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Abstract. Let G be a plane domain, let E ⊂ G be a Painlevé null set and let f be
meromorphic in G \ E having at least one essential singularity in E . Let ψ be an exhaustion
function of G \ E , i.e., ψ(z) tends to infinity as z tends to E . We first show that there is
a sequence (rn) with rn → ∞ such that the spherical lengths of the images of the level sets
ψ−1(rn) exceed π . We also derive some estimates for the growth of the spherical derivative of
f as z tends to the singularity set. Our result relates the growth rate of the spherical derivative
with the Minkowski dimension of the singularity set.

1. Let f be a meromorphic function with an isolated singularity at 0, and
let f∗ stand for the spherical derivative of f , i.e., f∗(z) = |f ′(z)|/(1 + |f(z)|2) .
Then

(1) lim sup
z→0

|z|f∗(z) ≥ 1
2

and the constant 1
2 is sharp [8, Theorem 1]. Lehto’s proof consists in showing that

for some values of r , tending to 0, the circle |z| = r contains two points which are
mapped into approximately antipodal points on the Riemann sphere. This implies
that π , the length of the great circles of the Riemann sphere, is an approximate
lower bound for the spherical length of the images of these circles. Integration
then immediately yields (1). Gauld and Martin [5] have recently clarified the
picture by showing that the word “approximately” is actually superfluous in the
above description. Their result is general enough to cover the quasimeromorphic
mappings in Rn .

In this paper we make an attempt to extend these results to meromorphic
functions around certain nonisolated singularities. Suppose G is a plane domain,
E ⊂ G is a Painlevé null set, i.e., a set of class NB in the notation of [1], and f is
meromorphic in G \ E . Let ψ be a reasonably well-behaved exhaustion function
of G\E . We first show that there is a sequence (rn) , tending to infinity, such that
the spherical lengths of the images of the level sets ψ−1(rn) exceed π . We then
specialize to the case ψ(z) = d(z, E)−1 , where d(z, E) stands for the distance
from z to E , and derive some estimates for the growth of the spherical derivative
as z tends to E . In order to control the growth of the length of the level sets,
we have to impose restrictions on the geometry of E . The concept of Minkowski
dimension appears to be a proper device for this purpose.
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2. Let G ⊂ C be a bounded domain and let E ⊂ G be a compact totally
disconnected set. Let ψ be a continuous nonnegative function in G \E such that
ψ(z) → ∞ as d(z, E) → 0. We say that ψ is an exhaustion function of G \ E
relative to E provided that the following condition holds:

(2) For large r , let Gr denote the component of { z ∈ G | ψ(z) < r } with ∂G ⊂
∂Gr . Then ∂Gr \∂G consists of a finite number of components C1

r , . . . , C
kr

r ,
each of which admits a parametrization as a closed rectifiable curve. Further-
more, l(Ci

r) , the length of Ci
r , equals H1(Ci

r) , the 1-dimensional Hausdorff
measure of Ci

r , i = 1, . . . , kr .

In what follows, the boundary curves are usually thought of as parametrized in
this manner.

Examples. (1) Set ψ(z) = d(z, E)−1 , z ∈ G \ E . A close examination of
Brown’s paper [2] (see also Section 3) reveals that ψ fulfils condition (2). Observe
that for all but a countable number of r (for large r ), the components of ∂Gr \∂G
are simple Jordan curves [2, Theorem 3].

(2) Suppose E is of logarithmic capacity zero. Then there is a positive har-
monic function ψ in G such that ψ(z) → ∞ as z → E ; ψ is the so-called
Evans–Selberg potential. Again (2) holds true.

Let F be a closed (parametrized) curve or a finite union of disjoint simple

arcs in Ĉ = C ∪ {∞} . Then s(F ) stands for the spherical length of F .

Theorem 1. Let G ⊂ C be a bounded domain, let E ⊂ G be a compact

set of class NB , and let f be meromorphic in G \E having at least one essential

singularity in E . Let ψ be an exhaustion function of G \ E relative to E , and

set ∂Gr \ ∂G = C1
r ∪ · · · ∪Ckr

r (cf. (2)). Then there is a sequence
(

r(n)
)

, tending

to infinity, such that

kr(n)
∑

i=1

s
(

f(Ci
r(n))

)

≥ π for all n.

