
Annales Academiæ Scientiarum Fennicæ
Series A. I. Mathematica
Volumen 20, 1995, 97–108
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Abstract. Analogies between the Nevanlinna theory and the theory of heights in number
theory have motivated to the determination the precise error term of the second fundamental
theorem of the Nevanlinna theory. The Nevanlinna secondary deficiency, introduced by P.M. Wong,
gives the error term in a certain sense. We first prove that, from a topological point of view,
almost all meromorphic functions have secondary deficiency negative infinity and that the set of
meromorphic functions having maximum secondary deficiency is dense in a standard topology.
Then we give an improved upper bound on the secondary deficiency for meromorphic functions of
finite order and show that the upper bound is sharp.

1. Introduction

Recently there have been a number of papers concerning Nevanlinna’s error
terms in value distribution theory because of an analogy between the second fun-
damental theorem and Roth’s theorem of number theory. Based on Serge Lang’s
conjecture concerning Roth’s theorem in [5] and [4] and P. Vojta’s Nevanlinna-
theory and number-theory dictionary in [11], Lang conjectured, broadly speaking,
in the one variable case, that for any nonconstant meromorphic function f in C

and q distinct points a1, a2, . . . , aq in C ∪ {∞} , we have

(1) qT (f, r)−
q

∑

j=1

N(f, aj, r)+NRam(f, r) ≤ 2T (f, r)+logT (f, r)+o
(

logT (f, r)
)

for all large r outside a set of finite Lebesgue measure. This conjecture was proved
to be correct by Lang [6] and Wong [12], while Z. Ye [13] showed that the upper
bound is sharp. Moreover, Lang in [6] raised a question of determining whether
the inequality (for all large r )

(2) qT (f, r)−
q

∑

j=1

N(f, aj, r)+NRam(f, r) ≥ 2T (f, r)+logT (f, r)−o
(

logT (f, r)
)

holds for almost all (in a suitable sense) meromorphic functions.
The coefficient 2 of the term T (f, r) in (1) is well known as an upper bound

of sums of deficient values and indexes of multiplicity of f in Nevanlinna theory.
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Similarly, P.M. Wong [12] introduced the concept of secondary deficiency, which
identifies the coefficient of the term log T (f, r) in (1), or the power index, as its
counterpart in Roth theorem. An up-to-date account of these matters appears
in [6]. The concept of “almost all” in function spaces was considered by A. Offord
(e.g. [9]) from a probabilistic point of view and by P. Gauthier and W. Hengartner
in [1] from a topological point of view.

In this paper, we first prove the set of entire (meromorphic) functions having
the secondary deficiency one to be dense in a space of entire (meromorphic) func-
tions with τ -topology (τχ -topology). Then we show that almost all functions have
the secondary deficiency negative infinity. Thus almost all functions fail to satisfy
inequality (2). Moreover, we obtain an improved upper bound of Nevanlinna’s
secondary deficiency for meromorphic functions of finite order and show that the
upper bound is sharp.

I would like to thank the referee for helpful comments.

2. Preliminaries

Let M(C) and H(C) be the sets of meromorphic functions and entire func-
tions in the complex plane C , respectively. Now we are going to assign topologies
to M(C) , and hence to H(C) , such that M(C) and H(C) become complete
metric spaces with the topologies. A detailed discussion can be found in [1].

For any K a compact set in C , any ε > 0 and any f ∈M(C) , we denote

O(f,K, ε) = {g ∈M(C) : ‖f − g‖K ≡ sup
z∈K

|f(z) − g(z)| ≤ ε and f − g ∈ H(K)}.

Clearly all these O(f,K, ε) ’s consist of a subbasis of M(C) and generate what we
call the τ -topology of uniform convergence on compact sets. It is straightforward
to show that M(C) with the τ -topology is a complete metric space. Therefore
(M(C), τ) is of second Baire category. As usual, we regard H(C) as a subspace
of M(C) . Thus H(C) is a complete metric space, too, since H(C) is closed in
the τ -topology.

