q′)
))

−Φ
(

min{l(Q), l(Q′)}
)

, Q,Q′ ⊂ Rn.

Nakai [8] characterized the multipliers of weighted BMO spaces on Rn . In par-
ticular for the case of BMOφ,p(R

n) multipliers his result implies
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Theorem 1 ([8]). Let 1 ≤ p < ∞ and φ ∈ [Bn/p] . Then a measurable
function g on Rn is a BMOφ,p(R

n) (= BMOφ,p,loc(R
n)) multiplier if and only

if there exists a constant K ≥ 0 such that ‖g‖∞ ≤ K and

Mp(g,Q) ≤ K
φ
(

l(Q)
)

ψφ(Q,Q0)
, Q ⊂ Rn.

In this case ‖Tg‖φ,p ≤ CK holds. Conversely if g is a BMOφ,p(R
n) multiplier

then we can choose the constant K so that K ≤ C′‖Tg‖φ,p where C,C′ > 0 are
constants depending only on n , p and the constant M in the condition [Bn/p] .

We shall extend the above result as follows:

Theorem 2. Let D be a domain in Rn , 1 ≤ p <∞ and φ ∈ [Bn/p] . Then
a measurable function g on D is a BMOφ,p,loc(D) multiplier if and only if there
exists a constant K ≥ 0 such that ‖g‖∞ ≤ K and

Mp(g,Q) ≤ K
φ
(

l(Q)
)

δφ
D(Q,Q0)

, Q ∈ A (D).

In this case ‖Tg‖φ,p,loc ≤ CK holds. Conversely if g is a BMOφ,p,loc(D) multiplier
then we can choose the constant K so that K ≤ C′‖Tg‖φ,p,loc , where C,C′ > 0
are constants depending only on n , p and the constant M in the condition [Bn/p] .

Let En,m be the m-dimensional hypersurface { (x1, x2, . . . , xn) ∈ Rn | xi =
0, m+1 ≤ i ≤ n } and Hn the upper half-space { (x1, x2, . . . , xn) ∈ Rn | xn > 0 } .
We define the domains Dn,m , n ≥ 1, 0 ≤ m ≤ n− 1, in Rn as follows:

Dn,m =







Hn, m = n− 1,
Rn \ En,m, 1 ≤ m ≤ n− 2,
Rn \ {0}, m = 0, n ≥ 2.

Under various conditions on φ , we showed in [3] that BMOφ,p,loc(D) and
BMOφ,p(D) coincide.

Proposition 1 ([3]).

(1) Let φ ∈ [B1/p] , then BMOφ,p,loc(D) = BMOφ,p(D) for every domain D in
Rn .

(2) Let φ ∈ [B(n−m)/p] , then BMOφ,p,loc(Dn,m) = BMOφ,p(Dn,m) .

(3) Let φ ∈ [A] and D a proper subdomain of Rn . Then BMOφ,p,loc(D) =

BMOφ,p(D) if and only if kφ
D(·, x0) , x0 ∈ D , belongs to BMOφ,p(D) and its

BMOφ,p(D) norm is bounded.
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Clearly, when any of the conditions (1)–(3) above hold, Theorem 2 provides
a result for multipliers on BMOφ,p as well.

In Section 3 we give the proof of the ‘if’ part of Theorem 2, which is much
easier than that of the ‘only if’ part, and the ‘only if’ part is treated in Section 4.

Throughout Section 3 and 4 we assume that 1 ≤ p < ∞ , φ ∈ [Bn/p] and
C,C′, · · · , C1, C2, · · · > 0 (respectively Cα > 0) denote constants depending only
on n , p and the constant M in the condition [Bn/p] (and a given variable α),
which may vary from place to place.

3. Proof of Theorem 2 (Part 1)

The following five lemmas are showed by elementary calculations.

Lemma 1. (1) Let li > 0 , 1 ≤ i ≤ k , then φ(
∑k

i=1 li) ≤M
∑k

i=1 φ(li) .
(2) Let 1/2 ≤ s/t ≤ 2 , then C−1 ≤ φ(s)/φ(t) ≤ C .

Lemma 2. Let f ∈ Lp(Q) , then

Mp(f,Q) ≤ 2 inf
c

(

m(Q)−1

∫

Q

|f − c|p dm
)1/p

.

Lemma 3. Let f ∈ BMOφ,p(D) , let Q,Q′ be cubes in D such that Q∪Q′ ⊂
Q̃ ⊂ D , with l(Q̃) ≤ αmin{l(Q), l(Q′)} for some cube Q̃ . Then |fQ − fQ′ | ≤
Cα‖f‖∗,pφ

(

l(Q)
)

.

