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HIGHER INTEGRABILITY WITH WEIGHTS
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Abstract. We present a new short proof for the classical Gehring lemma on higher integra-
bility in the case when the Lebesgue measure is replaced by the doubling weight and the reverse
Hölder inequality is replaced by the weak reverse Hölder inequality.

1. Introduction

A measurable function w is called a weight if it is locally Lebesgue integrable
and 0 < w < ∞ almost everywhere in Rn . The weight w is naturally associated
with the Borel measure

(1.1) µ(E) =

∫

E

w(x) dx.

It follows immediately from the definition of the weight that the measure µ and
the Lebesgue measure are mutually absolutely continuous and hence we do not
need to specify measure when we consider sets of measure zero, measurable sets
or functions. We also identify the weight w and the measure µ using (1.1). The
weight w is doubling if the measure µ satisfies the doubling condition

(1.2) µ(2Q) ≤ Cµ(Q)

for every cube Q with the constant C ≥ 1 independent of Q . By a cube we always
mean a bounded open cube in Rn with sides parallel to the coordinate axis and
σQ denotes the cube with the same center as Q but the side length multiplied
by the factor σ > 0. If w is a doubling weight, then for every σ > 0 there is a
constant C > 0 depending only on σ such that µ(σQ) ≤ Cµ(Q) .

Let Ω be a domain in Rn and 1 < p < ∞ . A nonnegative function f ∈
Lp

loc
(Ω; µ) is said to satisfy a reverse Hölder inequality in Ω, if

(1.3)

(
∫

Q

fp dµ

)1/p

≤ C

∫

Q

f dµ,
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for every cube Q ⊂ Ω and the constant C ≥ 1 is independent of Q . Here
∫

Q

f dµ =
1

µ(Q)

∫

Q

f dµ

is the mean value of f over Q . It is well known that if f satisfies (1.3), then it is
locally integrable to a power q > p . This local higher integrability result was first
established by F. Gehring [Ge, Lemma 2] in the unweighted case w = 1.

Usually, however, condition (1.3) is too strong to hold for the gradients of the
solutions of degenerate elliptic partial differential equations, see [HKM] and [S2].
In this case we only have a weak reverse Hölder inequality

(1.4)

(
∫

Q

fp dµ

)1/p

≤ C

∫

2Q

f dµ

where the cube Q is such that 2Q ⊂ Ω and the constant C ≥ 1 is independent
of the cube Q . By iterating as in [IN, Theorem 2] we see that the double cube on
the right hand side can be replaced by any σQ with σ > 1. Clearly the reverse
Hölder inequality (1.3) implies the weak reverse Hölder inequality (1.4) whenever
the measure µ is doubling but not vice versa. Hence even in the unweighted case
Gehring’s local higher integrability lemma is not available for us. The aim of this
paper is to present a new proof for the following weighted version of Gehring’s
lemma.

1.5. Theorem. Suppose that w is a doubling weight and that nonnegative
f ∈ Lp

loc
(Ω; µ) , 1 < p < ∞ , satisfies

(1.6)

(
∫

Q

fp dµ

)1/p

≤ C1

∫

2Q

f dµ

for each cube Q such that 2Q ⊂ Ω with the constant C1 ≥ 1 independent of the
cube Q . Then there exist q > p so that

(
∫

Q

f q dµ

)1/q

≤ C2

(
∫

2Q

fp dµ

)1/p

,

where the constant C2 ≥ 1 is independent of the cube Q . In particular, f ∈
Lq

loc
(Ω; µ) .

The proof presented below contains some new ideas to deal with Lp -integrals.
Especially the use of Stieltjes integrals in [Ge] is avoided. Several proofs are
available in the unweighted case, see [BI, Theorem 4.2], [Gi, Theorem V.1.2],
[GM] and [S1]. The weighted case has been studied by E. Stredulinsky, see [S2,
Theorem 2.3.3].
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2. Local maximal functions

Let Q0 be a cube in Rn . Suppose that f ∈ Lp(Q0; µ) , 1 ≤ p < ∞ , is
a nonnegative function. The local maximal function Mp