Another topology on M(C) is called spherically uniform convergence on com-
pact sets, denoted by τχ . For f and g in M(C) , set, for any n ∈ Z+ ,

dn(f, g) = sup
|z|≤n

χ
(

f(z), g(z)
)

,

where χ denotes the spherical metric on the Riemann sphere C , with C = C ∪
{∞} . Hence, in the usual way, the

d(f, g) =

∞
∑

n=1

1

2n

dn(f, g)

1 + dn(f, g)
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is an induced metric on M(C) . Clearly d(f, g) ≤ dn(f, g) for any n . If fn(z) = n ,
then fn is a Cauchy sequence in the τχ topology and is not Cauchy in the τ
topology. It follows that

(

M(C), d
)

is not a complete metric space. However,

it is not hard to prove that
(

M(C) ∪ {∞}, d
)

is a complete metric space. So
(

M(C) ∪ {∞}, d
)

is of second Baire category.
Finally we give the definition of “almost all” in the topological sense. Let X

be a space of functions. We say that almost all functions in X have a certain
property if X is of second category while the set of functions in X not possessing
the said property is of category one.

As for Nevanlinna theory, standard references are [2] and [8].

3. Results

Let f be a meromorphic function in C , q be any positive integer and
a1, a2, . . . , aq be any q (> 0) points in C . We write

(3) S(f, {aj}q
1, r) = (q − 2)T (f, r)−

q
∑

j=1

N(f, aj, r) +NRam(f, r),

where NRam(f, r) = N(f ′, 0, r) + 2N(f,∞, r) −N(f ′,∞, r) . Thus the definition
of secondary deficiency in [12] can be written as

(4) δ2(f, {aj}) = lim inf
r→∞

S(f, {aj}q
1, r)

logT (f, r)
.

It is known (e.g. [12]) that δ2(f, {aj}) ≤ 1 if all aj ’s are distinct in C . In
this paper we are going to prove the following theorems.

Theorem 1. The set

H1 = {f ∈ H(C) : ∃ distinct {a1, a2, . . . , aq} ⊂ C such that δ2(f, {aj}) = 1}
is dense in H(C) in the τ -topology.

Theorem 2. The set

H = {f ∈ H(C) : ∃ distinct {a1, a2, . . . , aq} ⊂ C such that δ2(f, {aj}) > −∞}
is of first category in H(C) in the τ -topology.

Remark. In 1972, P. Gauthier and W. Hengartner [1] proved that, for almost
all (as defined in Section 2) meromorphic functions f ,

∑

a∈C
δ(f, a) = 0, where

δ(f, a) is the Nevanlinna deficiency. On the other hand, the proof of our Theorem 1
tells us that the set of entire functions having maximum Nevanlinna deficiency,
i.e.,

∑

a∈C
δ(f, a) = 2, is dense in a space of entire functions in the τ -topology.

Clearly, H1 ⊂ H . Hence, H is dense in (H(C), τ) by Theorem 1 and H1 is of
first category by Theorem 2. Furthermore, Theorem 2 states that for almost all
(as defined in the previous section) entire functions f and for any q distinct points
{a1, a2, . . . , aq} ⊂ C , δ2(f, {aj}) = −∞ . Thus, summarizing this discussion, we
have
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Corollary. For almost all functions in
(

H(C), τ
)

, we have

δ2(f, {aj}) = −∞ for any {aj}q
1 ⊂ C.

The set of entire functions having

δ2(f, {aj}) > −∞ for some {aj}q
1 ⊂ C

is dense in
(

H(C), τ
)

.

Similarly, for a space of meromorphic functions we have

Theorem 3. The set

M1 = {f ∈M(C) : ∃ distinct {a1, a2, . . . , aq} ⊂ C such that δ2(f, {aj}) = 1}

is dense in M(C) in the τχ -topology.

Theorem 4. The set

M = {f ∈M(C) : ∃ distinct {a1, a2, . . . , aq} ⊂ C such that δ2(f, {aj}) > −∞}

is of first category in M(C) in the τχ -topology.

The following theorem is about an upper bound of meromorphic functions of
finite order.

Theorem 5. Let f be any transcendental meromorphic function of finite

order ̺ . Then for any distinct points {aj}q
1 ⊂ C , we have

δ2(f, {aj}) ≤ 1 − 1

̺
if ̺ > 0,

δ2(f, {aj}) = −∞ if ̺ = 0.