Since BMOφ,p,loc(D) is independent of the choice of λ > 0, Lemma 3 yields

Lemma 4. Let f ∈ BMOφ,p,loc(D) , then

|fQ − fQ′ | ≤ C‖f‖∗,p,locδ
φ
D(Q,Q′), Q,Q′ ∈ A (D).

Lemma 5 ([9], [12]). Let f ∈ Lp(Q) and g ∈ L∞(Q) , then

| |fQ|Mp(g,Q)−Mp(gf,Q) | ≤ 2‖g‖∞Mp(f,Q).

The above lemma implies that the characterization of BMOφ,p,loc(D) multi-
pliers is almost equivalent to the estimation of the growth of |fQ| , Q ∈ A (D) ,
f ∈ BMOφ,p,loc(D) . Hence the ‘if’ part of Theorem 2 follows from Lemma 4 which
gives a one-sided estimation of |fQ| .

Proof of ‘if’ part of Theorem 2. Let f ∈ BMOφ,p,loc(D) and Q ∈ A (D) . By
Lemma 4 and 5

Mp(gf,Q) ≤ |fQ|Mp(g,Q) + 2‖g‖∞Mp(f,Q)

≤
(

|f |Q0
+ C1‖f‖∗,p,locδ

φ
D(Q,Q0)

)Kφ
(

l(Q)
)

δφ
D(Q,Q0)

+ 2K‖f‖∗,p,locφ
(

l(Q)
)

≤ K‖f‖∗∗,p,locφ
(

l(Q0)
) φ

(

l(Q)
)

δφ
D(Q,Q0)

+ C2K‖f‖∗,p,locφ
(

l(Q)
)

≤ C3K‖f‖∗∗,p,locφ
(

l(Q)
)

,
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also |fg|Q0
≤ ‖g‖∞|f |Q0

≤ K‖f‖∗∗,p,locφ
(

l(Q0)
)

, summarizing above we have
‖Tg‖φ,p,loc ≤ C4K .

We shall in the next section show that the estimation in Lemma 4 is best
possible (Theorem 3).

4. Proof of Theorem 2 (Part 2)

We begin with two lemmas which are consequences of elementary calculations.

Lemma 6. Let 0 < 2a ≤ b , 0 < 2a′ ≤ b′ and α−1 ≤ a′/a , b′/b ≤ α , then

Cα
−1 ≤

∫ b′

a′

φ(t)t−1 dt

/
∫ b

a

φ(t)t−1 dt ≤ Cα.

Lemma 7. Let f ∈ Lp(Q) and F : C → C satisfy |F (x)− F (y)| ≤ α|x− y| ,
then

Mp(F ◦ f,Q) ≤ CαMp(f,Q).

We set G(x) = Φ(|x|) , x ∈ Rn .

Lemma 8 ([8]). G belongs to BMOφ,p(R
n) and ‖G‖∗,p ≤ C .

Proof. Let Q ⊂ Rn . First we assume d(Q, 0) ≥ l(Q) . Then

Mp(G,Q) ≤ sup
x,y∈Q

|G(x) −G(y)| ≤ C1
l(Q)

d(Q, 0)
φ
(

d(Q, 0)
)

≤ C2φ
(

l(Q)
)

.

Next let d(Q, 0) < l(Q) . Let B be the smallest ball containing Q centered
at the origin and let r be its radius. Applying the Minkowsky inequality, we have

Mp(G,Q) ≤ 2

(

m(Q)−1

∫

Q

|G− Φ(r)|p dm
)1/p

≤ C3

(

m(B)−1

∫

B

|G− Φ(r)|p dm
)1/p

= C3

(

nr−n

∫ r

0

(
∫ r

s

φ(t)t−1 dt

)p

sn−1 ds

)1/p

≤ C3

∫ r

0

(
∫ t

0

nr−nsn−1 ds

)1/p

φ(t)t−1 dt = C3r
−n/p

∫ r

0

φ(t)tn/p−1 dt,

which implies the assertion since φ ∈ [Bn/p] .
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Lemma 9. Let Q be a cube centered at the origin and let B be its inscribed
ball. Then there exists a constant C > 1 such that

Φ
(

l(Q)/C
)

≤ GB ≤ GQ ≤ Φ
(√
nl(Q)/2

)

.

Proof. It suffices to prove the first inequality. We set ε = C−1 . Let r
(= l(Q)/2) be the radius of B . Then

GB − Φ
(

εl(Q)
)

= nr−n

∫ r

0

(

Φ(t) − Φ
(

εl(Q)
))

tn−1 dt

= r−n

(
∫ r

εl(Q)

(rn − tn)φ(t)t−1 dt−
∫ εl(Q)

0

tn−1φ(t) dt

)

= r−n(I1 − I2).

