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ON MULTIPLIERS FOR BMO4s ON GENERAL DOMAINS

Yasuhiro Gotoh

Kyoto University, Faculty of Science, Department of Mathematics
Kyoto 606, Japan

Abstract. We characterize pointwise multipliers for BMOg p10oc on general domains in
Euclidean space under certain conditions for ¢, where BMOy ,10c is the space of functions of
locally bounded p mean oscillation with respect to ¢.

1. Introduction

Let ¢: RT™ — R™ be a measurable function, D a domain lying in R", and
BMOy (D), 1 < p < oo, the space of all LY = functions f on D such that

supo(1() (@) - fQ|pdm)1/p < o0

where the supremum is taken over all cubes in D whose sides are parallel to the
coordinate axes. Let BMOgy p, 10c(D) be its local version.

As a generalization of Janson’s result [4] for (pointwise) multipliers of
BMOy,, space on the n-dimensional torus, Nakai-Yabuta [9] characterized the
BMOy ,(R™) multipliers under certain conditions for ¢, and Nakai [8] extended
this result to multipliers of weighted BMO spaces on R™. See also Maz’ya—
Shaposhnikova [7], where they characterized multipliers for BMO space on R",
but their BMO is different from ours.

Here we investigate BMOyg ,(D) and BMOy , 10c(D) multipliers for general
domains D in R"™. We give geometrically simple characterizations which partially
extend Nakai’s result and also extend our former result [2] for multipliers of the
standard BMO space on general domains D in R".

The author would like to thank the referee for his helpful comments and
suggestions.
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2. Notation and results

For a measurable function ¢: R™ — R™ we consider the following conditions
[A] and [B,,], m € R:
[A] There exists a constant M > 0 such that

top(l) < Mo(tl), 0<t<1,1>0,
M~1 < ¢(s)/o(t) < M, 27t < s/t <2

[B,,] There exists a constant M > 0 such that

tp(l) < Mp(tl), 0<t<1,1>0,
l
/ o)™t dt < MI™¢(1), 1> 0.
0

We have [B,,] = [Bm] = [A] when m < m/. The second inequality of [By]
is called the Dini condition. In the following we say ¢ € [A] (or [B,,]) when ¢
satisfies the condition [A] (or [By,]). If ¢ € [A] is non-decreasing, it satisfies [B,,]
for every m > 0. In case of ¢(t) =t*, ¢ € [B,,] if and only if —m < a < 1.

In the following ‘cube’ means a closed cube in R™ whose sides are parallel
to the coordinate axes, [(Q)) denotes its side length, tQ, ¢ > 0, denotes the cube
having the same center as @ and t/(Q) as its side length, d(-,-) denotes the
Fuclidean distance and dm denotes n-dimensional Lebesgue measure.

Let D be a domain in R™ and set A = Ay/n, where A > 0 is a sufficiently
large absolute constant. (For example A = 1000 suffices.) We say that a cube @
lying in D is admissible if it satisfies d(Q,0D) > A(Q) and we denote the set of all
admissible cubes in D by «7(D). A sequence of admissible cubes Qq, Q1, ..., Qk
in D satisfying the conditions

QiNQiy1 # 0, 0<i<k-1,
271 <UQi1)/UQs) < 2, 0<i<k-1,

is called an admissible chain. Let Q, @’ be two admissible cubes in D. We define
6%(@, Q) mf{z d(1(Q:)) | Q = Qo,Q1,-..,Qr = Q" is an admissible chain}.

Since we define (5% so that 6% > 0 for technical reasons, (5% is not a distance
function; however, the triangle inequality still holds. Note that when ¢ € [A],
then (5% corresponds to the metric

,0D))
kP (z,2') = in /¢ ny?D ds(y), x,2' € D,
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where the infimum is taken over all rectifiable curves v C D joining = to .

