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Abstract. This paper, which derives some properties of real sewing functions, is divided into
three almost independent sections. In the first, we examine the continuability of uniquely sewing
functions. The second section establishes the quasisymmetry of an analytic, strictly increasing
function (even at a zero of the derivative) using two different techniques. In the third, a new
hyperbolicity condition is given for sewing functions with a singularity.

Introduction

A real sewing function is a homeomorphism ϕ between two open intervals,
such that the condition ϕ = f−1

2 ◦ f1 holds for the boundary values of some
conformal maps f1 , f2 , onto adjacent plane domains. Real sewing functions were
studied in [3], [4]; we extend those results here. The present paper is divided into
three almost independent sections.

Section 1 shows that the sewing property is continuable when combined with
assumptions on uniqueness.

Section 2 focuses on analytic and piecewise analytic functions. It establishes
the local quasisymmetry of an analytic, strictly increasing function at a zero of
the derivative using two different techniques: directly, and by means of a quasi-
conformal extension.

Section 3 derives a new hyperbolicity criterion for sewing functions with a
singularity. (Hyperbolicity means the lack of the global sewing property.)

1. Continuability

We say that a function ϕ sews uniquely if ϕ: I1 → I2 is a sewing function
(between two intervals) such that all solutions defined in all possible domains are
conformally related (the terms coming from [3, Section 1.1]). More precisely, we
require that if (f1, f2) and (f3, f4) are two solutions, the homeomorphic mapping
defined by the two compositions fi+2 ◦ f−1

i , analytic in its domain of definition
except on the arc f1I1 , must be analytic on the arc as well.

For brevity, we say that a function ϕ: I1 → I2 “sews on I ” or “sews uniquely
on I ” (I a subinterval of I1 ), meaning that the restriction ϕ | I has the property
in question. (All intervals in Section 1 can be finite or infinite.)
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Our first theorem establishes a relation between unique and “ordinary” sewing
but does not yet claim that the function ϕ globally sews uniquely. We need not
assume that ϕ is homeomorphic, since this follows from the other assumptions.

Theorem 1.1. Let a < b < c < d , and let ϕ: ]a, d[→ R sew on ]a, c[ and

]b, d[ , uniquely on ]b, c[ . Then ϕ sews on ]a, d[ .

Proof. Let ϕ be as assumed in the theorem. The restrictions ϕ | ]a, c[ ,
ϕ | ]b, d[ sew the lower half-plane H1 to the upper half-plane H2 ; let (f1, f2) be a
solution for the former function and (f3, f4) a solution for the latter. Define a map
g by g = fi+2 ◦ f

−1

i in fiHi (i = 1, 2). The two expressions of g agree on the arc
C0 = f1]b, c[ . The map is then a homeomorphism of the domain f1H1∪f2H2∪C0 ,
and it is conformal except on C0 . The pairs (f1, f2) , (f3, f4) are solutions for
ϕ |]b, c[ . Thus the map g is conformal by the uniqueness assumption. Hence the
two solutions introduce a conformal structure into the space obtained by sewing H1

to H2 by the identification ϕ . The Riemann surface obtained is simply connected
and hence conformally equivalent to a plane domain. The restrictions of a global
map to the half-planes define the desired solution.

The next two results could be called continuation theorems for unique sewing.
In view of Theorem 1.1, one may ask why Theorem 1.2 assumes the global sewing
property. Does the property not follow by the the former theorem? It does not,
since we do not know whether the uniqueness on an interval is inherited by a
subinterval. This also explains why Theorem 1.2 is not a corollary of Theorem 1.3.

Theorem 1.2. Let a < b < c < d , and let ϕ: ]a, d[→ R sew on ]a, d[ ,
uniquely on ]a, c[ and ]b, d[ . Then ϕ sews uniquely on ]a, d[ .