Q0
f of f at the point

x ∈ Q0 is defined by

Mp
Q0

f(x) = sup
x∈Q⊂Q0

(
∫

Q

fp dµ

)1/p

,

where the supremum is taken over all non-empty open subcubes Q of Q0 contain-
ing x . If p = 1 then we get the Hardy–Littlewood maximal function and in this
case we write M1

Q0
f = MQ0

f . Since the set {Mp
Q0

f > t} is open for every t > 0,
we see that the local maximal function is measurable. It follows immediately from
the definition of the maximal function that it is nonnegative Mp

Q0
f ≥ 0, subad-

ditive Mp
Q0

(f1 + f2) ≤ Mp
Q0

f1 + Mp
Q0

f2 and homogeneous Mp
Q0

(λf) = λMp
Q0

f ,
λ ≥ 0.

First we are going to show that the maximal function is of weak type (1,1).
In the proof we need the following well known lemma.

2.1. Lemma. Let F be a family of cubes in Rn such that
⋃

Q∈F
Q is

bounded. Then there exists a countable (or finite) subfamily F ′ of F such that
cubes in F ′ are pairwise disjoint and

⋃

Q∈F

Q ⊂
⋃

Q∈F ′

5Q.

An immediate consequence of the covering lemma is the following inequality.

2.2. Lemma. If w is a doubling weight and f ∈ L1(Q0; µ) is a nonnegative
function, then

(2.3) µ({MQ0
f > t}) ≤

C

t

∫

Q0

f dµ

for every t > 0 . Here the constant C > 0 depends only on the doubling constant
in (1.2) and the dimension n .

Proof. For each x ∈ {MQ0
f > t} there exists a cube Qx such that x ∈ Qx ⊂

Q0 and
∫

Qx

f dµ > t.

By the covering lemma 2.1 we may choose a countable family of pairwise disjoint
cubes Qxk

, k = 1, 2, ... , such that

{MQ0
f > t} ⊂

⋃

x∈{MQ0
f>t}

Qx ⊂
∞
⋃

k=1

5Qxk
.
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Therefore by the doubling condition (1.2),

µ({MQ0
f > t}) ≤

∞
∑

k=1

µ(5Qxk
) ≤ C

∞
∑

k=1

µ(Qxk
)

<
C

t

∞
∑

k=1

∫

Qxk

f dµ =
C

t

∫

⋃

∞

k=1
Qxk

f dµ ≤
C

t

∫

Q0

f dµ,

which is the desired result.

Remark. Using the same assumptions as in the previous lemma we get

(2.4) µ({MQ0
f > t}) ≤ 2

C

t

∫

{f>t/2}

f dµ.

In fact, let f = f1+f2 where f1(x) = f(x) , if f(x) > t/2 and f1(x) = 0 otherwise.
Then by subadditivity and homogenity of the maximal function

MQ0
f(x) ≤ MQ0

f1(x) + MQ0
f2(x) ≤ MQ0

f1(x) + t/2.

Using (2.3) we get

µ({MQ0
f > t}) ≤ µ({MQ0

f1 > 1/2t}) ≤ 2
C

t

∫

Q0

f1 dµ = 2
C

t

∫

{f>t/2}

f dµ.

This proves inequality (2.4).

Next we recall the Calderón–Zygmund decomposition lemma for doubling
weights, see [GCRF, Theorem II.1.14].

2.5. Lemma. Let w be a doubling weight and f ∈ L1(Q0; µ) be a nonneg-
ative function. Then for every

t ≥

∫

Q0

f dµ,

there is a countable or finite family Ft of pairwise disjoint dyadic subcubes of Q0

such that

(2.6) t <

∫

Q

f dµ ≤ Ct

for each Q ∈ Ft , and

(2.7) f(x) ≤ t for a.e. x ∈ Q0 \
⋃

Q∈Ft

Q.

The constant C depends on the doubling constant appearing in (1.2) and the
dimension n .
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The family Ft is called the Calderón–Zygmund decomposition for f at the
level t in Q0 . Calderón–Zygmund decomposition enables us to prove a kind of
reverse inequality to (2.3). An unweighted version of the following lemma can be
found in [BI, Lemma 4.2].