Moreover, for any given ̺ ≥ 0 , there is an entire function f of order ̺ and

{aj}q
j=1 ⊂ C such that f assumes this maximum secondary deficiency.

4. Proof of Theorems

We begin by constructing a class of entire functions which play an important
role in the proof of our theorems.

Let ̺ > 0 and rn = (n2/̺)1/̺ , n = 1, 2, 3, . . ., and set

(5) E̺(z) =

∞
∏

n=1

(

1 +
( z

rn

)n
)

.



On Nevanlinna’s secondary deficiency 101

Let r > 0, with r ∈ [rk, rk+1) . Then

(6)
n(E̺, 0, r) = k(k + 1)/2

(

1 + o(1)
)

̺r̺/2 and

N(E̺, 0, r) =
(

1 + o(1)
)

r̺/2

for all large r . Moreover, for |z| = r ∈ [rk, rk+1) , we have

(7)
log |E̺(z)| =

k
∑

n=1

n log
∣

∣

∣

z

rn

∣

∣

∣
+

k
∑

n=1

log
∣

∣

∣

(rn
z

)n

+ 1
∣

∣

∣
+

∞
∑

n=k+1

log
∣

∣

∣
1 +

( z

rn

)n∣

∣

∣

= N(E̺, 0, r) + I1 + I2.

It is obvious from (7) and k =
√
̺ r

̺/2
k that, for |z| = r ∈ [rk, rk+1) ,

(8) |I1| ≤ k log 2 ≤ √
̺ r̺/2 log 2.

Since log(1 +x) ≤ x for all 0 < x ≤ 1 and there is a constant C = C(̺) > 0 such
that

(9) (2+k)2/̺ − (1+k)2/̺ ≥
{

2(1 + k)−1+2/̺/̺ if −1 + 2/̺ ≥ 0
2(2 + k)−1+2/̺/̺ if −1 + 2/̺ ≤ 0

≥ Ck−1+2/̺,

for some constant C > 0, we have from (9) that, for |z| = r ∈ [rk, rk+1) ,

(10)

|I2| ≤ log 2 +

∞
∑

n=k+2

(

rk+1

rk+2

)n

= log 2 +
rk+2

rk+2 − rk+1

(

rk+1

rk+2

)k+2

≤ log 2 +
(k + 2)2/̺

(k + 2)2/̺ − (k + 1)2/̺
≤ log 2 +

(2k)2/̺

Ck−1+2/̺

≤ log 2 + Ck ≤ Cr̺/2.

It follows from (6), (7), (8) and (10) that E is an entire function and

(11) N(E̺, 0, r) ≤ T (E̺, r) ≤ logM(E̺, r) = logE̺(r) ≤
(

1 + o(1)
)

N(E̺, 0, r)

for all large r , and so

(12) m(E̺, 0, r) = o
(

T (E̺, r)
)

and logn(E̺, 0, r) = log T (E̺, r) +O(1).

Proof of Theorem 1. Given f ∈ H(C) , a compact set K ⊂ C and an ε > 0,
we will find an f∗ ∈ H1 such that ‖f − f∗‖K ≤ ε .

In fact, there is a polynomial P such that ‖f − P‖K ≤ ε/2. Set

(13) fλ(z) = P (z) exp

(

λ

∫ z

0

E(ξ) dξ

)

,
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where λ ∈ C is a parameter and E = E1 is as in (5) with ̺ = 1. Clearly fλ is
an entire function of z . Furthermore, for |λ| < 1,

(14)

‖f − fλ‖K ≤ ‖f − P‖K + ‖P‖K

∥

∥

∥

∥

1 − exp

(

λ

∫ z

0

E(ξ) dξ

)
∥

∥

∥

∥

K

≤ ε

2
+ ‖P‖K |λ| exp

(
∥

∥

∥

∥

∫ z

0

E(ξ) dξ

∥

∥

∥

∥

K

)

.

It follows from (14) that there exists a small real number ε0 > 0 such that for any
λ ∈ C with |λ| ≤ ε0 we have

(15) ‖f − fλ‖K ≤ ε.

On the other hand, by [8, p. 276], there exists c ∈ {λ ∈ C \ {0} : |λ| ≤ ε0} with

lim
r→∞

m
(

P ′/(PE),−c, r
)

T
(

P ′/(PE), r
) = 0.