Proof. Suppose there is r0 such that
∑kr

i=1 s
(

f(Ci
r)

)

< π for all r ≥ r0 . In

particular, S =
∑kr0

i=1 s
(

f(Ci
r0

)
)

< π . By Crofton’s theorem (see e.g. [3, p. 33]),
the measure of the (oriented) great circles of the Riemann sphere, which meet

F =
⋃kr0

i=1 f(Ci
r0

) , each counted a number of times equal to the number of its
common points with F (taken as a union of parametrized curves), is equal to
two times the total length of F (= 2S ) (observe the difference in scaling!). The
measure referred to above is the area measure of the Riemann sphere arising via
identification of an oriented great circle with the intersection point of the sphere
and the positive normal to the plane of the circle. Since F consists of closed
curves, almost all great circles, which meet F , intersect F in at least two points.
It follows that there is a great circle, say K , such that K ∩ F = ∅ .
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Since f has at least one essential singularity in E and E is of class NB , f
assumes in any neighborhood of E all values of Ĉ except for those of a Painlevé
null set. On the other hand, it is known that a linear set is a Painlevé null set if
and only if it is of linear measure zero [1, Theorem 11]. Hence it makes sense to
define

r′ = inf
{

r | r > r0 and s
(

f(Gr \Gr0
) ∩K

)

≥ 1
2π = 1

2s(K)
}

.

Let Ki be the shortest spherical segment in K which contains f(Ci
r′) ∩K , i =

1, . . . , kr′ . Obviously
∑k

r′

i=1 s(Ki) < 1
2
π . Since s

(

K \ ⋃k
r′

i=1Ki

)

> 1
2
π , there

is, by the choice of r′ , at least one point, say p , in K \ ⋃k
r′

i=1Ki , which is not
assumed by f in Gr′ \Gr0

. By rotating the Riemann sphere, we may assume that
p = ∞ ; in other words, we may regard f as holomorphic in Gr′ \ Gr0

. We now
apply the argument principle to f in Gr′ \ Gr0

. Clearly the winding number of
each curve f(Ci

r0
) , i = 1, . . . , kr0

, with respect to any point of K is zero. The
same is true of each curve f(Ci

r′) , i = 1, . . . , kr′ , with respect to any point of

K \⋃k
r′

i=1Ki . It follows that f omits all points of K \⋃k
r′

i=1Ki in Gr′ \Gr0
. But

since s
(

K \⋃k
r′

i=1Ki

)

> 1
2
π , this state of affairs is in disagreement with the choice

of r′ . The proof is complete.

Remarks. (1) In [3], Crofton’s theorem is proved only for smooth curves,
but, as observed in [3, p. 34], the theorem is true also for (unions of) rectifiable
curves.

(2) Suppose E fails to be of class NB . Then Ĉ \ E tolerates nonconstant
bounded holomorphic functions. By scaling, we can then shorten the length of the
image curves as much as we please. Hence it is highly plausible that one cannot
extend the above theorem beyond the class NB .

3. We are going to employ Theorem 1 for deriving estimates for the growth
of the spherical derivative of meromorphic functions in terms of d(z, E) . For this
reason, we henceforth specialize to the case ψ(z) = d(z, E)−1 . Unfortunately, the
level sets of ψ may be extremely intricate even if E is only countable. Hence
we will measure the size of sets in terms of the Minkowski content or dimension,
which are more sensitive to irregularities in the distribution of points than, say,
the Hausdorff measure and dimension.

Let E ⊂ C be a compact nonempty set and set E(r) = { z ∈ C | d(z, E) < r }
for r > 0. Obviously, ∂E(r) = ψ−1(1/r) . Further, let m stand for the area
measure and set B(z0, r) = { z ∈ C | |z − z0| < r } . Let α ≥ 0. The α -
dimensional (upper) Minkowski content and the Minkowski dimension of E are
defined to be

Mα(E) = lim sup
r→0

m
(

E +B(0, r)
)

r2−α
and

dimM (E) = sup{α ≥ 0 |Mα(E) = ∞},
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respectively; see e.g. [9, Section 3]. It is known that dimM (E) ≥ dimH(E) (= the
Hausdorff dimension of E ) for any compact set E ⊂ C , but for quite a large class
of sets, including the self-similar sets, the two numbers are equal [9, Theorem 4.19].