2.8. Lemma. Suppose that w is a doubling weight and that f ∈ Lp(Q0; µ) ,
1 ≤ p < ∞ , is a nonnegative function. Then for every t ≥ 0 with

∫

Q0

fp dµ ≤ tp,

we have

(2.9)

∫

{f>t}

fp dµ ≤ Ctpµ({Mp
Q0

f > t}).

The constant C is the same constant as in (2.6) .

Proof. Let Ft be the Calderón–Zygmund decomposition for fp at the level
tp . Then by (2.7)

tp <

∫

Q

fp dµ ≤ Ctp

for each Q ∈ Ft , and by (2.7)

f(x) ≤ t for a.e. x ∈ Q0 \
⋃

Q∈Ft

Q.

Since by (2.7) almost every point in {f > t} belongs to some Q ∈ Ft and cubes
in Ft are pairwise disjoint, we obtain

∫

{f>t}

fp dµ ≤
∑

Q∈Ft

∫

Q

fp dµ ≤
∑

Q∈Ft

Ctpµ(Q) = Ctpµ

(

⋃

Q∈Ft

Q

)

.

On the other hand
⋃

Q∈Ft

Q ⊂ {Mp
Q0

f > t}

and the lemma follows.
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3. Lemmas

Before proving the local higher integrability theorem 1.5, we shall state some
results which will be needed in the proof. First of all we need a technical lemma
based on Fubini’s theorem.

3.1. Lemma. Let ν be a measure and E ⊂ Rn be a set with ν(E) < ∞ . If
f is a nonnegative ν -measurable function on E , 0 < q < ∞ and 0 ≤ t0 < t1 < ∞ ,
then

(3.2)

∫

{t0<f≤t1}

f q dν = q

∫ t1

t0

tq−1ν({f > t}) dt

+ tq0ν({f > t0}) − tq1ν({f > t1}).

Proof. We make use of the well known formula
∫

{t0<f≤t1}

f q dν = q

∫ ∞

0

tq−1ν({t0 < f ≤ t1} ∩ {f > t}) dt,

which is a simple consequence of Fubini’s theorem. Now

∫ ∞

0

tq−1ν({t0 < f ≤ t1} ∩ {f > t}) dt

=

∫ t0

0

tq−1ν({t0 < f ≤ t1}) dt +

∫ t1

t0

tq−1ν({t < f ≤ t1}) dt

=
tq0
q

ν({t0 < f ≤ t1}) +

∫ t1

t0

tq−1ν({t < f ≤ t1}) dt.

Since {t < f ≤ t1} = {f > t} \ {f > t1} and the measures of these sets are finite,
ν({t < f ≤ t1}) = ν({f > t}) − ν({f > t1}) , and consequently

∫ t1

t0

tq−1ν({t < f ≤ b}) dt

=

∫ t1

t0

tq−1ν({f > t}) dt − ν({f > b})

∫ t1

t0

tq−1 dt

=

∫ t1

t0

tq−1ν({f > t}) dt −
tq1 − tq0

q
ν({f > t1}).

Therefore equality (3.2) holds and the lemma follows.

The idea of the next lemma is similar to [Ge, Lemma 1], except that there
the lemma is established in terms of Stieltjes integrals. Here we use the previous
lemma, which produces a considerably shorter proof.
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3.3. Lemma. Let f ∈ Lp(Q0; µ) , 1 < p < ∞ , be a nonnegative function. If
there is t0 ≥ 0 and C1 ≥ 1 such that

(3.4)

∫

{f>t}

fp dµ ≤ C1t
p−1

∫

{f>t}

f dµ

for every t ≥ t0 , then for every q > p for which C1(q − p)/(q − 1) < 1 , we have

(3.5)

∫

Q0

f q dµ ≤ C2t
q−p
0

∫

Q0

fp dµ,

where C2 depends on C1 , q and p .

Proof. Let t0 ≥ 0 such that (3.4) holds for every t ≥ t0 . Clearly

(3.6)

∫

Q0

f q dµ =

∫

{f≤t0}

f q dµ +

∫

{f>t0}

f q dµ

≤ tq−p
0

∫

{f≤t0}

fp dµ +

∫

{f>t0}

f q dµ.