Proof. Let ϕ be as assumed in the theorem, and let (f1, f2) , (f3, f4) be
solutions for the (global) function ϕ . Define a map g by g = fi+2 ◦ f

−1

i in fiHi

(i = 1, 2). The two expressions of g agree on the arc C = f1]a, d[ . The map is then
a homeomorphism of the domain f1H1∪f2H2∪C , and it is conformal except on C .
Both pairs (f1, f2) , (f3, f4) are solutions for both restrictions ϕ |]a, c[ , ϕ |]b, d[ .
Thus, by the uniqueness assumption, the map g is analytic on the overlapping
arcs f1]a, c[ and f1]b, d[ and hence analytic on their union C . The map g is then
conformal, and the assertion follows.

Theorem 1.3. Let a < b < c , and let ϕ: ]a, c[→ R sew on ]a, c[ , uniquely

on ]a, b[ and ]b, c[ . Then ϕ sews uniquely on ]a, c[ .

Proof. Let ϕ be as assumed in the theorem, and let (f1, f2) , (f3, f4) be
solutions for ϕ . Define g = fi+2 ◦ f

−1

i in fiHi (i = 1, 2). The two expressions of
g agree on the arc C = f1]a, c[ . The map is then a homeomorphism of the domain
f1H1 ∪ f2H2 ∪ C , and it is conformal except on C . Both pairs (f1, f2) , (f3, f4)
are solutions for both restrictions ϕ |]a, b[ , ϕ |]b, c[ . Thus, by the uniqueness
assumption, the map g is analytic on the arcs f1]a, b[ and f1]b, c[ and hence
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analytic except at the point f1(b) . But the single point is removable, the map g
is then conformal, and the assertion follows.

Remarks. A locally quasisymmetric function of an open interval sews unique-
ly (cf. [3, pp. 12, 40]). Hence we obtain for instance by Theorems 1.1 and 1.3: if
ϕ: ]a, c[→ R is locally quasisymmetric in ]a, b[ and ]b, c[ , and sews on a neigh-
borhood of b , then it sews uniquely on ]a, c[ . The latter assertion also holds if
the words “locally quasisymmetric” are replaced by “a strictly increasing function,
analytic”; the reason is that, by Theorem 2.2 of the next section, the two analytic
restrictions are locally quasisymmetric.

2. Quasisymmetry

In this section we study the quasisymmetry of strictly increasing analytic and
piecewise analytic functions, mainly irrespective of the sewing property (which, of
course, is implied by quasisymmetry).

Before stating the theorems, we prove a lemma which provides most of the
information of Theorem 2.2. Analyticity in a closed (finite) interval naturally
means analytic continuability into a wider open interval.

Lemma 2.1. An analytic, strictly increasing function of a closed interval

whose derivative vanishes at either endpoint but not elsewhere is quasisymmetric.

Proof. We can restrict ourselves to the special case where ϕ is an analytic,
strictly increasing function of an interval [0, a] , with ϕ(0) = 0, ϕ′(0) = 0, ϕ′(x) 6=
0 for x 6= 0, because the general case reduces to this by means of translations and
the negation.

If ϕ′′ had a zero-approaching sequence of positive zeros, it would vanish iden-
tically, ϕ′ would be constant and hence identically zero, a contradiction. Thus
there exists a number b ∈]0, a] such that ϕ′′(x) 6= 0 for x ∈]0, b] . Because ϕ′′

preserves its sign and ϕ is increasing, ϕ′′ must be positive in ]0, b] ; hence ϕ is
(downwards) convex in [0, b] .

Denote
Q(x, t) =

[

ϕ(x+ t) − ϕ(x)
]

/
[

ϕ(x) − ϕ(x− t)
]

,

with t > 0 and x − t, x, x + t ∈ [0, a] . We separate two cases, x ∈]0, b/2] and
x ∈]b/2, a[ .