Let ¢ € [A] and 1 < p < co. Let BMOy ,(D) be the space of all L}
functions f on D such that

[Fllep.0 = I1f

p = Sup $(1(Q)) " My(f,Q) < o0

where ”
M, (£.Q) = (m<@>—1 / \f—fQ\pdm)
Q

and the supremum is taken over all cubes @ lying in D. (See also [3] for two
other versions of the definition of BMOy ,(D). We can rewrite Proposition 1 be-
low for these versions.) Let BMOy , 10c(D) be the space of all Li, . functions f
on D defined in the same way by restricting the supremum to cubes in &7 (D).
Let || fll«,p,0,10c = || f]l+,p,loc denote this supremum. The space BMOy j 10c(D) is
determined independent of the choice of A (cf. [5, Lemma 2.3], [10, Hilfssatz 2,
p. 4]). Tt holds that BMOg (D) C BMOy p10c(D) by definition. Tf ¢ € [By,],
BMOy p.10c(D) and BMOy ,(D) coincide for every domain D C R™ (see Propo-
sition 1).

We say a measurable function g on D is a (pointwise) BMOy (D) (respec-
tively BMOy p 10c(D)) multiplier if gf € BMOy ,(D) (BMOy p10c(D)) for every
f € BMOy ,(D) (BMOgp1oc(D)). To consider BMOy ,(D) or BMOg p10c(D)

multipliers it is convenient to introduce the norm

1

1 90,00 = I flssip = [ fllep + [ Fl@o@(1(Q0)) ,  f € BMOg (D),
-1
||f||**,p,D,Qo,loc = ||f||**,p,100 - ||f||*,p,loc + |f|Qo¢(l(Q0)) ’ f € BMOfb,p,IOC(D)a

where o is a fixed cube in &7 (D) and |f|g, = m(QO)_lfQO |fldm. Let g be
a BMOy (D) (respectively BMOgy p, 10c(D)) multiplier. Then the closed graph
theorem shows that the operator Ty: f — gf on BMOgy ,(D) (BMOg p10c(D)) is
bounded with respect to the norm || f|lsx,p (|fllss,p1oc)- Let [Tyl (1 Tgll6,p,10¢)

denote its operator norm.
Let

O(t) = /t P(s)s™ 1 ds, t>0
and set
?(Q,Q") = (2(I(Q)+1(Q")+d(Q, Q")) — @ (min{l(Q), [(Q")}), Q,Q CR".

Nakai [8] characterized the multipliers of weighted BMO spaces on R™. In par-
ticular for the case of BMOygy ,(R™) multipliers his result implies
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Theorem 1 ([8]). Let 1 < p < oo and ¢ € [B,/p]. Then a measurable
function g on R™ is a BMOy ,(R"™) (= BMOy p10c(R™)) multiplier if and only
if there exists a constant K > 0 such that ||g||c < K and

MP(Q?Q)SKM QCRn~

¢¢(Q7 QO) ,

In this case ||T4||¢,, < CK holds. Conversely if g is a BMOy ,(R"™) multiplier
then we can choose the constant K so that K < C'||Tyl|¢,p, where C,C" > 0 are
constants depending only on n, p and the constant M in the condition [B,, /).

We shall extend the above result as follows:

Theorem 2. Let D be a domain in R™, 1 <p < oo and ¢ € [B,,/,]. Then
a measurable function g on D is a BMOyg p, 10c(D) multiplier if and only if there
exists a constant K > 0 such that ||g|l.oc < K and

¢(1(Q))

My(g,Q) < K ,
W99 = K 0.0

Q € /(D).

In this case ||Ty||¢.p,joc < CK holds. Conversely if g is a BMOyg p, 10c(D) multiplier
then we can choose the constant K so that K < C'||Tyl|4 p,1oc, where C,C" > 0
are constants depending only on n, p and the constant M in the condition [B,, /p].

Let E, ,, be the m-dimensional hypersurface { (z1,z2,...,2,) € R"|z; =
0,m+1<i<n} and H, the upper half-space { (z1,x2,...,2,) € R" |2, >0}.
We define the domains D,, ,,, n>1, 0 <m <n—1,in R" as follows:

H,, m=n—1,
Dn,m: Rn\En,ma I<m<n-2
R"\ {0}, m=0,n>2.

Under various conditions on ¢, we showed in [3] that BMOy ,10c(D) and
BMOy (D) coincide.

Proposition 1 ([3]).

(1) Let ¢ € [By)p], then BMOy p10c(D) = BMOy, (D) for every domain D in
R".

(2) Let (,75 € [B(n_m)/p], then BMO¢,p,loc(Dn,m> = BMO¢7p(Dn7m).