Martio and Vuorinen have exhibited a connection between the Minkowski
dimension of E and the distribution of squares in the Whitney decomposition of
C \ E . Recall that the Whitney decomposition of C \ E is a representation

(3) C \ E =
⋃

k∈Z

⋃nk

j=1Q
k
j ,

where each Qk
j is a closed dyadic square with sides parallel to the coordinate axes,

and the side length of Qk
j is 2−k . Furthermore, the interiors of the squares are

pairwise disjoint, and d(Qk
j , E) , the distance of Qk

j and E , satisfies

(4) 2−k
√

2 ≤ d(Qk
j , E) ≤ 4 · 2−k

√
2

[12, pp. 167–168], [9, Section 2].

We require an upper bound for the length of the part of ∂E(r) lying in a
single Whitney square.

Lemma. Let Q ⊂ C be the closed square with vertices at the points ±1
2 ± 1

2 i

and let E ⊂ C be a nonempty compact set with d(0, E) ≥ 1
2 +

√
2 . Then

H1
(

∂E(r) ∩Q
)

< 10 for all r > 0 .

Proof. Fix r > 0 and suppose that F = ∂E(r)∩Q 6= ∅ . Let Sj stand for the
cone { z ∈ C | 1

4
(2j − 1)π ≤ arg z ≤ 1

4
(2j + 1)π } and set Fj = { z ∈ F | |z−w| =

r for some w ∈ E ∩ Sj } , j = 0, 1, 2, 3. Then each Fj is closed and
⋃3

j=0Fj = F .
Fix z0 ∈ F0 and pick out a point w0 ∈ E ∩ S0 such that |z0 − w0| = r .

Clearly F ∩ B(w0, r) = ∅ . Let w1 and w2 be the points on the rays arg z =
−1

4
π and arg z = 1

4
π , respectively, such that |wj − z0| = r , j = 1, 2. Set

rj = max{ 1
2 +

√
2, |wj|} , j = 1, 2, and w′

1 = r1e
−iπ/4 , w′

2 = r2e
iπ/4 . Obviously

(E ∩ S0) ∩
(

B(0, 1
2 +

√
2 ) ∪B(z0, r)

)

= ∅ .

A moment’s reflection reveals that F0 ⊂
(

B(w′
1, |w′

1−z0|)∪B(w′
2, |w′

2−z0|)
)

\
B(w0, r) . It follows that F0 may be regarded as the graph of a function, defined in
a closed part of a closed interval of length 1, which satisfies a Lipschitz condition.
By considering the obvious extremal positions, one realizes that the Lipschitz

constant may be chosen to be 5 − 2
√

2. Hence H1(F0) ≤
√

1 + (5 − 2
√

2 )2 <

2 1
2 . Of course, the same is true of any Fj , j = 0, 1, 2, 3, so that H1(F ) ≤

∑3
j=0H

1(Fj) < 10 as was asserted.

Corollary 1. Let E ⊂ C be a nonempty compact set and let Q be a square

of side length 2−k in the Whitney decomposition of C\E . Then H1
(

∂E(r)∩Q
)

<
10 · 2−k for all r > 0 .
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Let E ⊂ Rn (n > 1) be a nonempty bounded set. Then there is a constant
A , depending only on n and the diameter of E , such that Hn−1

(

∂E(r)
)

< Ar−1

for sufficiently small r [11, p. 422]. Owing to the previous lemma, we are able to
improve this result (at least in dimension 2) as follows.

Corollary 2. Let E ⊂ C be a nonempty compact set. Then lim
r→0

rH1
(

∂E(r)
)

= 0 .

Proof. Fix r > 0 and let k = k(r) denote the unique integer such that
2−k+1 ≤ r < 2−k+2 . Suppose Qm

j ∩∂E(r) 6= ∅ (cf. (3)). Then by (4) r−
√

2 2−m ≤
4
√

2 2−m , whence 2−k+1 ≤ r ≤ 5
√

2 2−m . Also by (4)
√

2 2−m ≤ r < 2−k+2 . It
follows that k−1 ≤ m ≤ k+1. In other words, there are only three “generations”
of squares, which may have elements intersecting ∂E(r) .

Let nm be the number of the squares in the mth generation. As an expression
for the area of a bounded plane set the series

∑∞
m=1 nm2−2m is convergent. Hence

(5) cm = nm2−2m → 0 as m→ ∞.

