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ELEMENTS GENERATING BALAYAGES
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Abstract. We consider balayages in H -cones. Formerly balayages were characterized in
terms of sets but a new approach looks at the elements instead of sets. Earlier, for example, we
have proved an explicit formula for a balayage in an H -cone possessing a certain type of unit in
terms of mixed envelopes formed relative to two partial orderings. Our problem is to describe those
elements that generate a balayage. We state a necessary and sufficient condition for an element
to generate a balayage in an H -cone possessing a special type of unit. We also give a relation
between balayages and extreme points of a convex set of elements dominated by a fixed element.

Introduction

The theory of balayages is an integral part of potential theory. We consider
balayages in an H -cone which is an axiomatic model of a convex cone of positive
superharmonic functions on a harmonic space. A balayage is a mapping from
an H -cone into itself which is additive, left order continuous, contractive and
idempotent (see Section 2). Originally a balayage R̂A

u of a superharmonic function
s on a subset A of a harmonic space X is given by

R̂A
u (x) = lim infy→x inf{ v(y) | v ≥ u on A, v is superharmonic }.

If A is open then the mapping u 7→ R̂A
u is a balayage. Moreover, if a harmonic

space X satisfies the axiom of polarity [6, Theorem 9.1.1] then the mapping u 7→

R̂A
u is a balayage for any A ⊂ X .

Previously balayages were characterized in terms of sets. In [9, Theorem 2.9]
we present an explicit formula for a balayage in terms of mixed envelopes de-
fined relative to two partial orderings. Some related characterizations of balayages
are also given by Popa [10]. In this paper we study which elements generate a
balayage? Our main theorem gives a necessary and sufficient condition for an
element to generate a balayage in an H -cone possessing a special type of unit
(Theorem 2.9). We also present a relation between balayages and extreme points
of a convex set of elements dominated by a fixed element (Theorem 2.13). We
prove an interesting result that the set of balayages is an abelian semigroup with
respect to some special addition. This result gives a new formula for the least
upper bound of two balayages.
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1. Preliminaries

We use the following definition of an H -cone which is equivalent with the
original one ([8, Theorem 1.3]).

Definition 1.1. Let E be an ordered vector space and S be a convex subcone
of E such that S ⊂ E+ and E = S − S . The cone S is called an H -cone if it
possesses the following properties:

(A1) any upward directed and dominated subset F of S has a least upper bound
in E denoted by ∨F and ∨F ∈ S ,

(A2) any subset F of S has a greatest lower bound in E denoted by ∧F and
∧F ∈ S ,

(A3) for any elements s and t of S , the greatest lower bound of the set { u ∈ S |
s − t ≤ u } , denoted by R(s − t) , satisfies the conditions R(s − t) ∈ S and
s−R(s− t) ∈ S .

A partial order called specific order, denoted by 4 , is defined in an H -cone
by

s 4 t if and only if t = s+ s′ for some s′ ∈ S.

Any pair of elements in an H -cone has mixed envelopes introduced by Arsove
and Leutwiler in algebraic potential theory ([2]).

Theorem 1.2. Let S be an H -cone. Then for any elements s and t in S

there exist a mixed lower envelope

s⌣\t = max{ x ∈ S|x 4 s, x ≤ t } = s−R(s− t)

and a mixed upper envelope

s⌢/t = min{ x ∈ s|x < s, x ≥ t } = s+R(t− s)

satisfying the equality

s⌣\t+ t⌢/s = s+ t.

Proof. See [2, Theorem 2.5].
We recall the definitions of special units which are important in the theory of

H -cones.

Definition 1.3. Let S be an H -cone. An element e ∈ S is called a weak

unit if s = ∨n∈N(ne) ∧ s for all s ∈ S . An element p ∈ S is called a generator

if s =
∨

n∈N
(np)⌣\s for all s ∈ S . An element s ∈ S is called a u -quasi-unit for

u ∈ S if s =
∨

n∈N
(ns)⌣\u .