Next we shall estimate the second integral on the right hand side. Let t1 > t0 .
Using equality (3.2) with q replaced by q − p and dν = fp dµ we get

∫

{t0<f≤t1}

f q dµ = (q − p)

∫ t1

t0

tq−p−1

∫

{f>t}

fp dµ dt

+ tq−p
0

∫

{f>t0}

fp dµ − tq−p
1

∫

{f>t1}

fp dµ.

The assumption (3.4) yields
∫ t1

t0

tq−p−1

∫

{f>t}

fp dµ dt ≤ C1

∫ t1

t0

tq−2

∫

{f>t}

f dµ dt.

By using (3.2) again, now with q replaced by q − 1 and dν = f dµ , we obtain
∫ t1

t0

tq−2

∫

{f>t}

f dµ dt =
1

q − 1

(
∫

{t0<f≤t1}

f q dµ

− tq−1

0

∫

{f>t0}

f dµ + tq−1

1

∫

{f>t1}

f dµ

)

,

and consequently
∫

{t0<f≤t1}

f q dµ ≤ C1

q − p

q − 1

∫

{t0<f≤t1}

f q dµ

+
(

1 −
q − p

q − 1

)

tq−p
0

∫

{f>t0}

fp dµ

+
(

C1

q − p

q − 1
− 1

)

tq−p
1

∫

{f>t1}

fp dµ.
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Here we also used the trivial estimate
∫

{f>t1}

f dµ ≤

∫

{f>t1}

f
( f

t1

)p−1

dµ = t1−p
1

∫

{f>t1}

fp dµ.

Since
∫

{t0<f≤t1}

f q dµ ≤ tq1µ({t0 < f ≤ t1}) ≤ tq1µ(Q0) < ∞,

it can be subtracted from both sides to obtain
(

1 − C1

q − p

q − 1

)

∫

{t0<f≤t1}

f q dµ ≤
p − 1

q − 1
tq−p
0

∫

{f>t0}

fp dµ

+
(

C1

q − p

q − 1
− 1

)

tq−p
1

∫

{f>t1}

fp dµ.

Now, choosing q > p such that C1(q − p)/(q − 1) < 1, we get
∫

{t0<f≤t1}

f q dµ ≤ C2t
q−p
0

∫

{f>t0}

fp dµ − tq−p
1

∫

{f>t1}

fp dµ

≤ C2t
q−p
0

∫

{f>t0}

fp dµ,

where C2 = C2(C1, p, q) ≥ 1. Since the right hand side does not depend on t1 ,
letting t1 → ∞ we obtain

∫

{f>t0}

f q dµ ≤ C2t
q−p
0

∫

{f>t0}

fp dµ.

Finally by (3.6) we arrive at
∫

Q0

f q dµ ≤ C2t
q−p
0

∫

Q0

f q dµ

and the lemma follows.

4. Proof of Theorem 1.5

Let Q0 be a cube in Ω. First we shall construct a Whitney decomposition
for Q0 . Denote

Qi =
(

1 − 2−i
)

Q0,

for i = 1, 2, . . . , . Next divide each Qi into (2i+1 − 2)n pairwise disjoint dyadic
open cubes, which cover Qi up to the measure zero. Denote this family by Qi .
Define a new family of disjoint cubes Ci by

C1 = Q1,

Ci+1 = {Q ∈ Qi+1 : Q ∩ Qi = ∅ for every Qi ∈ Ci},
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for i = 2, 3, . . . , . Write C =
⋃∞

i=1
Ci . Cubes in C cover Q0 up to the measure

zeroand they are pairwise disjoint. The enlarged cubes 2Q are still subsets of Q0 .
Denote

s0 =

(
∫

Q0

fp dµ

)1/p

and let s > 0 be such that s ≥ s0 . If Q ∈ C , then

∫

Q

fp dµ ≤
1

µ(Q)

∫

Q0

fp dµ =
µ(Q0)

µ(Q)

∫

Q0

fp dµ ≤ aQsp

where aQ = µ(Q0)/µ(Q) . Define a new function g by

g(x) = a
−1/p
Q f(x)

whenever x ∈ Q ∈ C . Since cubes in C cover Q0 up to the measure zero, g is a
well defined function almost everywhere in Q0 . Define, for example, g to be zero
elsewhere in Q0 . Fix Q ∈ C . Then

∫

Q

gp dµ ≤ sp

and we can use inequality (2.9) to conclude

(4.1)

∫

{g>s}∩Q

gp dµ ≤ C1s
pµ({Mp

Qg > s}).