Let C ≥ 8, then 2εl(Q) ≤ r/2. Hence

I1 ≥
∫ 2εl(Q)

εl(Q)

(rn − tn)φ(t)t−1 dt ≥ C1l(Q)nφ
(

εl(Q)
)

.

On the other hand since φ ∈ [Bn/p] ⊂ [Bn] we have I2 ≤ C2ε
nl(Q)nφ

(

εl(Q)
)

.
Hence the required inequality holds if we choose the constant C ≥ 8 so that
C2 ≤ CnC1 .

Lemma 10. There exist constants C,C′ > 0 satisfying the following condi-
tion: Let Q,Q′ be cubes in Rn such that Cl(Q) ≤ l(Q)+l(Q′)+d(Q,Q′) , l(Q) ≤
l(Q′) and assume the center of Q is the origin, then ψφ(Q,Q′) ≤ C′(GQ′ −GQ) .

Proof. First, assume l(Q′) ≥ d(Q,Q′) . Then l(Q′) ≥ (C − 1)l(Q)/2. Let B
be a ball centered at the origin such that m(B) = m(Q′) , then we have GQ′ ≥
GB ≥ Φ

(

l(Q′)/C1

)

, GQ ≤ Φ(
√
n l(Q)/2) by Lemma 9. And so if we choose the

constant C so that (C − 1)/2C1 ≥ √
n Lemma 6 shows that

GQ′ −GQ ≥
∫ l(Q′)/C1

√
n l(Q)/2

φ(t)t−1 dt

≥ C2

∫ 2(l(Q)+l(Q′)+d(Q,Q′))

l(Q)

φ(t)t−1 dt = C2ψ
φ(Q,Q′).

Next, assume l(Q′) < d(Q,Q′) . Then d(Q,Q′) > (C − 1)l(Q)/2. Since
GQ′ ≥ Φ

(

d(Q,Q′)
)

and GQ ≤ Φ
(√
n l(Q)/2

)

, if we choose the constant C so
that (C − 1)/2 ≥ √

n Lemma 2 shows that

GQ′ −GQ ≥
∫ d(Q,Q′)

√
n l(Q)/2

φ(t)t−1 dt

≥ C3

∫ 2
(

l(Q)+l(Q′)+d(Q,Q′)
)

l(Q)

φ(t)t−1 dt = C3ψ
φ(Q,Q′).
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We set

̺φ
D,p(Q,Q

′) = sup |fQ − fQ′ | + φ
(

l(Q)
)

+ φ
(

l(Q′)
)

, Q,Q′ ∈ A (D),

where the supremum is taken over all f ∈ BMOφ,p,loc(D) such that ‖f‖∗,p,loc ≤ 1.

Lemma 11. Let Q,Q′ ∈ A (D) , then ̺φ
D,p(Q,Q

′) ≤ C
(

sup |fQ − fQ′ | +

φ
(

l(Q)
))

where the supremum is taken over all f ∈ BMOφ,p,loc(D) such that
‖f‖∗,p,loc ≤ 1 .

Proof. It suffices to show φ
(

l(Q′)
)

≤ C1

(

sup |fQ − fQ′ | + φ
(

l(Q)
))

. We may
assume C2l(Q) ≤ l(Q′) , where C2 ≥ 1 is the constant ‘C ’ in Lemma 10. Let
f(x) = G(x−x0) where x0 is the center of Q . Then Lemma 8 and 10 shows that
‖f‖∗,p,loc ≤ C3 and |fQ − fQ′ | ≥ C4ψ

φ(Q,Q′) ≥ C5φ
(

l(Q′)
)

.

Since the next lemma is almost trivial, we omit its proof.

Lemma 12. Let Q,Q′ be cubes in D . Assume there exists a cube Q̃
such that Q ∪ Q′ ⊂ Q̃ ⊂ D and l(Q̃) ≤ αmin{l(Q), l(Q′)} . Let Q̂ = λ−1Q ,

Q̂′ = λ−1Q′ . Then Q̂, Q̂′ ∈ A (D) and δφ
D(Q̂, Q̂′) ≤ Cαφ

(

l(Q)
)

.

Lemma 13. Let Q,Q′ ∈ A (D) . Then C−1ψφ(Q,Q′) ≤ ̺φ
D,p(Q,Q

′) ≤
C′δφ

D(Q,Q′) . Moreover, if there exists a cube Q̃ such that Q ∪Q′ ⊂ Q̃ ⊂ D then
these three values are comparable to each other.