(3) Let ¢ € [A] and D a proper subdomain of R™. Then BMOy , 10c(D) =
BMOy (D) if and only if k2 (-, 20), 20 € D, belongs to BMOy (D) and its
BMOy, (D) norm is bounded.
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Clearly, when any of the conditions (1)-(3) above hold, Theorem 2 provides
a result for multipliers on BMOy ,, as well.

In Section 3 we give the proof of the ‘if’ part of Theorem 2, which is much
easier than that of the ‘only if’ part, and the ‘only if’ part is treated in Section 4.

Throughout Section 3 and 4 we assume that 1 < p < oo, ¢ € [B,/,] and
c,Cy -, Cp,Cq, - -+ > 0 (respectively C,, > 0) denote constants depending only
on n, p and the constant M in the condition [B,/,] (and a given variable «),
which may vary from place to place.

3. Proof of Theorem 2 (Part 1)

The following five lemmas are showed by elementary calculations.

Lemma 1. (1) Let [; >0, 1 <i <k, then ¢(3°F_, ;) < M5 6(l;).
(2) Let 1/2 < s/t <2, then C7! < ¢(s)/9(t) < C.

Lemma 2. Let f € LP(Q), then

1/p
M,(7.0) < 2 (m(@) INE dram)

Lemma 3. Let f € BMOy ,(D), let Q,Q’ be cubes in D such that QUQ’ C
Q C D, with [(Q) < amin{l(Q),1(Q")} for some cube Q. Then |fq — fo| <
Call 0 (1(Q)).

Since BMOy p 10c(D) is independent of the choice of A > 0, Lemma 3 yields

Lemma 4. Let f € BMOy p10c(D), then

fo = forl < Cllfllepiocdp(@.Q),  Q.Q € /(D).
Lemma 5 ([9], [12]). Let f € LP(Q) and g € L*°(Q), then

| [folMp(g, Q) — Myp(9f, Q)| < 2lglloc Mp(f, Q).

The above lemma implies that the characterization of BMOy , 10c(D) multi-
pliers is almost equivalent to the estimation of the growth of |fgo|, @ € &/(D),
f € BMOy p10c(D). Hence the ‘if” part of Theorem 2 follows from Lemma 4 which
gives a one-sided estimation of |fq|.

Proof of ‘if” part of Theorem 2. Let f € BMOy ,10c(D) and Q € &7 (D). By
Lemma 4 and 5

My(gf,Q) < |folMp(g, Q) + 2|9l Mp(f, Q)
< (Iflgo + Cill £« piocdp (@, Qo))

< KHfH**,pJOCqb(l(QO))%
n(Q,

S 03K||f||**,p,10()¢(l(@>)7

Ko(l(Q))
3%(Q, Qo)

+ CoK|| f

+ 2K||f||*,p,10C¢(l(Q>)

*,p,loc(b(l(Q))
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also |fglay < llglloc!floe < Kl fllssp1ocd(1(Qo)), summarizing above we have
HT9H¢,p,loc <(4K. o

We shall in the next section show that the estimation in Lemma 4 is best
possible (Theorem 3).

4. Proof of Theorem 2 (Part 2)
We begin with two lemmas which are consequences of elementary calculations.

Lemma 6. Let 0 <2a<b, 0<2d <V and a=! <a'/a, V'/b < a, then

b’ b
Ca‘lg/ qb(t)t_ldt// p(t)t™ dt < C,.

Lemma 7. Let f € LP(Q) and F: C — C satisty |F(z) — F(y)| < alz —y],
then
My(F o f,Q) < CaMp(f, Q).

We set G(z) = ®(|z|), z € R".
Lemma 8 ([8]). G belongs to BMOgy ,(R™) and |G|, < C'.
Proof. Let @ C R™. First we assume d(Q@,0) > 1(Q). Then

MP(G7Q> S sup |G(x> — G(y>| <C l(Q)

e < Ci300.0?(d(Q0) = C26(1(Q)).