Next we estimate the right hand side of (4.1).
Suppose that x ∈ Q and Qx is a subcube of Q containing x . Then the

construction above guarantees that the twice enlarged cube 2Qx is contained in
the basic cube Q0 and hence the weak reverse Hölder inequality (1.6) implies

(4.2)

(
∫

Qx

gp dµ

)1/p

= a
−1/p
Q

(
∫

Qx

fp dµ

)1/p

≤ C2a
−1/p
Q

∫

2Qx

f dµ,

where C2 is the constant in (1.6). Now it is easy to see that 2Qx can intersect at
most those cubes in C which touch Q and hence there is a cube Q′ in C which
touches Q such that

g ≥ a
−1/p
Q′ f

in 2Qx . On the other hand, by the construction of the family C , Q ⊂ 5Q′ and
using the doubling property of µ we conclude that µ(Q) ≤ µ(5Q′) ≤ C3µ(Q′)
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and consequently aQ′ ≤ C3aQ , where the constant C3 depends on the doubling
constant in (1.2) and the dimension n . This implies

∫

2Qx

f dµ ≤ a
1/p
Q′

∫

2Qx

g dµ

≤ C
1/p
3 a

1/p
Q

∫

2Qx

g dµ

and by the inequality (4.2), we obtain

(
∫

Qx

gp dµ

)1/p

≤ C4

∫

2Qx

g dµ.

In other words Mp
Qg(x) ≤ C4MQ0

g(x) and hence

{Mp
Qg > s} ⊂

{

MQ0
g >

s

C4

}

∩ Q.

Using (4.1) we see that

(4.3)

∫

{g>s}∩Q

gp dµ ≤ C1s
pµ

({

MQ0
g >

s

C4

}

∩ Q
)

.

Now (4.3) holds in every cube Q ∈ C and by summing over all cubes in C we
obtain

(4.4)

∫

{g>s}

gp dµ ≤ C1s
pµ

({

MQ0
g >

s

C4

})

.

On the other hand formula (2.4) yields

(4.5) µ
({

MQ0
g >

s

C4

})

≤
C5

s

∫

{g>t}

g dµ,

where t = s/(2C4) . Combining (4.4) and (4.5) we obtain

(4.6)

∫

{g>s}

gp dµ = C6s
p−1

∫

{g>t}

g dµ.

On the other hand

(4.7)

∫

{t<g≤s}

gp dµ =

∫

{t<g≤s}

gp−1g dµ

≤ sp−1

∫

{g>t}

g dµ
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and hence (4.6) and (4.7) yield

∫

{g>t}

gp dµ =

∫

{t<g≤s}

gp dµ +

∫

{g>s}

gp dµ

≤ C7t
p−1

∫

{g>t}

g dµ,

for every t ≥ t0 where t0 = s0/(2C4) .
Now using the previous lemma we obtain q > p such that

∫

Q0

gq dµ ≤ C8t
q−p
0

∫

Q0

fp dµ,

where C8 = C8(p, q, C2) . Here we used the fact that g ≤ f in Q0 . By substituting
t0 , we get

(
∫

Q0

gq dµ

)1/q

≤ C9

(
∫

Q0

fp dµ

)1/p

.

The theorem now follows since for almost every x ∈ Q1 = 1/2Q0 , g(x) =

C
−1/p
10 f(x) , where C10 is the doubling constant in (1.2), and hence

(
∫

Q1

f q dµ

)1/q

≤ C
1/p
10

(

1

µ(Q1)

∫

Q0

gq dµ

)1/q

≤ C
1/p+1/q
10

(
∫

Q0

gq dµ

)1/q

≤ C9C
1/p+1/q
10

(
∫

Q0

fp dµ

)1/p

= C11

(
∫

Q0

fp dµ

)1/p

,

where C11 = C11(n, p, q, C2) .
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