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Abstract. It is shown that the bottom spectrum λ0 of a hyperbolic 3 -manifold M and the
exponent of convergence δ of the corresponding Kleinian group Γ need not vary real analytically
under a holomorphic deformation of the manifold or the group.

1. Introduction

This work is the continuation of [AZ2], [AZ3] where we applied the main
analytic result of [AZ1] to study Fuchsian groups Γ and their holomorphic de-
formations, or families of Kleinian groups Γt acting on the Riemann sphere with
isomorphisms ϕt , t ∈ ∆ = {|z| < 1} , from Γ onto Γt with the property that
ϕ0 = Id (hence Γ0 = Γ) and that the function t 7−→ ϕt(γ) is holomorphic for
every γ ∈ Γ.

The starting point of the story is the fundamental work of Bowen [B]: If Γ is
a cocompact Fuchsian group and {Γt}t∈∆ a holomorphic deformation of Γ, then
for a fixed t , either Γt is Fuchsian or

(1) dt > 1

where dt denotes the Hausdorff dimension of the limit set L(Γt) of Γt . The author
proves this result by reducing the problem to the thermodynamic formalism; he
actually ends up with an explicit formula involving the dimension from which he
concludes (1). Later Ruelle [R] has shown that the thermodynamic formalism also
leads to the important result that

(2) t 7−→ dt is real analytic in ∆.

In the sequel we study general, not necessarily cocompact Fuchsian groups
and we shall refer to (1) and (2) as the Bowen and Ruelle property for dt , respec-
tively. Indeed, in the case of general groups the behaviour of the limit set is more
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problematic: As a consequence of [AZ1], we proved in [AZ3] that both properties
are false if ∆/Γ is conformally equivalent to a Carleson–Denjoy domain Ω, i.e. a
domain of the form Ω = C\K where K is a compact subset of R satisfying

∀x ∈ K, ∀t ∈ ]0, diam(K)[, |K ∩ [x − t, x + t]| ≥ εt

for some constant ε > 0, where | · | stands for the Lebesgue measure.
However, there exists also another, and often more natural, possible gener-

alization of the Bowen and Ruelle properties. Recall that each of the groups Γt

admits the canonical Poincaré extension to a group of isometries of the hyperbolic
3-space and then, every group G of isometries of H3 has a natural real number
attached to it, namely the Poincaré exponent of convergence δ(G) . This can be
defined, for instance, as the infimum of the real numbers δ such that

(3)
∑

g∈G

exp
(

−δh
(

g(x), x
))

< ∞, x ∈ H3,

where h(x, y) denotes the hyperbolic metric in H3 . In the ball model B3 , (3)

becomes
∑

g∈G

(

1−‖g(0)‖
)δ

< ∞ . In geometric terms, δ(G) measures the volume

growth in the manifold H3/G , i.e. if V (x, R) denotes the hyperbolic volume of
the ball with center x and radius R , then

δ(G) = 2 − lim
R→∞

log V (x, R)

2R
.

If (Γt) is a holomorphic deformation of the Fuchsian group Γ, let us denote
by δt the exponent of convergence of Γt ; it is always true that δt ≤ dt ([N]) with
equality if Γ is cocompact. However, in general it is not even true that δ0 = d0 ;
the first number can be shown to be the dimension of the conical limit set of the
Fuchsian group Γ and it can be much smaller than the whole limit set. This is the
case, for example, for groups uniformizing the Carleson–Denjoy domains (see [F]).

The importance of the exponent of convergence lies in its connections to the
potential theory on the hyperbolic manifold H3/Γt and, in particular, with the
spectral properties of the Laplace operator ∆. Recall that [S1] for a Riemannian
manifold M , the bottom spectrum or the lowest eigenvalue λ0(M) of −∆ on
L2(M) is obtained as the infimum of

∫

M

|∇ϕ|
2

∫

M

|ϕ|
2

over the class of C∞ functions with compact support on M . Note that this number
is also the supremum of the real λ for which there exists a positive smooth function
f on M satisfying

∆f = λf.
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Any holomorphic deformation Γt is quasiconformally conjugate to the initial
Fuchsian group Γ0 and hence in particular, Γt can be expressed as a countable
union of geometrically finite groups. For such Kleinian groups acting in H3 we
have then, see [N], the following result known as the Elstrodt–Patterson–Sullivan
theorem:

Theorem 0. If δ is the Poincaré exponent of Γ and M = H3/Γ , then

λ0(M) =

{

1, if δ ≤ 1,

δ(2 − δ), if δ > 1.