1) Suppose x ∈]0, b/2] , implying t ∈]0, x] . By computation, we have

∂Q

∂t
=
ϕ′(x+ t)

[

ϕ(x) − ϕ(x− t)
]

− ϕ′(x− t)
[

ϕ(x+ t) − ϕ(x)
]

[

ϕ(x) − ϕ(x− t)
]2

,

where the numerator can be written in the form

ϕ′(x+ t)ϕ′(ξ1)t− ϕ′(x− t)ϕ′(ξ2)t, ξ1 ∈]x− t, x[, ξ2 ∈]x, x+ t[.
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Here, by convexity,

ϕ′(x− t) < ϕ′(ξ1), ϕ′(ξ2) < ϕ′(x+ t);

hence the numerator is positive. It follows that, for a fixed x , the function Q(x, t)
increases with t , and it then attains its maximum for t = x . This implies

Q(x, t) ≤ Q(x, x) ≤ ϕ(2x)/ϕ(x).

By analyticity, there exist a whole number p ≥ 2 and positive numbers c1 , c2
such that

c1x
p ≤ ϕ(x) ≤ c2x

p, x ∈]0, b/2].

From the two double inequalities one obtains Q(x, t) ≤ 2pc2/c1 ; on the other
hand, by convexity we have Q(x, t) ≥ 1.

2) Suppose then x ∈]b/2, a[ . This case divides into two subcases.

a) The case t ∈]0, b/4] is included in the case x− t, x, x+ t ∈]b/4, a] , and ϕ
is quasi-isometric in the interval ]b/4, a] , hence quasisymmetric. This implies that
Q(x, t) is now bounded (uniformly for all x, t) both above and away from zero.

b) In the case t > b/4 it is clear that both the numerator and the denominator
of Q(x, t) are bounded (uniformly) above and away from zero, implying the same
to hold for the quotient.

We now cancel the assumption of Lemma 2.1 on the derivative. Our theo-
rem implies, in particular, the sewing property of an analytic, strictly increasing
function. (Theorem 1 of [4] already established it through a different approach.)

Theorem 2.2. An analytic, strictly increasing function of a closed interval

is quasisymmetric.

Proof. If ϕ is an analytic, strictly increasing function of a closed interval, with
ϕ′(x) 6= 0 at every point, then ϕ is quasi-isometric and hence quasisymmetric. If
ϕ′ has zeros, their number is finite, and between them ϕ is locally quasisymmetric.
Hence it suffices to prove the quasisymmetry in a neighborhood of a zero of ϕ′ .
So we can restrict ourselves to the case where ϕ is an analytic, strictly increasing
function of an interval [−a, a] , with ϕ(0) = 0, ϕ′(0) = 0, ϕ′(x) 6= 0 for x 6= 0.
Now the quasisymmetry of ϕ follows by a removability theorem of Kelingos ([1,
Theorem 3]): the function ϕ is quasisymmetric in both [−a, 0] and [0, a] by our
Lemma 2.1, and, in addition, the ratio ϕ(t)/|ϕ(−t)| is bounded away from both
zero and inifinity (the ratio tends to 1 for t → 0 since by analyticity the values
ϕ(x) are approximately equal to values of the form cxp for x→ 0).
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If a quasisymmetric function of an interval is continued beyond an endpoint
by reflection, a quasisymmetric function is obtained ([1, Corollary 2]). Hence
we get the following corollary of Theorem 2.2: if an analytic, strictly increasing
function ϕ of a closed interval is continued beyond an endpoint (where possibly
ϕ′ = 0) by reflection, a quasisymmetric function is obtained. This result, as well
as Theorem 2.2, is a special case of Theorem 2.3. In view of the theorem, we
recall that parabolicity originally means the global sewing property (i.e., with a
removable singularity).

Theorem 2.3. Let ϕ be a strictly increasing function defined in the union

of two adjacent closed intervals whose restrictions to both intervals are analytic.

Then ϕ is quasisymmetric if and only if it is parabolic.