Next let d(Q,0) < I(Q). Let B be the smallest ball containing () centered
at the origin and let r be its radius. Applying the Minkowsky inequality, we have

o= 2(’”(@)‘1 /Q G- @(r>|pdm) v
= (m(B)_l /B G - ¢>(r)\pdm) v

r r 1/
=C3 (m*_” / (/ p(t)t? dt)psn_1 ds) ’
0 s

e 1/p ,
< 03/ (/ nr— g1 ds) qb(t)t—l dt = C3T—n/p/ ¢(t>tn/p—1 dt,
0 0 0

which implies the assertion since ¢ € [B,,/,]. o
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Lemma 9. Let Q be a cube centered at the origin and let B be its inscribed
ball. Then there exists a constant C' > 1 such that

®((Q)/C) < Gp < Gq < ®(vnl(Q)/2).

Proof. Tt suffices to prove the first inequality. We set ¢ = C~!. Let r
(=1(Q)/2) be the radius of B. Then

Gp—®(el(Q)) =nr™" /OT((I)(t) — ®(el(Q)))t" " dt

r Q)
— n __ 4n -1 dt — n—1 d )
r (/EZ(Q)(r tM)p(t)t dt /0 t"Lo(t) dt
= T_n<11 — IQ)

Let C > 8, then 2¢l(Q) < r/2. Hence

2e1(Q)

Bz [T etz Cl@)"o(=(@)
el(Q)

On the other hand since ¢ € [B,,/,] C [By] we have I, < Coe™(Q)"¢(cl(Q)).

Hence the required inequality holds if we choose the constant C' > 8 so that

Co <C™"(Cy. o

Lemma 10. There exist constants C,C" > 0 satisfying the following condi-
tion: Let Q,Q’ be cubes in R™ such that Cl1(Q) < 1(Q)+1(Q")+d(Q,Q"), I(Q) <
[(Q') and assume the center of Q is the origin, then ¥?(Q, Q") < C'(Gg — Gg).

Proof. First, assume [(Q') > d(Q,Q’). Then [(Q') > (C —1)I(Q)/2. Let B
be a ball centered at the origin such that m(B) = m(Q’), then we have G¢o >
Gp > ®(I(Q")/C1), Gg < ®(v/nl(Q)/2) by Lemma 9. And so if we choose the
constant C' so that (C' —1)/2Cy > y/n Lemma 6 shows that

HQ"/Ch

Go —Gg > / p(t)t ' dt

VAlQ)/2
2((Q)+U(Q")+d(Q,Q")
>c, [ B de = C0(Q, Q)
uQ)
Next, assume [(Q') < d(Q,Q’). Then d(Q,Q') > (C — 1)I(Q)/2. Since
Gg > ®(d(Q,Q")) and Gg < ®(v/nl(Q)/2), if we choose the constant C' so
that (C'—1)/2 > /n Lemma 2 shows that

d(Q,Q")
Go —Gg > / p(t)ttdt
VRlU(Q)/2

2(1(Q)+1(Q")+d(Q.Q))
> 03/
Q)

¢()t " dt = C39%(Q, Q). o
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We set

05,(@Q,Q") =sup|fo — for |+ 0(1(Q) + 0(1(Q)),  Q,Q € (D),
where the supremum is taken over all f € BMOy j 10c(D) such that || f||. pioc < 1.

Lemma 11. Let Q,Q" € </(D), then Q%J)(Q,Q/) < C(sup|fg — for| +
QS(Z(Q))) where the supremum is taken over all f € BMOy p10c(D) such that
[ f]l+.p10c < 1.

Proof. 1t suffices to show ¢(I(Q")) < Cy(sup|fo — for| + ¢(1(Q))). We may
assume Cl(Q) < I(Q'), where Co > 1 is the constant ‘C’ in Lemma 10. Let
f(z) = G(z — x¢) where xq is the center of ). Then Lemma 8 and 10 shows that

[ fllp1oc < C3 and |fo — for| = C4¢¢(Q= Q') > C5¢(Z(Q/))- o

Since the next lemma is almost trivial, we omit its proof.

Lemma 12. Let Q,Q" be cubes in D. Assume there exists a cube Q
such that QU Q' C Q C D and I(Q) < amin{l(Q),l(Q")}. Let Q = \71Q,
Q' =\"'Q'. Then Q,Q' € &/ (D) and §%(Q, Q") < Cat(1(Q)).

Lemma 13. Let Q,Q € «/(D). Then C~'%(Q,Q") < 0} ,(Q,Q") <

C”d% (Q,Q"). Moreover, if there exists a cube @ such that Q UQ’ € Q C D then
these three values are comparable to each other.