Since T
(

P ′/(PE), r
)

=
(

1 + o(1)
)

T (E, r) for all large r ,

(16) lim
r→∞

m
(

P ′/(PE),−c, r
)

T (E, r)
= 0.

Now set f∗ = fc , where c is from (16) and fc is defined as in (13). Thus (11)
implies that

(17) logT (f∗, r) ≤ logT (P, r) + log r + logM(E, r) + log 2 =
(

1 + o(1)
)

T (E, r)

for all large r . Hence, set q = 2, a1 = 0 and a2 = ∞ ; we then obtain from (13),
(17), (12) and (16) that

(18)

S(f∗, {aj}q
1, r) = −N(f∗, 0, r)−N(f∗,∞, r) +NRam(f∗, r)

= O(log r) +N(P ′ + cPE, 0, r)

= T (P ′ + cPE, 0, r)−m(P ′ + cPE, 0, r) +O(log r)

≥ T (E, r)−m(P ′/(PE),−c, r)−m(E, 0, r) +O(log r)

≥
(

1 + o(1)
)

logT (f∗, r)

for all large r . It follows from (18) and (15) that δ2(f∗, {aj}) = 1 and ‖f−f∗‖K ≤
ε . Thus Theorem 1 is proved.
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Proof of Theorem 2. Let k , n and q be any positive integers. Set

(19)

Sk = {f ∈ H(C) : T (f, r) ≤ k for r ≥ k} and

Bqnk =
{

f ∈ H(C) : ∃{aj}q
1 ⊂ C with |aj| ≤ n, and

S(f, {aj}q
1, r) ≥ −n log T (f, r), for r ≥ k; or

S(f, {aj}q
1 ∪ {∞}, r) ≥ −n log T (f, r) for r ≥ k

}

,

where some a′j s may be the same point in C . Clearly
⋃

k Sk is the set of all
constant functions. By the definition of H in Theorem 2,

(20) H ⊂
∞
⋃

q=1

∞
⋃

n=1

∞
⋃

k=1

(Bqnk ∪ Sk) .

Now we are going to prove that Bqnk ∪Sk is closed and has an empty interior. In
fact, for any convergent sequence {fp}∞p=1 ⊂ Bqnk∪Sk in the τ -topology with, say,
f its limit function, we prove that Bqnk ∪Sk is closed by showing f ∈ Bqnk ∪Sk .
If f /∈ Sk , then fp /∈ Sk for all large p since T (fp, r) converges to T (f, r) . Hence
fp ∈ Bqnk for all large p since fp ∈ Bqnk ∪ Sk . Thus for each fp there are q
complex numbers {ap

j}q
j=1 , with |ap

j | ≤ n , such that

S(fp, {ap
j}q

j=1, r)

logT (fp, r)
≥ −n or

S(fp, {ap
j}q

j=1 ∪ {∞}, r)
log T (fp, r)

≥ −n

for all r ≥ k . Since {ap
j}∞p=1 is bounded, for each fixed 0 < j ≤ q , by the diagonal

method there is a sequence {ps}∞s=1 such that, for each j , {aps

j }∞s=1 converges to
a∗j , where some of the a∗j ’s may coincide. Since fp is uniformly convergent to f
on any compact set in C , f ′

p uniformly converges to f ′ and fps
− aps

j uniformly
converges to f − a∗j for each j . Hence, by Hurwitz’s theorem and noting f /∈ Sk

for any fixed j , we have for any r with r ≥ k

lim
s→∞

N(fps
, aps

j , r) = N(f, a∗, r) and lim
s→∞

T (fps
, r) = T (f, r).

It turns out that, for any r with r ≥ k ,

−n ≤ lim
s→∞

S(fps
, {aps

j }q
j=1, r)

log T (fps
, r)

=
S(f, {a∗j}q

j=1, r)

logT (f, r)
.

We can similarly consider the case {ap
j}q

j=1 ∪ {∞} . Thus f ∈ Bqnk ∪ Sk , i.e.,
Bqnk ∪ Sk is closed.