We apply the following characterization of quasi-units given by Arsove and
Leutwiler in [1, p. 2499]:
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Theorem 1.4. Let S be an H -cone and u , s be elements of S . Then the

following conditions are mutually equivalent:

(i) An element s is a u -quasi-unit.

(ii) s = (αs)⌣\u for all α > 1 .

(iii) s = (αs)⌣\u for some α > 1 .

(iv) R(s− αu) = (1 − α)u for all α < 1 .

(v) R(s− αu) = (1 − α)u for some α < 1 .

(vi) An element s is an extreme point of the convex set C = { t ∈ S | t ≤ u } .

Let S be an H -cone and u ∈ S . We recall that an element s of an H -cone
S is called u -continuous if for any ε > 0 and any upward directed family F ⊂ S

with s = ∨F there exists an element fε of F such that s ≤ fε +εu . An element s
in S is universally continuous, if it is u -continuous with respect to all weak units
u in S .

Definition 1.5. An H -cone S is called a standard H -cone ([4, p. 104]) if it
has a weak unit and a countable dense set of universally continuous elements.

For a reference to the theory of H -cones we mention [4].

2. Elements generating a balayage

We consider balayages in H -cones. Recall that a mapping B from an H -cone
S into S is called

(a) left order continuous if for any s ∈ S the property B(s) =
∨

t∈F B(t) holds
for all upward directed subsets F of S ,

(b) idempotent if B2 = B ,
(c) contractive if B(s) ≤ s for all s ∈ S .

A balayage is a mapping B: S → S which is additive, left order continuous,
idempotent and contractive. A potential-theoretic model for a balayage is the
mapping s 7→ RU

s where s is a positive superharmonic function on a harmonic
space, U an open set and RU

s the so-called reduced function. For further reference
see [6, Section 4.2].

In the set of mappings from an H -cone S into itself we use the partial ordering
given by ψ ≤ ϕ if ψ(s) ≤ ϕ(s) for all s ∈ S .

Balayages have the following important property as proved in [9, Lemma 2.3].

Lemma 2.1. Let S be an H -cone. If B: S → S is a balayage then

(2.1) B(u)⌣\v = B(u)⌣\B(v)

for all u and v in S .

The value of a balayage at a point is obtained from its value at a generator
[9, Theorem 2.9].
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Theorem 2.2. Let S be an H -cone possessing a generator p , and B a

mapping from S into S . Then B is a balayage if and only if B is left order

continuous and satisfies the equality

(2.2) B(x) =
∨

n∈N

(
nB(p)

)
⌣\x

for all x ∈ S .

Quasi-units and balayages have a close connection stated next.

Proposition 2.3. Let S be an H -cone and u ∈ S . If B: S → S is a

balayage then the element B(u) is a u -quasi-unit and therefore an extreme point

of the convex set { s ∈ S | s ≤ u } .

Proof. Let B: S → S be a balayage and u ∈ S . Applying Lemma 2.1 we
obtain (

2B(u)
)
⌣\u = B(2u)⌣\u = B(2u)⌣\B(u) = B(u).

Hence B(u) is a u -quasi-unit by Theorem 1.4.
A natural question is what values of B(p) in the formula (2.2) produce a

balayage? For handling this we define the following concept.

Definition 2.4. Let S be an H -cone. An element u ∈ S generates a
balayage if the mapping B: S → S defined by

B(x) =
∨

n∈N

(nu)⌣\x

is a balayage.

Applying [9, Theorem 2.10] we obtain directly the next result.

Proposition 2.5. An element u of an H -cone S generates a balayage if and

only if the condition

(2.3) u =
∨

n∈N

f∈F

(nu)⌣\f

holds for any upward directed family F with
∨
F = u .

Note that the condition (2.3) does not hold generally for all u in an H -cone
S . Indeed, it is possible that u =

∨
F for some upward directed family F and

u⌣\f = 0 for all f ∈ F . For example this property holds if u is a harmonic
function and F the set of potentials with u =

∨
F .