Proof. First we show ψφ(Q,Q′) ≤ C̺φ
D,p(Q,Q

′) . Because of Lemma 10, we
can assume that C1 min{l(Q), l(Q′)} > l(Q) + l(Q′) + d(Q,Q′) where C1 is the
constant ‘C ’ in Lemma 10. Then l(Q), l(Q′) and l(Q) + l(Q′) + d(Q,Q′) are

comparable, and so ψφ(Q,Q′) ≤ C2φ
(

l(Q)
)

≤ C3̺
φ
D,p(Q,Q

′) .

Next, the inequality ̺φ
D,p(Q,Q

′) ≤ C′δφ
D(Q,Q′) is a consequence of Lemma 4.

Finally let Q̃ be a cube such that Q ∪ Q′ ⊂ Q̃ ⊂ D . We may assume
l(Q̃) ≤ l(Q) + l(Q′) + d(Q,Q′) . Then there exists an admissible chain Q = Q0 ⊂
Q1 ⊂ · · · ⊂ Qk = Q̃ with respect to Rn such that l(Qi) = 2il(Q) , 0 ≤ i ≤ k − 1,
and l(Qk−1) ≤ l(Qk) ≤ 2l(Qk−1) . Hence

k
∑

i=0

φ
(

l(Qi)
)

≤ C4

k
∑

i=0

φ
(

2il(Q)
)

≤ C5

∫ k+1

0

φ
(

2tl(Q)
)

dt

≤ C6

∫ 2k+1l(Q)

l(Q)

φ(t)t−1 dt

≤ C7

∫ 2(l(Q)+l(Q′)+d(Q,Q′))

l(Q)

φ(t)t−1 dt = C7ψ
φ(Q,Q′).
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Let Q̂i = λ−1Qi and Q′′ = λ−1Q̃ (= Q̂k ) then Q̂i ∈ A (D) and δφ
D(Q̂i, Q̂i+1) ≤

C8φ
(

l(Qi)
)

by Lemma 12. And so

δφ
D(Q,Q′′) ≤ δφ

D(Q, Q̂0) +
k−1
∑

i=0

δφ
D(Q̂i, Q̂i+1)

≤ C9φ
(

l(Q)
)

+ C8

k−1
∑

i=0

φ
(

l(Qi)
)

≤ C10ψ
φ(Q,Q′).

Similarly, we have δφ
D(Q′, Q′′) ≤ C10ψ

φ(Q,Q′) and hence by the triangle inequality

δφ
D(Q,Q′) ≤ C11ψ

φ(Q,Q′) .

Remark. Let f ∈ BMOφ,p,loc(D) and Q,Q′ ∈ A (D) such that Q ∪ Q′ ⊂
Q̃ ⊂ D for some Q̃ . The above Lemma shows that

|fQ − fQ′ | ≤ C‖f‖∗,p,loc

∫ 2(l(Q)+l(Q′)+d(Q,Q′))

min{l(Q),l(Q′)}
φ(t)t−1 dt,

so when
∫ ε

0
φ(t)t−1 dt <∞ we have

|f(x)− f(x′)| ≤ C‖f‖∗,p,loc

∫ |x−x′|

0

φ(t)t−1 dt

by Q → x , Q′ → x′ , where x, x′ ∈ Q̃ are Lebesgue points of f . Hence f is a
continuous function on each cube Q̃ ⊂ D (modulo a null set) with modulus of

continuity C‖f‖∗,p,loc

∫ t

0
φ(t)t−1 dt (cf. [11]).

We say a cube Q ⊂ Rn is ‘dyadic’ if can be represented in the following form

{ x ∈ Rn | si2
k ≤ xi ≤ (si + 1)2k, si, k ∈ Z, 1 ≤ i ≤ n }.

Lemma 14 (cf. [13]). Let D be a proper subdomain of Rn . Then there exists
a decomposition of D into a family of dyadic cubes D(D) = {Qi}, Qi

◦ ∩Qj
◦ = ∅ ,

(i 6= j ), ∪iQi = D for each α >
√
n such that

α ≤ d(Qi, ∂D)/l(Qi) ≤ 2α+
√
n,

2−1 ≤ l(Qi)/l(Qj) ≤ 2, if Qi ∩Qj 6= ∅.