Invoking the preceding lemma we get

H1
(

∂E(r)
)

< 10nk−12
−k+1 + 10nk2−k + 10nk+12

−k−1

and

rH1
(

∂E(r)
)

< 10nk−12
−k+2 · 2−k+1 + 10nk2−k+2 · 2−k + 10nk+12

−k+2 · 2−k−1

= 20nk−12
−2(k−1) + 40nk2−2k + 80nk+12

−2(k+1).

Since r → 0 implies k → ∞ , we infer from (5) that limr→0 rH
1
(

∂E(r)
)

= 0.

Remark. It should be clear that the corresponding results are valid in any
n -space, n ≥ 2.

Let h: (0,∞) → (0,∞) be an increasing function. Following Martio and
Vuorinen, we say that E satisfies the Whitney square #-condition with the func-
tion h if there exists k0 ≥ 0 such that nk ≤ h(k) for k ≥ k0 ; here nk is as
in (3). This definition gives rise to the following rather implicit consequence of
Theorem 1.

Theorem 2. Let G ⊂ C be a domain, let h: (0,∞) → (0,∞) be increasing

and let E ⊂ G be a compact set of class NB , which satisfies the Whitney square

# -condition with h . Let f be meromorphic in G\E having at least one essential

singularity in E . Then

lim sup
d(z,E)→0

f∗(z)d(z, E)h

(

2 log
8

d(z, E)

)

≥ 2π

35
.
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Proof. Suppose there is r0 > 0 such that

f∗(z) <
2π

35d(z, E)h

(

2 log
8

d(z, E)

) for d(z, E) ≤ r0.

Fix z ∈ G\E such that r = d(z, E) ≤ r0 and pick k ∈ Z with 2−k+1 ≤ r < 2−k+2 .
By Corollary 1 and by the proof of Corollary 2,

H1
(

∂E(r)
)

< 10 · 2−k+1h(k − 1) + 10 · 2−kh(k) + 10 · 2−k−1h(k + 1)

= 20 · 2−kh(k − 1) + 10 · 2−kh(k) + 5 · 2−kh(k + 1)

≤ 35 · 2−kh(k + 1) ≤ 35

2
rh

(

2 log
8

r

)

.

It follows that s
(

f(∂E(r)
)

< π (cf. (2)). But this contradicts Theorem 1.

Consider the case Mα(E) < ∞ for some 0 ≤ α < 1. Since dimH(E) ≤
dimM (E) < 1, E is of class NB . Furthermore, by [9, Theorem 3.11] E satisfies
the Whitney square #-condition with h(t) = A2αt for some A < ∞ . It follows
from Theorem 2 that

lim sup
d(z,E)→0

f∗(z)d(z, E)1−α > 0.

However, it turns out that in case α > 0 much better estimates can be derived
making use of the fact that sets of class ND are removable singularities for mero-
morphic functions with a finite spherical Dirichlet integral [6, Theorem 2]. Recall
that by definition E ∈ ND provided that E is a null set for holomorphic func-
tions with a finite Dirichlet integral. Hence Theorem 2 is of interest only in case
dimM (E) = 0. We return to this case at the end of the paper.

Theorem 3. Let G ⊂ C be a domain and let E ⊂ G be a compact set of

class ND with Mα(E) <∞ for some α ∈ [0, 2) . Let f be meromorphic in G \E
with at least one essential singularity in E . Then

lim sup
d(z,E)→0

f∗(z)d(z, E)β = ∞ for all β < 1 − 1
2α.

Proof. Suppose, on the contrary, that there are positive constants C and r0
such that f∗(z)d(z, E)β ≤ C for z ∈ G \ E with r = d(z, E) ≤ r0 and for some
β < 1 − 1

2α . Using [9, Theorem 3.11] as above we see that H1
(

∂E(r)
)

≤ Ar1−α

for some A <∞ . Hence by [4, Lemma 3.2.34]
∫∫

E(r0)\E

(

f∗(z)
)2
dx dy =

∫ r0

0

(
∫ H1(∂E(r))

0

(

f∗(z)
)2
ds

)

dr

≤
∫ r0

0

AC2r1−α

r2β
dr = AC2

∫ r0

0

r1−α−2β dr <∞.