Lemma 2.6. Let S be an H -cone and u an element of S . If the function

ψ: S → S defined by ψ(x) = u⌣\x for x ∈ S is left order continuous then the

element u generates a balayage.
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Proof. By virtue of the preceding proposition we only have to verify the
condition (2.3). Assume that F is directed upwards with ∨F = u . Since ψ is left
order continuous we have

u = ψ(u) =
∨

f∈F

u⌣\f ≤
∨

f∈F

n∈N

(nu)⌣\f ≤ u,

completing the proof.
An example of elements generating a balayage are v -continuous elements for

any element v ∈ S .

Lemma 2.7. Let S be an H -cone and v ∈ S . If u is v -continuous then u

generates a balayage. Moreover, any element u ∈ S enjoying the property

(2.4)
∧

{R(u− t) | t ≤ u, t is v-continuous } = 0,

generates a balayage.

Proof. Assume that an element u of S is v -continuous for some v ∈ S . It
is enough to prove that the mapping ψ defined by ψ(x) = u⌣\x for x ∈ S is left
order continuous. Let a family F be directed upwards with

∨
F = u . Since u is

v -continuous for any ε > 0 there exists an element fε in F such that u ≤ fε +εv .
This implies that u ≤ (u+ εv)⌣\(fε + εv) and further by [2, p. 16]

u ≤ u⌣\fε + εv ≤
∨

f∈F

u⌣\f + εv.

Since ε is arbitrary, the condition (2.3) holds.
Lastly suppose that the condition (2.4) is valid for u ∈ S . Denote by V

the set of v -continuous elements. Let F be directed upward with
∨
F = u . By

Theorem 1.2 and (2.4) we obtain

(2.5) u =
∨

t∈V

u⌣\t.

For any t ∈ V with t ≤ u , there exists for each ε > 0 an element fε ∈ F such
that t ≤ fε + εv . Hence we have

u⌣\t ≤ u⌣\fε + εv ≤
∨

f∈F

u⌣\f + εv.

Combining this with (2.5) we obtain the condition (2.3).
In standard H -cones even the following stronger result holds.
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Theorem 2.8. Let S be a standard H -cone. Any balayage B on S is

generated by a u -continuous element for some weak-unit u in S . Conversely, a

u -continuous element generates a balayage for any weak unit u ∈ S .

Proof. We only have to prove the first statement. Assume that B is a balayage
on a standard H -cone S . Then the set B(S) = {B(s) | s ∈ S } is also a standard
H -cone by [4, Corollary 5.2.6] and there exists a countable dense set (si)i∈N of
universally continuous elements in B(S) . Since S is a standard H -cone it has a
generator p by [4, Lemma 4.3.7]. Moreover B(p) is a weak unit (even a generator)
in B(S) . Indeed, on account of Theorem 2.2 we have

B(x) =
∨

n∈N

B(np)⌣\x =
∨

n∈N

(
B(np)⌣\B(x)

)
.

By [4, Proposition 4.1.2] for every sn there exists αn ∈ R such that s ≤ αnB(p) ≤
αnp . Set

u =
∑

n∈N

sn

2nαnB(p)
.

Elements sn are p-continuous in S . Indeed, let F be directed upwards with ∨F =
sn = B(sn) and ε > 0. Since B is left order continuous we have

∨
f∈F B(f) = sn .

As sn is B(p)-continuous we obtain

sn ≤ B(fε) + εB(p) ≤ fε + εp

for some fε ∈ F . Hence sn is p-continuous. Applying [4, Proposition 4.1.2] we
easily see that u is p-continuous. Moreover, u is clearly a generator in B(S) .
Using Lemma 2.1 we find that

B(x) =
∨

n∈N

(nu)⌣\B(x) =
∨

n∈N

(nu)⌣\x.

Thus the balayage B is generated by a p-continuous element.
Let S be an H -cone possessing a generator p . If an element u in S generates

a balayage B , then Proposition 2.3 implies that B(p) is a p-quasi-unit. Combining
this observation with Proposition 2.5 we obtain the result.

Theorem 2.9. Let S be an H -cone possessing a generator p . Then every

balayage is generated by some p-quasi-unit. Conversely, a p-quasi-unit u gener-

ates a balayage if and only if

u =
∨

n∈N

f∈F

(nu)⌣\f

for any upward directed family F with u = ∨F .