Proof. We decompose Rn into a family of dyadic cubes with side length 1.
If there exists a cube Q in this family such that d(Q, ∂D) < αl(Q) , then we
decompose Q into 2n congruent subcubes. Let Q′ be one such subcube. Then

d(Q′, ∂D) ≤ 2
(

d(Q, ∂D) + 2−1
√
n l(Q)

)

< (2α+
√
n )l(Q′).
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Hence by repeating the above process, we can decompose Q into a family of dyadic
cubes Q′′ satisfying the condition α ≤ d(Q′′, ∂D)/l(Q′′) ≤ 2α+

√
n . Next, there

exists a dyadic cube Q such that 2α+
√
n < d(Q, ∂D)/l(Q) . Let Q′ be the dyadic

cube containing Q such that l(Q′) = 2l(Q) . Then

d(Q′, ∂D) ≥ d(Q, ∂D) −√
n l(Q) ≥ (2α+

√
n−√

n )l(Q) > αl(Q′).

Hence by repeating the above process, we obtain a dyadic cube Q′′ ⊃ Q satisfying
the first inequality.

Next, for two such cubes Q,Q′ such that Q ∩Q′ 6= ∅ we have

l(Q′) ≤ α−1d(Q′, ∂D) ≤ α−1
(

d(Q, ∂D) +
√
n l(Q)

)

≤ (2 + 2
√
n/α)l(Q) < 4l(Q),

so that l(Q′) ≤ 2l(Q) .

In the following, D(D) denotes the family obtained by the above method
with α = λ , which we call the Whitney decomposition of D . We say that a
sequence Q0, Q1, . . . , Qn ∈ D(D) is a Whitney chain if Qi ∩ Qi+1 6= ∅ . Since
D(D) ⊂ A (D) , every Whitney chain is admissible. We set

Wφ
D(Q,Q′) = inf

{ n
∑

k=0

φ(l(Qk)) |Q = Q0, Q1, . . . , Qn = Q′ is a Whitney chain

}

.

It holds that δφ
D(Q,Q′) ≤Wφ

D(Q,Q′), Q,Q′ ∈ D(D) , by definition.

We fix a cube Q ∈ D(D) and set

f(x) = Wφ
D(Q,Q′), x ∈ Q′ ∈ D(D).

Then |f(x) − f(y)| ≤ Cφ
(

l(Q′)
)

, x, y ∈ 2Q′ , for every Q′ ∈ D(D) . Hence there

exists a C1 modification Fφ
D,Q of f such that

|Fφ
D,Q(x) −Wφ

D(Q,Q′)| ≤ Cφ
(

l(Q′)
)

, x ∈ Q′ ∈ D(D),

|∇Fφ
D,Q(x)| ≤ C′φ

(

l(Q′)
)

/l(Q′), x ∈ Q′ ∈ D(D).

For example
∑

Q′∈D(D)W
φ
D(Q,Q′)ϕ

Q′
is one such function, where {ϕ

Q′
}Q′∈D(D)

is the partition of unity associated with the Whitney decomposition D(D) (cf. [13,
p. 172]).

Lemma 15. Let D be a proper subdomain of Rn . Then ‖Fφ
D,Q‖φ,p,loc ≤ C .
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Proof. Let Q′ ∈ A (D) . Let Q̃′ be a cube in D(D) containing the center of
Q′ . Since l(Q′) ≤ C1l(Q̃

′) we have

Mp(F
φ
D,Q, Q

′) ≤ sup
x,y∈Q′

|Fφ
D,Q(x) − Fφ

D,Q(y)|

≤ C2φ
(

l(Q̃′)
)

l(Q′)/l(Q̃′) ≤ C3φ
(

l(Q′)
)

.

Lemma 16. Let D be a proper subdomain of Rn , let Q ∈ A (D) with x0

as its center. Let Q̃ be a cube in D(D) containing x0 . Let f(x) = G(x − x0) .
Then ψφ(Q, Q̃) ≤ C(fQ̃ − fQ) + C′φ

(

l(Q)
)

.

Proof. Because of Lemma 10 we can assume that l(Q) > l(Q̃) or C1l(Q) >
l(Q) + l(Q̃) + d(Q, Q̃) where C1 is the constant ‘C ’ in Lemma 10. Then since
l(Q) and l(Q̃) are comparable we have |fQ̃ − fQ| ≤ C2φ

(

l(Q)
)

by Lemma 3 and

ψφ(Q, Q̃) ≤ C3φ
(

l(Q)
)

. Therefore if we choose C4 so that C4 − C2 (=: C5) > 0

we have (fQ̃ − fQ) + C4φ
(

l(Q)
)

≥ C5φ
(

l(Q)
)

≥ C6ψ
φ(Q, Q̃) .