Proof. First we show ¥?(Q,Q’) < C’Qgp(Q,Q’). Because of Lemma 10, we
can assume that Cy min{l(Q),1(Q")} > (Q) + (Q’) + d(Q, Q") where C; is the
constant ‘C” in Lemma 10. Then I(Q),{(Q') and I(Q) + (Q') + d(Q,Q’) are

comparable, and so ¥?(Q, Q") < C29(1(Q)) < C’gg%m(Q,Q’).
Next, the inequality Q%J)(Q, Q) < C”ég(@, Q') is a consequence of Lemma 4.

_ Finally let Q be a cube such that QU Q' C Q C D. We may assume
Q) <U(Q)+ Q") +d(Q,Q"). Then there exists an admissible chain Q = Qo C

Q1 C --- C Qi = Q with respect to R™ such that 1(Q;) = 2(Q), 0<i<k—1,
and [(Qr—1) < l(Qk) < 2(Qr—1). Hence

k

k k+1
> 0(1Q)) < G- s(UQ) < Cs [ o(21(@)

=0
2K (Q)
< 06/ P(t)ttdt
(Q)

2((Q)+U(Q)H+d(Q,Q")) ) ,
g&ﬂ) sV dt = Cp?(Q, Q).
(Q
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Let Q; = A7'Q; and Q" = A~'Q (= Qy,) then Q; € &/(D) and 69(Q;, Qit1) <
Csé(1(Q;)) by Lemma 12. And so

k—1
6% (Q7 Q//) S 6%(@7 QO) + Z 6%(@27 Qi—‘,—l)

1=0

k—1
< Cop(1(Q)) + Cs Y _ (1(Q1)) < Crot?(Q, Q).
1=0

Similarly, we have 5%(62’, Q") < C109?(Q, Q") and hence by the triangle inequality
6% (Q7 Q/) S Cll¢¢(Q7 Q/) - O

Remark. Let f € BMOgy p10c(D) and Q,Q" € &/(D) such that Q U Q' C
@ C D for some ). The above Lemma shows that

|fo —forl <C|f p(t)t L dt,

2(1(Q)+(QNH+d(Q.Q"))
*,p,loc/
min{l(Q),[(Q")}

so when foe ()t~ 1 dt < oo we have

() = f@) < ClIf

|z—a'|
«ploc / p(t)t " dt
0

by Q — =, Q — ', where x,2' € Q are Lebesgue points of f. Hence f is a
continuous function on each cube @ C D (modulo a null set) with modulus of
continuity C||f|lpioc fo ¢(t)t1dt (ct. [11]).

We say a cube Q C R" is ‘dyadic’ if can be represented in the following form

{zeR" 52" <a; < (s; +1)2F, s;,keZ, 1<i<n}

Lemma 14 (cf. [13]). Let D be a proper subdomain of R™. Then there exists
a decomposition of D into a family of dyadic cubes 2(D) = {Q;},Q:°NQ;° =10,
(i#7), UiQ; = D for each a > \/n such that

271 <UQi)/1(Qy) <2, if QiNQ; #0.

Proof. We decompose R into a family of dyadic cubes with side length 1.
If there exists a cube @ in this family such that d(Q,0D) < al(Q), then we
decompose @ into 2" congruent subcubes. Let @’ be one such subcube. Then

d(Q,0D) < 2(d(Q,0D) + 2V l(Q)) < (2a + Va)(Q').
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Hence by repeating the above process, we can decompose () into a family of dyadic
cubes Q" satisfying the condition a < d(Q"”,9D)/l(Q") < 2a + \/n. Next, there
exists a dyadic cube @ such that 2a++/n < d(Q,0D)/l(Q). Let Q" be the dyadic
cube containing ) such that {(Q') = 2/(Q). Then

d(Q',9D) > d(Q.9D) — Vnl(Q) = (20 + v — Vi )I(Q) > al(Q).