The aim of this paper is to consider the analyticity properties of the ex-
ponent δt or the bottom spectrum λ0(Mt) , Mt = H3/Γt , for deformations of
non-cocompact Fuchsian groups. As the main result we show that the Bowen and
Ruelle properties (1), (2) both fail also for δt , even in case of surfaces that are in
a sense very close to compact surfaces.

To be more precise, let S0 be a compact surface of genus 3 and G0 its
uniformizing group; let L0 be a normal subgroup of G0 such that G0/L0 is
isomorphic to Z3 and let C0 = ∆/L0 . Then C0 is the so called infinite “jungle
gym”, that is, C0 can be quasi-isometrically embedded into R3 as a surface C
which is invariant under translations tj , 1 ≤ j ≤ 3, in three orthogonal directions.
Moreover, S0 ≃ C/〈t1, t2, t3〉 .

We shall then prove the following

Theorem 1. There exists a holomorphic deformation (Γt) of L0 such that

δt > 1 for t close to 1 and δt ≡ 1 for t close to 0 . As a consequence, neither the

Bowen nor the Ruelle property holds for δt .

Remarks. 1. Theorems 0 and 1 combined prove the existence of a “holo-
morphic” family of hyperbolic manifolds Mt , such that t 7−→ λ0(Mt) is not real
analytic. The manifolds are uniformly hyperbolic in the sense that the lengths of
nontrivial hyperbolic geodesics have a uniform lower bound.

2. An interesting question is to decide if the same property holds for abelian
coverings by Zd when d = 1 or 2; the main difference is of course that then the
uniformizing group is of divergence type and the convergence property in the case
d = 3 will be crucial for our argument.

2. Proof of Theorem 1

Let S0 ∼ ∆/G0 be as above, let S1 ∼ ∆/G1 be a second compact surface of
genus 3 and choose a quasiconformal homeomorphism f from S0 onto S1 . This
lifts to a homeomorphism f : ∆ −→ ∆ conjugating G0 to G1 . We may assume
that f is nontrivial; in other words, that the pair (S1, f) is a non-trivial element of

the Teichmüller space T (S0) . We obtain therefore a new group L1 = f ◦L0 ◦ f
−1

and a new gym C1 = ∆/L1 .
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Next, let g be the quasiconformal homeomorphism of the sphere C which is
conformal outside ∆ and whose complex dilatation is equal to the dilatation of f
inside ∆. Then g maps the unit disk to a Jordan domain Ω and conjugates G0 to
a quasifuchsian group G which leaves Ω invariant. It follows that Ω/G and cΩ/G
are conformally equivalent to S1 and S∗

0 , respectively, where S∗

0 ∼ c∆/G0 is the
mirror image of S0 . In fact, we have just described Bers’ simultaneous uniformi-
sation of the two surfaces. By construction, g conjugates L0 to a Kleinian group
L with ∂Ω as its limit set and we have as well that Ω/L , cΩ/L are conformally
equivalent to C1 and C∗

0 , respectively.
By cocompactness, the Poincaré exponent δ(G) of G is equal to the Hausdorff

dimension of ∂Ω and hence by Bowen’s theorem it is strictly greater than 1.
Moreover, according to a theorem of M. Rees ([Re]) this quantity is also equal to
the Poincaré exponent δ(L) of L , since the group G is an abelian extension of L .

The second step in the proof consists of replacing the gym C1 by a surface
CM which will be more suitable for our purposes. In order to do so, we first
note that there is a natural partition Cm

j , m ∈ Z3 , of Cj , j = 0, 1. Namely, as

above we can represent Cj as a quasi-isometric copy of a surface C ⊂ R3 which is
invariant under the orthogonal translations t1 , t2 , t3 . Considering the translation
group 〈t1, t2, t3〉 and its (relatively compact) fundamental domain F in C , we see
that the translates of F tile the surface C . Taking the images of the tiles under
the corresponding quasi-isometries C −→ Cj we obtain the desired partition. If
then M is a large real number and π: ∆ −→ C0 = ∆/L0 is the covering, we build
a quasiconformal map fM : ∆ −→ ∆ by requiring that the complex dilatation of
fM equals the dilatation of f in π−1

(
⋃

m∈[−M,M ]3 Cm
0

)

and vanishes elsewhere
in ∆. By construction fM conjugates L0 to a Fuchsian group with quotient CM ,
a surface quasiconformally equivalent to C0 and C1 .