Let Q,Q′ ∈ A (D) . We set

σφ
D(Q,Q′) =

{

ψφ(Q,Q′), if Q ∪Q′ ⊂ Q′′ ⊂ D for some Q′′,

ψφ(Q, Q̃) +Wφ
D(Q̃, Q̃′) + ψφ(Q′, Q̃′), any other case,

where Q̃ , Q̃′ are the cubes in D(D) containing the center of Q , Q′ respectively.

In the case D = Rn , σφ
D reduces to ψφ .

Theorem 3. δφ
D , ̺φ

D,p and σφ
D are comparable on A (D) × A (D) .

Proof. Let Q,Q′ ∈ A (D) . Because of Lemma 13 we can assume that D 6= Rn

and there exists no cube Q′′ such that Q ∪ Q′ ⊂ Q′′ ⊂ D . The inequality
̺φ

D,p(Q,Q
′) ≤ C1δ

φ
D(Q,Q′) has been already proved in Lemma 13. Let Q̃ , Q̃′ be

cubes in D(D) containing the centers of Q , Q′ respectively. By Lemma 13 we
have,

δφ
D(Q,Q′) ≤ δφ

D(Q, Q̃) + δφ
D(Q̃, Q̃′) + δφ

D(Q̃′, Q′)

≤ C2ψ
φ(Q, Q̃) +Wφ

D(Q̃, Q̃′) + C2ψ
φ(Q′, Q̃′) ≤ C2σ

φ
D(Q,Q′).

We shall show the remaining inequality σφ
D(Q,Q′) ≤ C3̺

φ
D,p(Q,Q

′) . Let
f1(x) = G(x− x0) , f2(x) = −G(x − x1) , where x0 , x1 are the centers of Q , Q′

respectively. Since (f1)Q̃ ≤ (f1)Q′ , (f2)Q ≤ (f2)Q̃′ , Lemma 16 shows

ψφ(Q, Q̃) ≤ C4

(

(f1)Q′ − (f1)Q

)

+ C5φ
(

l(Q)
)

,

ψφ(Q′, Q̃′) ≤ C4

(

(f2)Q′ − (f2)Q

)

+ C5φ
(

l(Q′)
)

.
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Let f3 = Fφ

D,Q̃
. Since φ

(

l(Q̃)
)

≤ C6ψ
φ(Q, Q̃) , φ

(

l(Q̃′)
)

≤ C6ψ
φ(Q′, Q̃′) we have

Wφ
D(Q̃, Q̃′) ≤

(

Wφ
D(Q̃, Q̃′) − (f3)Q′

)

+
(

(f3)Q′ − (f3)Q

)

+ (f3)Q

≤
(

(f3)Q′ − (f3)Q

)

+ C7φ
(

l(Q̃)
)

+ C8φ
(

l(Q̃′)
)

≤
(

(f3)Q′ − (f3)Q

)

+ C9

(

(f1)Q′ − (f1)Q

)

+ C10

(

(f2)Q′ − (f2)Q

)

+ C11φ
(

l(Q)
)

+ C12φ
(

l(Q′)
)

.

Therefore if we set f = f3 +(C4 +C9)f1 +(C4 +C10)f2 , we have ‖f‖φ,p,loc ≤ C13

and
σφ

D(Q,Q′) ≤ (fQ′ − fQ) + C14φ
(

l(Q)
)

+ C15φ
(

l(Q′)
)

.

which implies the assertion.

Now we are in position to prove the ‘only if’ part of of Theorem 2. Lemma 17
and 18 below complete the proof of Theorem 2. Recall that we defined

‖f‖∗∗,p,loc = ‖f‖∗,p,loc + |f |Q0
φ
(

l(Q0)
)−1

, f ∈ BMO
φ,p,loc

(D),

where Q0 is a fixed cube in A (D) .

Lemma 17 (cf. [12], [9]). Let g be a BMOφ,p,loc(D) multiplier. Then g ∈
L∞(D) and ‖g‖∞ ≤ C‖Tg‖φ,p,loc .

Proof. Let x0 ∈ D and let Q a cube in A (D) centered at x0 such that
l(Q) (=: l) ≤ l(Q0) . Let B = { x ∈ Rn | |x − x0| ≤ l/4 } , so that (1/2

√
n )Q ⊂

B ⊂ (1/2)Q . Let

f(x) =

{

G(l/4) −G(x− x0), x ∈ B,
0, x 6∈ B.