Elements generating balayages 405

In some important cases there is a one to one correspondence between p-
quasi-units and balayages. In order to find sufficient conditions we first state two
preliminary results.

Proposition 2.10. Let S be an H -cone in an ordered vector space E and

f ∈ E . Then the mapping Bf : S → S defined by

Bf (x) =
∨

n∈N

R
(
x ∧ (nf)

)

is a balayage and Bf = Bf+ . Moreover, Bf

(
R(f)

)
= R(f) .

Proof. Let x ∈ S and f ∈ E . Since by [4, Proposition 2.1.1] the set E is a
vector lattice we infer

R
(
x ∧ (nf)

)
= R

((
x ∧ (nf)

)
∨ 0

)
= R

(
x ∧ (nf+)

)
.

Applying [4, Theorem 2.2.9] the mapping Bf = Bf+ is a balayage. The second
statement follows from Bf

(
R(f)

)
∈ S and R(f) ≥ Bf

(
R(f)

)
≥ f .

The following result is a stronger form of the result stated by Boboc [5,
Lemma 3, p. 74].

Proposition 2.11. Let S be an H -cone and p ∈ S . Then the following

assertions are equivalent:

(i) s is a p-quasi-unit;

(ii) There exists a decreasing sequence of balayages (Bn)n∈N such that

s = Bn(s) for all n ∈ N and s =
∧

n∈N

(
Bn(p)

)
.

(iii) There exists a sequence of balayages (Bn)n∈N such that

s = Bn(s) for all n ∈ N and s =
∧

n∈N

(
Bn(p)

)
.

Proof. Assume that s is a p-quasi-unit. Let α < 1 and set fα = s − αp .
Define a mapping Bα: S → S by

Bα(x) =
∨

m∈N

R
(
x ∧ (mfα)

)
.

Then by Proposition 2.10 the mapping Bα is a balayage and

Bα

(
R(s− αp)

)
= R(s− αp).
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Applying Theorem 1.4 we obtain R(s− αp) = (1 − α)s and so

Bα(s) =
1

1 − α
Bα

(
R(s− αp)

)
= s.

We show that
s+ (1 − α)p ≥ Bα(p).

According to [4, Lemma 2.2.8] it is enough to prove that
(
p−

(
s+ (1 − α)p

))
∧ (s− αp) ≤ 0.

But this is evident, since E is a vector space and therefore

(2αp) ∧ (2s) = s ∧ αp+ s ∧ αp ≤ s+ αp.

Setting Bn = B1−1/n for n ∈ N we obtain (ii). The condition (ii) implies trivially
(iii). Assume that the condition (iii) holds. Then by Lemma 2.1 we have

s ≤ (2s)⌣\p = Bn(2s)⌣\p = Bn(2s)⌣\Bn(p) ≤ Bn(p)

for all n ∈ N . Using the condition (iii) we infer that (2s)⌣\p = s and so by
Theorem 1.4 the element s is a p-quasi-unit.

Lemma 2.12. Let S be an H -cone and v be u -continuous for some element

u in S . If ϕ: S → S is additive, increasing and contractive then the mapping ϕ̃

defined by

ϕ̃(s) =
∨

n∈N

ϕ
(
(nv)⌣\s

)

is additive and left order continuous.

Proof. Similarly as in the proof of [9, Proposition 2.7] we deduce that ϕ̃

is additive. Assume that F is directed upwards and ∨F = v . Since v is u -
continuous for some element u there exists fε for any ε > 0 such that v ≤ fε+εu .
Hence we have v = (nv)⌣\v ≤ (nv)⌣\fε +εu and therefore ϕ̃(v) = ∨f∈F ϕ̃(f) . Let
s ∈ S and F ⊂ S be directed upwards with s = ∨F . Assume first that s 4 v .
As the set v − s+ F is directed upwards towards v , we have

ϕ̃(s) + ϕ̃(v − s) = ϕ̃(v) =
∨

f∈F

(
ϕ̃(f)

)
+ ϕ̃(v − s).