To prove int(Bqnk ∪ Sk) = ∅ , we show that the complement of Bqnk ∪ Sk is
dense in H(C) . For any given f ∈ H(C) , a compact set K ⊂ C and an ε > 0,
let O(f,K, ε) be an open neighborhood of f ; then there is a polynomial Pn of
degree n ≥ 1 such that ‖f − Pn‖K ≤ ε . Since T (Pn, r) = n log r +O(1) and

S(Pn, {aj}q
1, r) =

∑

m(Pn, aj, r)−2T (Pn, r)+NRam(Pn, r)+O(1) = −2T (Pn, r),

δ2(Pn, {aj}) = −∞ for any q with {aj}q
1 ⊂ C , i.e., Pn /∈ Bqnk ∪ Sk . This proves

Bqnk ∪ Sk has an empty interior.
It follows from (20) that H is contained in a countable union of nowhere

dense sets. Therefore H is of first category and Theorem 2 is proved.
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Proof of Theorem 3. It suffices to prove that for any g ∈ M(C) and any
ε > 0 there exists g∗ such that d(g, g∗) ≤ ε and g∗ ∈ M1 .

Set K = {z ∈ C; |z| ≤ n0} for some positive integer n0 . Thus there is a
polynomial P2 such that

gP2 ∈ H(K) and |g(z)P2(z)| + |P2(z)| 6= 0, for z ∈ K.

Let m = minz∈K

(

|g(z)P2(z)|2 + |P2(z)|2
)1/2

> 0. There is a polynomial P1 such
that

|gP2 − P1| < εm/2 for all z ∈ K.

Set

gλ(z) =
P1(z)

P2(z)
exp

(

λ

∫ z

0

E(ξ) dξ

)

,

where λ ∈ C and E is from (13). Thus, for |λ| ≤ 1,

(21)

d(g, gλ) ≤ dn0
(g, gλ) ≤ max

z∈K

|g − gλ|
(1 + |g|2)1/2(1 + |gλ|2)1/2

≤ max
z∈K

∣

∣gP2 − P1e
λ
∫

z

0

E(ξ) dξ∣
∣

(|P2|2 + |gP2|2)1/2

≤ max
z∈K

(
∣

∣gP2 − P1| + |P1||1 − e
λ
∫

z

0

E(ξ) dξ∣
∣

)

/m

≤ ε

2
+

|λ|
m

‖P1‖K exp

(
∥

∥

∥

∥

∫ z

0

E(ξ) dξ

∥

∥

∥

∥

K

)

.

It follows from the proof of Theorem 1 that there exists g∗ such that d(g, g∗) ≤ ε
and g∗ ∈ M1 . Thus Theorem 3 is proved.

Proof of Theorem 4. Since fn may converge in
(

M(C)∪{∞}, τχ
)

to infinity
uniformly in any compact set of C , we let

Sk = {f ∈M(C) : T (f, r) ≤ k for r ≥ k} ∪ {∞}.

The rest of the proof of Theorem 2 can be carried over here sentence by sen-
tence if H(C) , with entire functions and polynomials replaced by M(C) , with
meromorphic functions and rational functions.

Proof of Theorem 5. For any r and R , 1 < r < R < ∞ , we have (e.g., [3,
Lemma 7])

(22) S(f, {aj}q
1, r) ≤ log

{

R

r

T (f, R)

R− r

}

+O(1).
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Furthermore, by a growth lemma (e.g. [3, Lemma 4]), there exists for any constant
C > 1 and any ε > 0 a sequence {rj} going to infinity such that

T (f, Rj) ≤ CT (f, rj) for all j,

where Rj = rj + rj/T
ε(f, rj) . Applying (22) to rj and Rj , we get

S(f, {aj}q
1, rj) ≤ log

(

1 + T−ε(f, rj)
)

+ (1 + ε) logT (f, rj) − log rj +O(1).

It follows from logT (f, rj) ≤ (̺+ ε) log rj that

δ2(f, {aj}) ≤ 1 + ε−
(

lim inf
j→∞

log T (f, rj)

log rj

)−1

≤ 1 + ε− (̺+ ε)−1.

By the arbitrariness of ε , the first part of the theorem is proved.
Now we construct some entire functions which indicate the sharpness of the

secondary deficiency.
It suffices to prove the second part of the theorem for the case 0 < ̺ < +∞ .