Hence by repeating the above process, we obtain a dyadic cube Q” D @ satisfying
the first inequality.
Next, for two such cubes Q, Q" such that QN Q" # () we have

(Q) < a™'d(Q',0D) < o' (d(Q,0D) + vnl(Q)) < (2 +2v/n/a)l(Q) < 4U(Q),

so that 1(Q') <20(Q). o

In the following, Z(D) denotes the family obtained by the above method
with @ = A\, which we call the Whitney decomposition of D. We say that a
sequence Qo,Q1,...,Qn € Z(D) is a Whitney chain if @Q; N Q;+1 # (. Since
2(D) C &/ (D), every Whitney chain is admissible. We set

Wl%(@? Q/) = Hlf{z ¢(Z(Qk)) | Q = Q07 Qh ey Qn - Q/ is a Whltney Chain}.
k=0

It holds that 69 (Q,Q") < W5(Q,Q"), Q,Q € 2(D), by definition.
We fix a cube Q € Z(D) and set

f@2)=WhHQ,Q), =z €Q € (D).

Then |f(z) — f(y)| < Co(l(Q")), z,y € 2Q', for every Q' € Z(D). Hence there
exists a O modification F g,Q of f such that

Fp o) = WHQ,Q)| < Cs(1(Q)), z€Q €2(D),
VEp o(2)] < C'o(U@)/1Q),  z€Q €2(D).

For example ZQ’e@(D) Wg(Q, Q")¢,,, is one such function, where {¢_, } g ca(p)
is the partition of unity associated with the Whitney decomposition 2(D) (cf. [13,
p. 172]).

Lemma 15. Let D be a proper subdomain of R™. Then ||Fl¢)”Q||¢7p’1OC <C.
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Proof. Let Q' € @/(D). Let Q' be a cube in 2(D) containing the center of
Q’'. Since 1(Q') < C11(Q') we have

My(5,0.Q) < sup |5 ole) — 5 o)
z,y

< G2 (UQN)UQ)/UQ) < C39(UQ"). o

Lemma 16. Let D be a proper subdomain of R", let Q € </(D) with g
as its center. Let Q be a cube in (D) containing xo. Let f(r) = G(z — o).
Then v*(Q, Q) < C(fs — fa) + C'6(1(Q)).

Proof. Because of Lemma 10 we can assume that [(Q) > 1(Q) or C11(Q) >
Q) +1(Q) +d(Q,Q) where C; is the constant ‘C” in Lemma 10. Then since
[(Q) and [(Q) are comparable we have |fg — fo| < C2¢(1(Q)) by Lemma 3 and

¢¢(Q,Q) < C%,qﬁ(l(@)). Therefore if we choose Cy so tha:c Cy—Cy(=:C5) >0
we have (fg — fo) + Cip(1(Q)) > C59(1(Q)) > Cev?(Q, Q). o
Let Q,Q" € &/ (D). We set

V2 (Q,Q"), if QU@ c Q" c D for some Q"

¢ A
O R A T A

where Q, Q' are the cubes in 2(D) containing the center of @, Q' respectively.
In the case D =R", 0% reduces to ¥?.

Theorem 3. §9,, Q%,p and o are comparable on </ (D) x </ (D).

Proof. Let Q, Q" € o/ (D). Because of Lemma 13 we can assume that D # R"
and there exists no cube Q" such that QU Q" C Q" C D. The inequality
QD p(Q Q') < Cl5¢ (Q,Q") has been already proved in Lemma 13. Let Q, Q' be
cubes in Z(D) containing the centers of @, @’ respectively. By Lemma 13 we
have,

0p(Q.Q) < 65(Q. Q) +05(Q. Q") + 65(Q. Q")
< Cn?(Q.Q) + WHQ. Q) + C?(Q. Q') < C20p(Q. Q).
We shall show the remaining inequality 0%(Q,Q’) < ng%’p(Q,Q’). Let

fi(z) = G(x — xp), fo(x) = —G(x — x1), where xg, x1 are the centers of @, Q'
respectively. Since (f1)g < (f1)q's (f2)q < (f2)a » Lemma 16 shows

$(Q,Q) < Cu((f1)q — (f1)Q) + C59(1(Q)),
V(Q, Q) < Cu((fo)g — (f2)q) + Cs0(1(Q")).
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Let f3 = Q Since ¢(1(Q)) < Csv?(Q,Q), ¢(U(Q")) < Ce*(Q', Q") we have

< (WH(Q.Q) ~ (f)a) + (Fa)e — (f3)a)

< ((f3)g' — (f3)@) + C7o(1(Q)) + Csp(H(Q'

< ((f3)o — (f)@) + Co((f1)q — (f1)@) + Cro((f2)q — (f2)q)
+ C119(1(Q)) + C120(1(Q")).