Hence ϕ̃ is left order continuous for all s ∈ S such that s 4 nv for some n ∈ N .
Assume next that s is an arbitrary element in S . Since ϕ̃ is left order continuous
at (nv)⌣\s for all n ∈ N we infer

ϕ
(
(nv)⌣\s

)
= ϕ̃

(
(nv)⌣\s

)
=

∨

f∈F

ϕ̃
((

(nv)⌣\s
)
∧ f

)
≤

∨

f∈F

ϕ̃(f) ≤ ϕ̃(s)

for all n ∈ N . Hence ϕ̃ is left order continuous.
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Theorem 2.13. Let S be an H -cone and v be u -continuous for some u ∈ S .

Assume that the greatest lower bound in the set of left order continuous additive

mappings for any decreasing sequence (Bn)n∈N of balayages in S is a balayage.

Then for any v -quasi-unit s there exists a balayage B: S → S such that B(v) = s .

Conversely, for any balayage B: S → S the element B(v) is a v -quasi-unit.

Moreover, if an H -cone S possesses a generator v which is u -continuous for

some weak unit u in S there exists a one to one correspondence between balayages

and v -quasi-units.

Proof. Assume that v is u -continuous for some u ∈ S . Let B: S → S be a
balayage. Then B(v) is a v -quasi-unit by Proposition 2.3. Let s be a v -quasi-unit.
Because of Proposition 2.11 there exists a decreasing sequence of balayages Bn

such that s =
∧

n∈N

(
Bn(v)

)
. Since the sequence (Bn) is decreasing, the mapping

ϕ: S → S defined by ϕ(t) =
∧

n∈N

(
Bn(t)

)
for t ∈ S is additive, increasing

and contractive. Using Lemma 2.12 we find out that ϕ̃ is left order continuous,
additive and ϕ̃(v) = ϕ(v) = s . By the assumption the greatest lower bound

∧
Bn

in the set of left order continuous additive mappings is a balayage denoted by B .
Hence B(v) = ϕ̃(v) = s . Taking into account Theorem 2.2, this correspondence
is one to one if v is u -continuous (for some weak unit u) and a generator.

The condition of the preceding theorem is equivalent with the axiom of po-
larity in standard H -cones by [7, p. 188].

Theorem 2.14. Let S be an H -cone possessing a generator p . Let B: S →
S be a balayage. Then there exists a lower directed family of functions fn ∈ S−S
such that B = ∧n∈NBfn

.

Proof. Let p be a generator of an H -cone S . Since by Proposition 2.3 the
element B(p) is a p-quasi-unit there exists a decreasing sequence of balayages
(Bfn

)n∈N such that B(p) =
∧

n∈N

(
Bfn

(p)
)
. Applying [9, Corollary 2.9] to the

inequality B(p) ≤ Bfn
(p) we infer that B ≤ Bfn

for all n ∈ N . If s + s′ = np

for some n ∈ N and s, s′ ∈ S then

B(s) +B(s′) = B(np) =
∧

n∈N

Bfn
(s+ s′) =

∧

n∈N

Bfn
(s) +

∧

n∈N

Bfn
(s′).

Since B(t) ≤
∧

n∈N
Bfn

(t) for all t ∈ S we have B(s) =
∧

n∈N
Bfn

(s) for all
s 4 np for some n ∈ N . Assume now that ψ: S → S is left order continuous,
additive and ψ ≤ Bfn

for all n ∈ N . Then we obtain

ψ
(
(mp)⌣\x

)
≤

∧

n∈N

Bfn

(
(mp)⌣\x

)
= B

(
(mp)⌣\x

)

for all m ∈ N . Hence we conclude

ψ(x) =
∨

m∈N

ψ
(
(mp)⌣\x

)
≤

∨

m∈N

B
(
(mp)⌣\x

)
= B(x),

establishing the assertion.
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Lemma 2.15. Let S be an H -cone possessing a generator p and elements

u1 and u2 in S each generate a balayage. Then the element u1 + u2 generates a

balayage, and this balayage is also generated by (u1 + u2)⌣\p .