Proof. Let ϕ be as assumed in the theorem. By Theorem 2.2, the restrictions
of ϕ to the two intervals are quasisymmetric. We can again restrict ourselves to
the case where the singularity lies at zero, with ϕ(0) = 0. By the Corollary of
Theorem 3 of [4], the function ϕ is parabolic at 0 if and only if the zeros of the
two restrictions (at the point zero) have the same multiplicity. If ϕ is parabolic
at 0, quasisymmetry follows by Theorem 3 of [1], as in the proof of Theorem 2.2;
the ratio ϕ(t)/|ϕ(−t)| tends to a finite non-zero limit for t → 0 since ϕ(x) has
approximate expressions c1x

p , c2x
p for x > 0, x < 0. Otherwise ϕ(x) has

approximate expressions c1x
p , c2x

q , p 6= q , for x > 0, x < 0, implying that
the above ratio tends to either 0 or ∞ for t → 0; then the function ϕ is not
quasisymmetric.

Let us estimate the asymptotic behavior of the function Q(x, t) for an ana-
lytic, strictly increasing function ϕ of an interval [0, a] , with ϕ(0) = 0, ϕ′(0) = 0,
ϕ′(x) 6= 0 for x 6= 0. By the proof of Lemma 2.1, we have

1 ≤ Q(x, t) ≤ Q(x, x) = ϕ(2x)/ϕ(x) − 1

for all sufficiently small x and all t ∈]0, x] . By analyticity, ϕ(x) has an expression
cxp

(

1 + ε(x)
)

, where c 6= 0, p ≥ 1, ε(x) → 0 for x→ 0. The majorant of Q(x, t)
then tends to 2p − 1 for x → 0. It follows that ϕ is ̺ -quasisymmetric in an
interval [0, α] , where ̺ tends to 2p − 1 for α→ 0.

We want to extend the above function ϕ quasiconformally. This function can
be extended to a quasisymmetric function ψ of the whole real line, yet with a
greater dilatation. The function ψ can be extended to a quasiconformal self-map
of the upper half-plane whose maximal dilatation by [2] is less than 8 times the
dilatation of ψ . We thus get the value 8(2p − 1). But the following theorem
shows that the much smaller value p can be approached. (Of course, if ϕ′(a) 6=
0, the function ϕ has a 1-quasiconformal local extension at the point a .) “A
local extension at the point a” means that a restriction of ϕ is extended into
a neighborhood of a . “Asymptotic maximal dilatation” means the limit of the
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maximal dilatation in Ur(a) for r → 0; in our case it simply turns out to be the
limit of the dilatation quotient.

Theorem 2.4. An analytic, strictly increasing function ϕ of an open inter-

val which obtains a value ϕ(a) with a multiplicity p has a quasiconformal local

extension at the point a with asymptotic maximal dilatation p .

Proof. It suffices to treat the case a = ϕ(a) = 0, ϕ analytic in ] − b, b[ ,
ϕ′(x) > 0 for x 6= 0, lim inf ϕ′ > 0 at ±b . We extend the function ϕ into the
upper half-disk Ub(0) ∩H2 by the map w defined by

w(reiθ) = ReiΦ, Φ = θ, R =
(

1 −
θ

π

)

ϕ(r) +
θ

π
|ϕ(−r)|.

The map w is extended into the lower half-disk Ub(0)∩H1 by reflection. The map
w is a homeomorphism. Standard arguments, omitted here, show that w is locally
quasiconformal off the origin. Global quasiconformality follows, as we show that
the dilatation quotient D tends to the limit p at the origin. (This also implies the
assertion on the asymptotic maximal dilatation.) It suffices to consider D in H2 .

On page 32 of [3] one finds the following formula for the complex dilatation
of a locally quasiconformal map:

µ(reiθ) = e2iθ rRr −RΦθ + i(rRΦr +Rθ)

rRr +RΦθ + i(rRΦr −Rθ)
,

where R , Φ are the polar coordinates of the image of the point reiθ and the
subscripts indicate partial derivation. For w , we have Φθ = 1, Φr = 0 and

Rr = ϕ′(r) −
θ

π

(

ϕ′(r) − ϕ′(−r)
)

,

Rθ = −
1

π

(

ϕ(r) + ϕ(−r)
)

.