We are here interested in the simultaneous uniformization of C0 and CM

which is constructed as in the previous step: Consider the qc homeomorphism gM

of the plane which is conformal outside ∆ and has the same complex dilatation
as fM inside ∆. Using gM we can put

LM = gM ◦ L0 ◦ g−1
M .

Finally, since the homeomorphisms gM are uniformly quasiconformal and since
the mappings fM are constructed so that the complex dilatations of gM converge
pointwise to the dilatation of g , after appropriate normalizations the elements
gM ◦ γ ◦ g−1

M of the group LM converge uniformly on C to g ◦ γ ◦ g−1 , i.e. to
the corresponding element of L . We can then apply a theorem of Sullivan [S2], or
more precisely the proof of Theorem 7 there, to get the estimate

lim
M−→∞

δ(LM ) ≥ δ(L)
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for the corresponding Poincaré exponents.
From now on we then fix M large enough so that δ(LM ) > 1 and to clarify

the notations, we drop the subscript M .
In conclusion, we have shown the existence of a quasifuchsian conjugate L

of the original gym group L0 such that firstly, δ(L) > 1 and secondly, the com-
plex dilatation of the conjugating quasiconformal mapping g is compactly sup-
ported (mod L0 ).

For the third and main step, we begin by noticing that the group L0 is of
convergence type, i.e. its Poincaré series converges at the exponent δ = 1 (see [LS]).
Let µ be the dilatation of g ; by construction, for a large (hyperbolic) radius R ,
this function is supported in

⋃

γ∈L0

B
(

γ(0), R
)

. Hence the same reasoning as in

[AZ2] implies that for some constant C > 0,

∀r > 0, ∀z ∈ ∂∆,

∫

D(z,r)

|µ(ζ)|
2

1 − |ζ|
dζ dζ ≤ Cr,

or in other words, |µ|2/(1 − |ζ|) dζ dζ is a Carleson measure in ∆.
We shall then define a holomorphic deformation of L0 by

(4) Gt = Ft ◦ L0 ◦ F−1
t ,

where Ft is the (normalized) qc mapping with dilatation tµ . Hence G0 = L0 , G1 =
L and so for this deformation δ1 > 1, δ0 = 1. On the other hand, the Carleson
measure condition implies (see [Se]) that for t near 0 the limit set L(Gt) = Ft(∂∆)
is rectifiable and therefore has dimension dt = 1. This bounds also the Poincaré
exponent δt = δ(Gt) which remains always smaller than the dimension of the limit
set. To conclude the proof, we must hence show that in fact δt ≥ 1 for |t| small.

We first argue that the conical limit set Ct of Gt is equal to Ft(C0) , the
image under Ft of the conical limit set C0 of L0 . This follows, for instance,
from a result of Tukia (as presented in [DE], Theorem 5): For |t| small, Ft can be
extended to a hyperbolic quasi-isometry of H3 in such a way that we still have the
conjugation (4) for the corresponding groups acting on H3 . An alternative way
to prove Ft(C0) = Ct , pointed out by the referee, is to apply the characterization
of Ct as the set of points of approximation of Gt . That is, by [BM] z ∈ Ct if
and only if there is a sequence {gm}∞1 ⊂ Gt such that |gm(z) − gm(x)| ≥ ε > 0,
uniformly on compact subsets of C\z . This notion is clearly invariant even under
a topological conjugacy.

Next, recall that in all dimensions, for a Kleinian group the Hausdorff dimen-
sion of the conical limit set is smaller than or equal to the Poincaré exponent and
that the equality holds in case of Fuchsian groups ([N, pp. 154 and 159]). Therefore
we can deduce from M. Rees’ theorem that dimH(C0) = δ(L0) = δ(G0) = 1. But
now, as a mapping of C , Ft is conformal outside ∆ and so according to a theorem
of Makarov [M], dimH(FtE) ≥ 1 for any set E ⊂ ∂∆ of Hausdorff dimension 1.
In particular, we obtain that δt ≥ dimH(Ct) ≥ 1 for all |t| sufficiently small.
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