Proof. Assume that u1 ∈ S and u2 ∈ S generate a balayage. Set z = u1 +u2

and let F be an arbitrary upward directed set with
∨
F = z . Proposition 2.5

states that it is enough to show that

(2.6) z =
∨

{ (nz)⌣\f | f ∈ F, n ∈ N }.

Applying [4, Proposition 2.2.3] there exists upward directed families (g1f )f∈F and
(g2f )f∈F such that f ≥ g1f + g2f for all f ∈ F and ∨f∈F gif = ui for i = 1, 2.
Hence we have

(nu1)⌣\g1f + (nu2)⌣\g2f ≤
(
n(u1 + u2)

)
⌣\f

for all f ∈ F . Since u1 and u2 generate a balayage and ∨f∈F gif = ui for i = 1, 2,
we obtain

z = u1 + u2 ≤
∨

n∈N

(
n(u1 + u2)

)
⌣\f ≤

∨
F = z.

Thus the element z = u1 + u2 generates a balayage denoted by B .
We still have to prove that z⌣\p generates also B . Let x ∈ S be arbitrary.

From (mp)⌣\x 4 mp 4 np for all m, n ∈ N with m ≤ n it follows by [2,
Theorem 3.2] that

(nz)⌣\(np) < (nz)⌣\
(
(mp)⌣\x

)
.

Hence we have

B(x) ≥
∨

f∈F

n∈N

(
(nz)⌣\(np)

)
⌣\x ≥

∨

f∈F

m,n∈N

(nz)⌣\
(
(mp)⌣\x

)

=
∨

m∈N

B
(
(mp)⌣\x

)
= B(x).

Consequently the elements u1+u2 and (u1+u2)⌣\p generate the same balayage B .

Theorem 2.16. Let S be an H -cone with a generator p . Denote by B the

set of balayages from S into S . Then B is an abelian semigroup with respect to

the truncated addition defined by

(B1 ⊕B2)(x) =
∨

n∈N

(
n
(
B1(p) +B2(p)

))
⌣\x

for all x ∈ S . Moreover the equality (B1 ⊕ B2)(x) = (B1 ∨ B2)(x) holds for all

x ∈ S .
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Proof. Let p be a generator of an H -cone S . Assume that B1: S → S and
B2: S → S are balayages. By virtue of Lemma 2.15 the truncation addition is
well-defined and B1 ⊕B2 is a balayage generated by

(
B1(p) +B2(p)

)
⌣\p .

Applying [2, Theorem 11.7] we note that
(
B1(p)+B2(p)

)
⌣\p is a p-quasi-unit

and so (B1 ⊕B2)(p) =
(
B1(p) +B2(p)

)
⌣\p . We show that

(B1 ⊕B2)(p) = (B1 ∨B2)(p).

Assume that w 4 B1(p) +B2(p) and w ≤ p . Applying [4, Theorem 2.1.5] we find
elements t1, t2 such that w = t1 + t2 , t1 4 B1(p) and t2 4 B2(p) . Since B(S) is
specifically solid by [9, Lemma 2.3], we have B1(t1) = t1 and B2(t2) = t2 . Hence
we obtain B1∨B2(t1) = t1 and B1∨B2(t2) = t2 . Reviewing to [7, Proposition 2.1]
we infer

w = B1(t1) +B2(t2) = B1 ∨B2(t1) +B1 ∨B2(t2)

= B1 ∨B2(t1 + t2) = B1 ∨B2(w).

Setting w =
(
B1(p) + B2(p)

)
⌣\p we see that

(
B1(p) + B2(p)

)
⌣\p ≤ B1 ∨ B2(p) .

On the other hand by [4, Corollary 2.1.3] we have

B1 ∨B2(p) = B1(p) ∨B2(p) 4 B1(p) +B2(p).

Combining this with the inequality B1 ∨B2(p) ≤ p we note that

(
B1(p) +B2(p)

)
⌣\p ≥ B1 ∨B2(p).

Now it is clear that ⊕ is associative.
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