It follows from [6, Theorem 2] that f admits a meromorphic extension to the
whole of G . This contradiction completes the proof.
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Remarks. (1) The above result is sharp in the sense that 1− 1
2α cannot be

replaced by a larger constant. Indeed, given α with 0 ≤ α < 2 one can construct
a countable set E , clustering only at the origin, such that Mα(E) < ∞ and
d(z, E) ≤ A|z|2/(2−α) for z ∈ C with A <∞ ; see the proof of [7, Theorem B]. On
the other hand, there is a meromorphic function f in C \ {0} having an essential
singularity at 0 such that lim supz→0 |z|f∗(z) = 1

2
[8, Theorem 1]. It follows that

lim sup
d(z,E)→0

f∗(z)d(z, E)1−(α/2) ≤ 1
2A

1−(α/2) <∞.

(2) In the cited work, Koskela considers a similar problem from the point of
view of holomorphic functions. His result ([7, Theorem A]) may be rephrased as
follows. Let G ⊂ C be a domain and let E ⊂ G be a compact set with Mα(E) <
∞ for some α ∈ [0, 2) and H1

(

{Re z | z ∈ E}
)

= H1
(

{Im z | z ∈ E}
)

= 0
(observe that the latter condition implies E ∈ ND by [1, Theorem 10]). Let f be
holomorphic in G \ E having at least one singularity in E . Then

lim sup
d(z,E)→0

|f ′(z)|d(z, E)β = ∞ for all β < 2 − α.

This result is sharp in the same sense as Theorem 3.

Examples. (1) Given t ∈ (0, 1), let Et ⊂ [0, 1] be the self-similar Cantor
set obtained by the construction in which one removes from the interval [0, 1]
centrally a segment of length 1− t and continues with the remaining segments in
the same manner etc. As is well known, dimH(Et) = log 2/ log(2/t) . Furthermore,
it follows from [9, Theorem 4.19 and Remark 4.20] that dimM (Et) = dimH(Et)
and Mα(Et) < ∞ for α = log 2/ log(2/t) . Suppose now that f is meromorphic
in some neighborhood of Et having at least one essential singularity in Et . Then
by Theorem 3

lim sup
d(z,Et)→0

f∗(z)d(z, Et)
β = ∞ for all β < 1 − log 2/2 log(2/t).

If one replaces Et with Et × Et (note that Et × Et ∈ ND by [1, Theorem 10]),
Theorem 3 yields

lim sup
d(z,Et×Et)→0

f∗(z)d(z, Et × Et)
β = ∞ for all β < 1 − log 2/ log(2/t),

because dimM (Et ×Et) = 2 log 2/ log(2/t) .

(2) We now construct a symmetric Cantor set as follows. Let I0 stand for the
interval [0, 1] . We first remove from I0 centrally a segment of length 1 − (1/2)2 .
The remaining set I1 consists of equal segments I1,1 and I1,2 of total length
(1/2)2 . Inductively we remove centrally from each segment Inj of In with n =

1, 2, . . . and j = 1, . . . , 2n a segment of length (1/2)n
(

1−(1/2)n+1
)

(1/2)2
n+1−2 so

as to obtain a set In+1 of total length (1/2)2
n+2−2 . The resulting set E =

⋂∞
n=0 In

is of logarithmic capacity zero [10, p. 153]. Obviously dimM (E) = 0.
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It would be possible to obtain upper bounds for the number of Whitney
squares in various generations in the decomposition of C \ E and then employ
Theorem 2. However, it is a simple matter to estimate H1

(

∂E(r)
)

directly and

then apply Theorem 1. Set ln = l(Inj) = (1/2)n(1/2)2
n+1−2 and rn = ln/2, n ∈

N . Assume z ∈ C \ E is such that r = d(z, E) < 1/20 and pick out k ∈ N such
that r ∈ [rk+1, rk) . By elementary geometry H1

(

∂E(r)
)

≤ 2k+3πr = 2k+14πr .

On the other hand, rk = lk/2 = 2(1/2)2
k+1+k , i.e., 2 log(2/rk) = 2k+1 +k , whence

2k+1 < 2 log(2/rk) < 2 log(2/r) . It follows that H1
(

∂E(r)
)

< 4πr · 2 log(2/r) .
Given a function f , meromorphic in some neighborhood of E and with at least
one essential singularity in E , we have by Theorem 1 that

lim sup
d(z,E)→0

f∗(z)d(z, E) log
(

2/d(z, E)
)

≥ 1
4 log 2.

It is to be noted that this result cannot be obtained by the method of Theorem 3.
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