Let f(z) = E̺(z) in (5). Then, for r ∈ [rk, rk+1) ,

(23)

zf ′(z)

f(z)
=

k
∑

n=1

n+

k−1
∑

n=1

−n
1 + (z/rn)n

+
−k

1 + (z/rk)k

+
(k + 1)(z/rk+1)

k+1

1 + (z/rk+1)k+1
+

∞
∑

n=k+2

n(z/rn)n

1 + (z/rn)n

= n(f, 0, r) + J1 +
−k

1 + (z/rk)k
+

(k + 1)(z/rk+1)
k+1

1 + (z/rk+1)k+1
+ J2.

Since, for 1 ≤ n ≤ k− 1 and r ∈ [rk, rk+1) , we have from the definition of rk

∣

∣

∣

z

rn

∣

∣

∣

n

≥
∣

∣

∣

k

n

∣

∣

∣

2n/̺

≥ 1 +
2n

̺

k − n

n
if n ≥ ̺/2,

then, using (23) and (6) and noting k ≤ √
̺ r̺/2 for all large r ,

(24)
|J1| ≤ O(1) +

k−1
∑

n=[̺/2]

n

(r/rn)n − 1
≤ O(1) +

k−1
∑

n=1

̺n

2(k − n)

= O(k log k) = o
(

n(f, 0, r)
)

.

Since, for n ≥ k + 2 and r ∈ [rk, rk+1) , we obtain from (1 − x) ≤ e−x

∣

∣

∣

z

rn

∣

∣

∣

n

≤
∣

∣

∣

rk+1

rn

∣

∣

∣

n

=
∣

∣

∣

k + 1

n

∣

∣

∣

2n/̺

≤ exp

(

−n− k − 1

n

2n

̺

)

= e−2(n−k−1)/̺,
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then, again using (23) and (6) for all large r ,

(25) |J2| ≤
∞
∑

n=k+2

n

(rn/r)n − 1
≤

∞
∑

n=k+2

n

e2(n−k−1)/̺ − 1
= O(k) = o

(

n(f, 0, r)
)

.

Moreover, if |a| ≥ 1 and a 6= −1, then Re{1/(1 + a)} ≤ 1/2; thus, for
r ∈ [rk, rk+1) ,

(26) Re
{

1/
(

1 + (z/rk)k
)}

≤ 1/2 if (z/rk)k 6= −1.

To estimate the remaining term in (23), set Tk = (rk + rk+1)/2. Since

(1 + x)k+1 ≥ 1 + (k + 1)x

for x > 0, and (9), we find a constant C > 0 such that, for r ∈ [rk, Tk] ,

(27)

(

rk+1

r

)k+1

≥
(

2rk+1

rk + rk+1

)k+1

=

(

1 +
(k + 1)2/̺ − k2/̺

(k + 1)2/̺ + k2/̺

)k+1

≥ 1 + (k + 1)
Ck−1+2/̺

2(k + 1)2/̺
≥ 1 +

C

22/̺

for all large k . It follows from (23)–(27) that, for r ∈ [rk, Tk] and (z/rk)k 6= −1,

∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣
≥ Re

{

zf ′(z)

f(z)

}

≥ n(f, 0, r)− |J1| − kRe
1

1 + (z/rk)k
− |J2| −

∣

∣

∣

(k + 1)(z/rk+1)
k+1

1 + (z/rk+1)k+1

∣

∣

∣

≥ n(f, 0, r) + o
(

n(f, 0, r)
)

− k

2
+ o

(

n(f, 0, r)
)

− k + 1

|rk+1/z|k+1 − 1

≥ (1 + o(1))n(f, 0, r).

It follows from (6) that, for r ∈ [rk, Tk] ,

(28)
1

2π

∫ 2π

0

log
∣

∣

∣

f ′

f
(reiθ)

∣

∣

∣
dθ ≥ logn(f, 0, r)− log r+O(1) ≥ (̺−1) log r+O(1).