Therefore if we set f = f3 4+ (Cs+Cy) f1 + (Ca+ Cho) f2, we have || f|4 p.1oc < Cis
and

+(f3)q
)

05(Q. Q) < (for = f) + Crao(I(Q)) + Cr56(U(Q"))-
which implies the assertion. o

Now we are in position to prove the ‘only if’ part of of Theorem 2. Lemma 17
and 18 below complete the proof of Theorem 2. Recall that we defined

£l pioe = 1l toc +1Fl@u(1(Q0)) ™', f € BMO(D),

where Qg is a fixed cube in &7 (D).

Lemma 17 (cf. [12], [9]). Let g be a BMOy ,10c(D) multiplier. Then g €
L>(D) and ||glloc < Cl[Tgllg,p,10c-

Proof. Let xzyp € D and let @@ a cube in /(D) centered at zy such that
Q) (=:1) <UQp). Let B={x € R"||x— x| <1/4}, so that (1/2y/n)Q C
B C (1/2)Q. Let

Then f >0 and || f|«p10c < Ci by Lemma 7 and 8.
First we shall show that || f]|.« p1oc < Ca. Since [ <1(Qo) there exists a cube

Qo € (D) such that QoNQy #0, QoNQ =0, 1/2 <1(Qy)/1(Qo) < 2. Since
f =0 on Qp, Lemma 4 shows that |flo, = (fao — fay) + fa, < Cs6(1(Q0)).

~1
Hence [|fll«x ptoc = [ fllp10c +[fl@od(1(Q0)) < Ci.
Let g be a BMOy p 10c(D) multiplier and set ¢ = (9f)q, Q@ = (1/4v/n)Q

Since [[gf - paoe < Csl|Tyllop1oe we have,

Ol 10em(Q)00) = m(@)My(9f, Q) > m(Q)Ma (9, Q)
> [ eldm e m(@ [ Jof el dm
Q\(1/2)Q Q’
> [ (e +lof —chdm= | loriam

Since f > Cgo(l) on @', we have fQ' lg| dm < C7||Tylp.p10cm(Q) . Letting
[ — 0, we obtain ||gllec < Cs|Tyl[¢,p.1oc- O
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Lemma 18. Let g be a BMOy ; 10c(D) multiplier then
o $(1(Q))
T 5@ Qo)

Proof. Let g be a BMOy p 1oc(D) multiplier and @ € &/ (D). By Theorem 3
and Lemma 11 there exists a function f such that || f]|«p10c < C1 and

Mp(%@) < C”Tg

Q € (D).

59(Q, Qo) < Ca(fq — fa,) + C30(1(Qo))-

By considering f — fg, instead of f, we can assume fg, = 0. Then

|f|Q0 = Ml(fv QO) < |’f”*,p,loc¢(l<Q0)) < Cﬂb(l(@o))

hence || f||«s,poc < Cs. Therefore, by Lemma 17 and 5 we have

[fleMp(9, Q) < My(gf, Q) + 2[lgllec Mp(f, Q)
< NTglls paocll Fllsx p1ocd (HQ)) + C5l| Ty ll6.ptocl| Il p10cd (HQ))
< Gl Tyllo 10t (HQ))-

Since 5%(627 QO) < 02|f|Q+C3¢(l(QO>) and ||Tgl||**,p,loc < ||Tg||¢,p,100¢(l(Q0))_l

we have

35(Q: Qo) My(g, Q) < Crl|Tyllgp10cd (1(Q)) + Csd(1(Q0)) My (g, Q)
< o[ Tyllg paocd(1(Q))- 0

Finally in this section, we give a remark on uniform domains. We say a
proper subdomain D of R™ is uniform when W} < Cy! on 2(D) x 2(D) for

some C' > 0, where W}, and ¢! are Wg and ? with ¢ = 1 respectively. In
this case W} and ! are comparable to each other. The uniform domains are
precisely the domains with BMO extension property (cf. [5]).