The expression of µ gives

∣

∣µ(reiθ)
∣

∣ =

√

(rRr −R)2 +R2
θ

√

(rRr +R)2 +R2
θ

.

We use the following three asymptotic notations when r → 0: f ∼ g means that
f/g → 1, o(f) means a function g for which g/f → 0, and ε(r) means a function
with limit 0. We now successively obtain

ϕ(−r) ∼ −ϕ(r), R ∼ ϕ(r), Rθ = o
(

ϕ(r)
)

= o(R), R2
θ = o(R2),

ϕ′(−r) ∼ ϕ′(r), Rr ∼ ϕ′(r) ∼ pϕ(r)/r, rRr ∼ pϕ(r) ∼ pR,

rRr = pR + o(pR) = pR + o(R),

|µ| =
R

√

(p− 1 + ε(r))2 + ε(r)

R
√

(p+ 1 + ε(r))2 + ε(r)
∼
p− 1

p+ 1
.

Hence |µ(reiθ)| tends (uniformly for all θ ) to the limit (p− 1)/(p+ 1) for r → 0.
It follows that D = (1 + |µ|)/(1 − |µ|) tends to p .
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Remarks. If the situation of Theorem 2.4 is altered by allowing a half-
open interval containing an endpoint a , the assertion still holds, for the following
reasons: the function ϕ can be continued by reflection beyond the point a (let a =
0), whereby we obtain R = ϕ(r) , Rr = ϕ′(r) , Rθ = 0 and other simplifications in
the above proof, while the conclusion remains valid. This modification by reflection
applies to the cases with p even and odd, whereas in the original theorem p must
be odd. Let us also note that we have established a new proof of Theorem 2.2,
because a real boundary value function of a quasiconformal map is known to be
locally quasisymmetric.

3. Hyperbolicity

A strictly increasing continuous function ϕ of an open interval, sewing on both
open halves, gives rise to a construction of doubly connected Riemann surfaces.
(This is the case of a sewing with a singularity.) The function ϕ lacks the global
sewing property if and only if all the surfaces are of the hyperbolic type (cf. [3,
pp. 12–13]); the function ϕ is then called hyperbolic.

The rather implicit hyperbolicity theorem ([3, Theorem 2.6]) that was proved
in [3] yielded the more explicit Theorem 2.8 of [3] (also modified to Theorem 2 of
[4]). We now prove another consequence of the same theorem.

Theorem 3.1. Let ϕ: ]− b, b[→ R (b <∞) be a strictly increasing continu-

ous function, with ϕ(0) = 0 , sewing on both ]−b, 0[ and ]0, b[ , for which ϕ′(x) 6= 0
exists for all x 6= 0 . If there exist real numbers p > 0 and q > 1 such that in an

interval ]0, a] , for decreasing x , the values of the ratio |ϕ(−x)|/xp increase and

those of the ratio ϕ(x)/|ϕ(−x)|q decrease, then ϕ is hyperbolic.

Proof. As in Theorem 2.6 of [3], denote

ϕ1(x) = −ϕ−1(−x), ϕ2(x) = ϕ
(

ϕ1(x)
)

.

The function |ϕ(−x)|/xp increases for decreasing x if and only if its composition
with the increasing function ϕ1 has the same property, i.e., if and only if x/ϕ1(x)

p

has it. The latest condition is, in turn, equivalent to the non-positivity of the
derivative of x/ϕ1(x)

p ; we thus obtain the condition

ϕ1(x)/ϕ
′
1(x) ≤ px,

where ϕ′
1(x) 6= 0 since ϕ′(x) 6= 0. Treating the assumption “ϕ(x)/|ϕ(−x)|q

decreases for decreasing x” in the same manner, one finds the function ϕ2(x)/x
q

to be increasing, implying the condition

ϕ2(x)/ϕ
′
2(x) ≤ x/q,
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where ϕ′
2(x) 6= 0. Since ϕ2(x)/x

q is increasing, its values are at most ϕ2(a)/a
q

for x ≤ a , which implies that

ϕ2(x) < x

holds for all sufficiently small x , a condition needed in Theorem 2.6 of [3]. There
exists a number c such that all the three previous inequalities hold in the interval
]0, c] .