For any r ∈ [Tk, rk+1) , applying Jensen’s formula to f ′/f and noting
N(f, 0, r) = N(f, 0, Tk) , we have from (28), (6), (12) and

1 ≥ Tk/r ≥ Tk/rk+1 =
(

1 + (rk/rk+1)
)

/2 → 1 (as k → ∞)
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that

(29)

1

2π

∫ 2π

0

log
∣

∣

∣

f ′

f
(reiθ)

∣

∣

∣
dθ = N(f ′/f, 0, r)−N(f ′/f,∞, r) +O(1)

= N(f ′, 0, r)−N(f, 0, r) +O(1)

≥ N(f ′, 0, Tk) −N(f, 0, Tk) +O(1)

≥ N(f ′/f, 0, Tk) −N(f ′/f,∞, Tk) +O(1)

=
1

2π

∫ 2π

0

log
∣

∣

∣

f ′

f
(Tke

iθ)
∣

∣

∣
dθ +O(1)

≥ (̺− 1) logTk +O(1)

≥ (̺− 1) log r + (̺− 1) log(Tk/r) +O(1)

≥ (̺− 1) log r +O(1).

It follows from (28) and (29) that, for all large r ,

(30)
1

2π

∫ 2π

0

log
∣

∣

∣

f ′

f
(reiθ)

∣

∣

∣
dθ ≥ (̺− 1) log r +O(1).

Thus for all large r we have from Theorem 3, Jensen’s formula and (30)

S(f, {0,∞}, r) = NRam(f, r) −N(f, 0, r)−N(f,∞, )

=
1

2π

∫ 2π

0

log |f ′/f |(reiθ) dθ ≥ (̺− 1) log r +O(1).

It turns out from logT (f, r) = ̺ log r +O(1) that δ2(f, {0,∞}) = 1 − 1/̺ .
Thus Theorem 5 is completely proved.

Remark. Functions similar to (5) were considered in [13], [3] and [7]. How-
ever, our functions here make (30) hold for all large r rather than some large r .
With ̺ = ∞ we have shown in Theorem 1 that the set of entire functions having
Nevanlinna’s secondary deficiency one is dense in H(C) .

5. Examples

In this section we calculate Nevanlinna’s second deficiency for some classical
functions, based on a recent work of L. Sons and Z. Ye in [10].

Example 1. Let f be any rational function; then, by Theorem 5, δ2(f, {aj}) =
−∞ for any {aj} ⊂ C .

Example 2. Let f(z) = ez . As we showed in [10], S(ez, {aj}q
1, r) = O(1) for

any {aj}q
1 ⊂ C \ {0} . Since T (ez, r) = r/π , we have δ2(f, {aj}q

1) = 0. Therefore
the coefficient of term log T (ez, r) in (1) is 0. In fact, if the order of f is less than
one, then, by Theorem 5, S(f, {aj}q

1, r) < 0 for at least a sequence of {rj} which
tends to infinity.
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Example 3. Let ℘ be a Weierstrass function. Since the order of ℘ is two and
S(℘, {aj}q

1, r) = O(1) for any {aj}q
1 ⊂ C as we have shown in [10, Theorem 1], it

follows that δ2(℘, {aj}q
1) = 0.

Example 4. Let ζ(z) = ζ(z;ω1, ω2) be a Weierstrass ζ -function with Imω1/ω2

> 0. Since S(ζ, {aj}∪{0,∞}, r) = − log r+O(1) and logT (ζ, r) = 2 log r+O(1)
(see [10, Theorem 2]), then δ2(ζ, {aj} ∪ {0,∞}) = −1/2, for any {aj} ⊂ C \ {0} .
Furthermore, we know from [10, Theorem 2] that the L -type of ζ is ψ(r) = r−1/2 .
Hence we see the secondary deficiency of ζ to be exactly equal to the power index
in its L -type.

Example 5. Let ϑ(z) be a Weierstrass ϑ -function. Then from [10, Theorem 4]
we have S(ϑ, {aj} ∪ {0,∞}, r) = log r + O(1) and log T (ϑ, r) = 2 log r + O(1);
thus δ2(ϑ, {aj} ∪ {0,∞}) = 1/2 for any {aj} ⊂ C \ {0} . Again the 1/2 identifies
the power index in the L -type of ϑ function.

There are other functions which were considered in [10]. Similarly, their sec-
ondary deficiencies can be easily calculated.
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