Then f ≥ 0 and ‖f‖∗,p,loc ≤ C1 by Lemma 7 and 8.
First we shall show that ‖f‖∗∗,p,loc ≤ C2 . Since l ≤ l(Q0) there exists a cube

Q′
0 ∈ A (D) such that Q0 ∩Q′

0 6= ∅ , Q′
0 ∩Q = ∅ , 1/2 ≤ l(Q′

0)/l(Q0) ≤ 2. Since
f = 0 on Q′

0 , Lemma 4 shows that |f |Q0
= (fQ0

− fQ′

0
) + fQ′

0
≤ C3φ

(

l(Q0)
)

.

Hence ‖f‖∗∗,p,loc = ‖f‖∗,p,loc + |f |Q0
φ
(

l(Q0)
)−1 ≤ C4 .

Let g be a BMOφ,p,loc(D) multiplier and set c = (gf)Q , Q′ = (1/4
√
n )Q .

Since ‖gf‖∗∗,p,loc ≤ C5‖Tg‖φ,p,loc we have,

C5‖Tg‖φ,p,locm(Q)φ(l) ≥ m(Q)Mp(gf,Q) ≥ m(Q)M1(gf,Q)

≥
∫

Q\(1/2)Q

|c| dm+m(Q)−1

∫

Q′

|gf − c| dm

≥
∫

Q′

(|c| + |gf − c|) dm ≥
∫

Q′

|gf | dm.

Since f ≥ C6φ(l) on Q′ , we have
∫

Q′
|g| dm ≤ C7‖Tg‖φ,p,locm(Q) . Letting

l → 0, we obtain ‖g‖∞ ≤ C8‖Tg‖φ,p,loc .
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Lemma 18. Let g be a BMOφ,p,loc(D) multiplier then

Mp(g,Q) ≤ C‖Tg‖φ,p,loc

φ
(

l(Q)
)

δφ
D(Q,Q0)

, Q ∈ A (D).

Proof. Let g be a BMOφ,p,loc(D) multiplier and Q ∈ A (D) . By Theorem 3
and Lemma 11 there exists a function f such that ‖f‖∗,p,loc ≤ C1 and

δφ
D(Q,Q0) ≤ C2(fQ − fQ0

) + C3φ
(

l(Q0)
)

.

By considering f − fQ0
instead of f , we can assume fQ0

= 0. Then

|f |Q0
= M1(f,Q0) ≤ ‖f‖∗,p,locφ

(

l(Q0)
)

≤ C1φ
(

l(Q0)
)

hence ‖f‖∗∗,p,loc ≤ C4 . Therefore, by Lemma 17 and 5 we have

|f |QMp(g,Q) ≤Mp(gf,Q) + 2‖g‖∞Mp(f,Q)

≤ ‖Tg‖φ,p,loc‖f‖∗∗,p,locφ
(

l(Q)
)

+ C5‖Tg‖φ,p,loc‖f‖∗∗,p,locφ
(

l(Q)
)

≤ C6‖Tg‖φ,p,locφ
(

l(Q)
)

.

Since δφ
D(Q,Q0) ≤ C2|f |Q+C3φ

(

l(Q0)
)

and ‖Tg1‖∗∗,p,loc ≤ ‖Tg‖φ,p,locφ
(

l(Q0)
)−1

we have

δφ
D(Q,Q0)Mp(g,Q) ≤ C7‖Tg‖φ,p,locφ

(

l(Q)
)

+ C8φ
(

l(Q0)
)

Mp(g,Q)

≤ C9‖Tg‖φ,p,locφ
(

l(Q)
)

.

Finally in this section, we give a remark on uniform domains. We say a
proper subdomain D of Rn is uniform when W 1

D ≤ Cψ1 on D(D) × D(D) for

some C > 0, where W 1
D and ψ1 are Wφ

D and ψφ with φ = 1 respectively. In
this case W 1

D and ψ1 are comparable to each other. The uniform domains are
precisely the domains with BMO extension property (cf. [5]).

Corollary 1. Let D be a uniform domain then δφ
D and ψφ are comparable

on A (D) × A (D) . Especially Wφ
D and ψφ are comparable on D(D) × D(D) .