We now estimate the terms ϕn(x)/ϕ′
n(x) in the series of the latter theorem,

where ϕn = ϕ ◦ ϕn−1 for n = 2, 4, . . ., and ϕn = ϕ1 ◦ ϕn−1 for n = 3, 5, . . ..
For n even, the functions ϕn are the iterations of the function ϕ2 . We show by
induction that

ϕ2k(x)/ϕ′
2k(x) ≤ x/qk

for all k ≥ 1. The basis, with k = 1, has already been established. The induction
step k → k + 1 is:

ϕ2k+2(x)

ϕ′
2k+2

(x)
=
ϕ2

(

ϕ2k(x)
)

ϕ′
2

(

ϕ2k(x)
) ·

1

ϕ′
2k(x)

≤
ϕ2k(x)

q
·

1

ϕ′
2k(x)

≤
x

qk+1
.

It follows that the sum of the even-indexed terms has a converging geometric
(1/q < 1) majorant series, and hence it converges. Also the sum of the odd-
indexed terms converges, since a term with an index 2k + 1 does not exceed a
constant multiple of the term with the index 2k :

ϕ2k+1(x)

ϕ′
2k+1

(x)
=
ϕ1

(

ϕ2k(x)
)

ϕ′
1

(

ϕ2k(x)
) ·

1

ϕ′
2k(x)

≤ pϕ2k(x) ·
1

ϕ′
2k(x)

.

We conclude that the total sum is finite (for all x ∈]ϕ2(c), c] ). By Theorem 2.6 of
[3], the function ϕ does not sew. Hence ϕ is hyperbolic.

Corollary 3.2. Let ϕ be as in Theorem 3.1 , and further suppose ϕ(x) = x
for x ≤ 0 . If there exists a number r ∈]0, 1[ such that

ϕ(x)/ϕ′(x) ≤ rx

in an interval ]0, a] , then ϕ is hyperbolic.

We remark that one can establish the hyperbolicity of a function ϕ by test-
ing the validity of the conditions of Theorem 3.1 (or Corollary 3.2) not only for
ϕ but for the three functions defined by the expressions ϕ−1(x) , −ϕ(−x) and
−ϕ−1(−x) in a neighborhood of the point zero; one “positive result” suffices for
the hyperbolicity.



Properties of real sewing functions 95

Let us compare our Theorem 3.1 with Theorem 2.8 of [3], which also asserts
the hyperbolicity of a function; we will show that neither theorem implies the
other. A function ϕ with the properties

ϕ(x) = x for x ≤ 0,

ϕ(x) ∼ e−1/x, ϕ′(x) ≥ sxD(e−1/x) for x > 0 (s > 1)

(where ∼ has the same meaning as before) satisfies the condition of Corollary 3.2,
equivalent to the conditions of Theorem 3.1 in the case ϕ(x) = x , x < 0. It does
not necessarily satisfy a condition of the form

ϕ′(x) >
ϕ(x)

x

( lnϕ(x)

lnx

)k

, k > 1

2

(obtained from the latter theorem in the present case ϕ2 = ϕ), for the reason that
there may be intervals where

ϕ′(x) < 2sxD(e−1/x) =
2s

x
e−1/x;

the latter inequality would contradict the previous one where now lnϕ(x) ∼ −1/x .
On the other hand, the function

ϕ(x) = x for x ≤ 0, ϕ(x) = xe−| ln x|p for x > 0

satisfies the previous inequality for p > 1/2 (shown in [3, p. 18]), and the other
assumptions of Theorem 2.8 of [3] (ϕ(x) < x , ϕ convex) are also true for ϕ ,
but it does not satisfy the condition of Corollary 3.2 if p ∈]1/2, 1[ , as an easy
computation shows.
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