Corollary 1. Let D be a uniform domain then (5% and ® are comparable
on o/ (D) x o/ (D). Especially Wg and ? are comparable on 2(D) x 9(D).

Proof. 1t suffices to show Wg < C1y? on 2(D) x 2(D). (See Theo-
rem 3 and its proof.) Let D be a uniform domain and Q,Q" € Z(D). Let
Q = Qv,Q1,...,Q, = Q' be a Whitney chain minimizing its length m. Let
I =1Q), ! =1Q") and L = 2M] = 2N]' be the maximum side length of Q;,
0<?¢<m. We can assume [ <!’. Let

ir =min{i | 1(Q;) =2F1},  0<k <M,
it =max{i|1(Q;) =2""}, 0<k<N,
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then ik+1 —ik S CQ, Z;C _i;c—i—l S CQ, jM —jg\] S 03 and 04_1 S (l(Q) +Z(Q/> +
d(Q, Q")) /L < Cy (cf. [5], [1]). Hence

M— iy N—1 i}
WHQ.Q) < Z Z Q)+ Y o(l@))+ > D (@)
= 1=1n k=0 i:i;c+1+1
M—
<C Z 6(2°1) + Ceop(L +C5qu2l
M 2L
<C Z 2") < Cs | o)t~ dt < Cop®(Q,Q"). 0

l

5. Remarks on Ay multipliers

Let ¢ € [A] be a non-decreasing function such that lim; .1 ¢(¢) = 0 and
Ay (D), the space of all continuous functions f on D, such that

sup ¢(|z —y|) 7 f(z) — f(y)| < 0.

z,yeD

Let Ay 10c(D) be the space of all continuous functions f on D defined in the same

way by restricting the supremum to points x,y such that z,y € ) C D for some

@, and Ay joc10c(D) the space obtained by restricting the supremum to points

x,y such that z,y € @ C D for some ) such that d(Q,0D) > A (Q), where

A > 0 is a given constant. Then we have

(1) Ay(D) = Ap(R™)|D for every D.

(2) Let 1<p< 0. If ¢ € [Bo] then A(j),loc(D) = Ad),loc,loc(D) = BMO¢’p(D) =
BMOy p,10c(D).

(3) Conversely if there exists a proper subdomain D of R" containing an arbi-
trary large cube such that Ay 1oc10c(D) = Ag10c(D), then ¢ € [By].

(cf. [11], [6], see also Remark under Lemma 13.) Note that when ¢ € [By] we can
assume ¢ is non-decreasing.

We set 5 _ . /
plwy) = Jim 0p(@ Q)
A (D)3Q—y
op(w,y) = sup |f(z) = f(y),
where the supremum is taken over all f such that | f||a, ....c0) <1, and

50 (2.y) = o(lx —yl), ifx,y € @ C D for some Q,
by k%(m, y),  any other case.

Then Theorem 3 with Q — z, Q" — y shows that
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Lemma 19. Let ¢ € [By|. Then 5% , @% and c}% are comparable on D x D.

Recall that the characterization of multipliers for Lipschitz space on general
metric spaces is well known.

Proposition 2. Let L(X,d) be the space of all Lipschitz continuous func-
tions on a metric space (X,d), then a function g on X is a (pointwise) L(X,d)
multiplier if and only if g is bounded and

9() — gl < 0—AT:Y)

T a9/ \ €, GXa
= 1+ d(z, ) ’

where 1o is a fixed point on X .

Since we can isometrically identify Ag 1oc 10c(D) with the space of all Lipschitz
continuous functions on the metric space (D, @%), we have the following, which
is another version of Theorem 2 in the case when ¢ € [By]. We note that when
¢ € [Bp] we can assume ¢(t) is non-decreasing and ¢(t)/t is non-increasing,
then &ﬁn(x,y) = ¢(|z — y|) defines a metric on R™. Hence Ay ioc10c(R™) =
L(R™, 6%.).

Lemma 20. Let ¢ € [By]. Then a function g on D is a Ay jocjoc(D)
multiplier if and only if g is bounded and

0P (. y)

— = z,y €D,
1+ 5%(%90)

lg(z) —g(y)| < C

where yq is a fixed point in D, or equivalently g is bounded and

¢z — yl)

lg(z) — g(y)| < Cm

for all z,y € D such that x,y € Q C D for some Q).
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