Proof. It suffices to show Wφ
D ≤ C1ψ

φ on D(D) × D(D) . (See Theo-
rem 3 and its proof.) Let D be a uniform domain and Q,Q′ ∈ D(D) . Let
Q = Q0, Q1, . . . , Qm = Q′ be a Whitney chain minimizing its length m . Let
l = l(Q) , l′ = l(Q′) and L = 2M l = 2N l′ be the maximum side length of Qi ,
0 ≤ i ≤ m . We can assume l ≤ l′ . Let

ik = min{ i | l(Qi) = 2kl }, 0 ≤ k ≤M,

i′k = max{ i | l(Qi) = 2kl′ }, 0 ≤ k ≤ N,
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then ik+1 − ik ≤ C2 , i′k − i′k+1 ≤ C2 , jM − j′N ≤ C3 and C−1
4 ≤

(

l(Q) + l(Q′) +

d(Q,Q′)
)

/L ≤ C4 (cf. [5], [1]). Hence

Wφ
D(Q,Q′) ≤

M−1
∑

k=0

ik+1−1
∑

i=ik

φ
(

l(Qi)
)

+

i′N
∑

i=iM

φ
(

l(Qi)
)

+
N−1
∑

k=0

i′k
∑

i=i′
k+1

+1

φ
(

l(Qi)
)

≤ C5

M−1
∑

k=0

φ(2kl) + C6φ(L) + C5

N−1
∑

k=0

φ(2kl′)

≤ C7

M
∑

k=0

φ(2kl) ≤ C8

∫ 2L

l

φ(t)t−1 dt ≤ C9ψ
φ(Q,Q′).

5. Remarks on Λφ multipliers

Let φ ∈ [A] be a non-decreasing function such that limt→+0 φ(t) = 0 and
Λφ(D) , the space of all continuous functions f on D , such that

sup
x,y∈D

φ(|x− y|)−1|f(x) − f(y)| <∞.

Let Λφ,loc(D) be the space of all continuous functions f on D defined in the same
way by restricting the supremum to points x, y such that x, y ∈ Q ⊂ D for some
Q , and Λφ,loc,loc(D) the space obtained by restricting the supremum to points
x, y such that x, y ∈ Q ⊂ D for some Q such that d(Q, ∂D) ≥ λl(Q) , where
λ > 0 is a given constant. Then we have

(1) Λφ(D) = Λφ(Rn)|D for every D .
(2) Let 1 ≤ p < ∞ . If φ ∈ [B0] then Λφ,loc(D) = Λφ,loc,loc(D) = BMOφ,p(D) =

BMOφ,p,loc(D) .
(3) Conversely if there exists a proper subdomain D of Rn containing an arbi-

trary large cube such that Λφ,loc,loc(D) = Λφ,loc(D) , then φ ∈ [B0] .

(cf. [11], [6], see also Remark under Lemma 13.) Note that when φ ∈ [B0] we can
assume φ is non-decreasing.

We set
δ̂φ
D(x, y) = lim

A (D)∋Q→x
A (D)∋Q→y

δφ
D(Q,Q′),

ˆ̺φ
D(x, y) = sup |f(x)− f(y)|,

where the supremum is taken over all f such that ‖f‖Λφ,loc,loc(D) ≤ 1, and

σ̂φ
D(x, y) =

{

φ(|x− y|), if x, y ∈ Q ⊂ D for some Q,

kφ
D(x, y), any other case.

Then Theorem 3 with Q→ x,Q′ → y shows that
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Lemma 19. Let φ ∈ [B0] . Then δ̂φ
D , ˆ̺φ

D and σ̂φ
D are comparable on D×D .

Recall that the characterization of multipliers for Lipschitz space on general
metric spaces is well known.

Proposition 2. Let L(X, d) be the space of all Lipschitz continuous func-
tions on a metric space (X, d) , then a function g on X is a (pointwise) L(X, d)
multiplier if and only if g is bounded and

|g(x)− g(y)| ≤ C
d(x, y)

1 + d(x, y0)
, x, y ∈ X,

where y0 is a fixed point on X .

Since we can isometrically identify Λφ,loc,loc(D) with the space of all Lipschitz

continuous functions on the metric space (D, ˆ̺φ
D) , we have the following, which

is another version of Theorem 2 in the case when φ ∈ [B0] . We note that when
φ ∈ [B0] we can assume φ(t) is non-decreasing and φ(t)/t is non-increasing,

then σ̂φ
Rn(x, y) = φ(|x − y|) defines a metric on Rn . Hence Λφ,loc,loc(R

n) =

L(Rn, σ̂φ
Rn) .

Lemma 20. Let φ ∈ [B0] . Then a function g on D is a Λφ,loc,loc(D)
multiplier if and only if g is bounded and

|g(x) − g(y)| ≤ C
δ̂φ
D(x, y)

1 + δ̂φ
D(x, y0)

, x, y ∈ D,

where y0 is a fixed point in D , or equivalently g is bounded and

|g(x)− g(y)| ≤ C
φ(|x− y|)

1 + σ̂φ
D(x, y0)

,

for all x, y ∈ D such that x, y ∈ Q ⊂ D for some Q .
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