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Abstract. In this paper almost conformal (AC) germs of homeomorphisms are considered.
Almost conformality means that the Beltrami coefficient of the germ is flat at the origin. The main
question is when two such germs are the same up to a change of variable which is an AC germ
itself. As usually hyperbolic germs are all equivalent to linear ones. Here the case of parabolic
germs is under investigation. The space of moduli of parabolic AC germs is constructed. This is
similar to the classical case of classification of parabolic holomorphic germs, now assymptotically
holomorphic functions are involved in the description. A new effect of vertical AC equivalency
appears.

1. Introduction

The purpose of this note is to describe the space of moduli for the local
quasiconformal homeomorphisms f , f(0) = 0, which are almost conformal, i.e.
µf (z) = O(|z|n) , n = 1, 2, . . ., where µf denotes the Beltrami coefficient of f .
We will be concerned only with some parabolic cases, namely with germs which
in a neighborhood of 0 ∈ C have the form

f : z → z + a2z
2 + · · · .

For holomorphic germs the space of moduli was described by Ecalle [Ec1] and
Voronin [Vo] independently and by completely different techniques.

For brevity the process of finding the space of moduli will be referred as “the
normalization of germs”. Later the normalization of parabolic germs turns out to
be crucial for solving the limit cycle problem [Ec2], [Il]. Let us elaborate on this
subject briefly. For the limit cycle theorem it is crucial to know the structure of
the correspondence map to a center manifold of a degenerate elementary singular
point of a real analytic vector field

(1.1)
ż = z2, ẇ = −w + F (z, w)

F (0, 0) = 0, dF (0, 0) = 0,
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(here the multiplicity of the point is 2). The correspondence map ∆ is essentially
the superposition of the correspondence map of a standard field

(1.2) ż = z2/1 + az, ẇ = −w

and the mapping Fnorm which normalizes a certain canonical parabolic germ con-
structed with the help of field (1.1). This canonical parabolic germ is nothing else
but a monodromy transformation of (1.1) (corresponding to a contractive mani-
fold).

So the scheme of representing ∆ is as follows. Take a monodromy trans-

formation f of (1.1). Then normalize this parabolic germ f to a standard germ
fst(z) = z/(1 + az) by means of normalizing mapping Fnorm . This Fnorm then es-
sentially gives the correspondence map ∆. Let us remind that Fnorm is a collection
of two mappings rather than a single mapping.

Let us explain how the germs

(1.3) f : z → z + a2z
2 + · · · ; µf (z) = O(|z|n), n = 1, . . . ,

appear naturally.
The limit cycle theorem (LCT) holds if the field is real analytic. One can

notice easily that for non-quasianalytic fields this theorem fails for trivial reasons.
So quasianalyticity of the field is necessary and one may ask whether it is sufficient
for LCT. The answer is proved to be positive [Ec3]. An independent attempt to
prove sufficiency for fields with degenerate singular points leads to the normaliza-
tion problem for parabolic germs of type (1.3). This is exactly as in the classical
real analytic case: LCT for fields with degenerate singular points is closely related
to the normalization of parabolic conformal germs

f : z → z + a2z
2 + · · · ; µf (z) ≡ 0.

But let us mention that the interest in normalization of AC germs does not stem
from LCT. We think that it has its own interest as revealing some new effects
non-existing in the conformal case (e.g. Theorem 3.2).

The authors are grateful to Olli Martio for a valuable discussion which helped
to simplify the reasoning in Section 3 of this article. The second author is also
grateful to Sergei Yakovenko for the invitation to the Weizmann Institute and kind
explanations concerning LCT.

After this introduction let us start the formal exposition. Let U(0) be a
neighborhood of 0 ∈ C and f be a quasiconformal germ defined on U(0).

1.1. Definition. f is asymptotically conformal (AC) if

µf (z) = O(|z|n), n = 1, 2, . . . .
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If f is an AC germ it can be represented in a form

f(z) = af (z) −
1

π

∫

µf (ξ)∂f(ξ) dA(ξ)

ξ − z
, z ∈ U ′(0)

in a small neighborhood of 0, where af is holomorphic in U ′(0). The integration
is in U ′(0) with respect to the area measure. It follows (see, e.g. [He]) that f can
be written in the form:

f(z) = a1z + a2z
2 + a3z

3 + r(z), z ∈ U ′′(0),

where r ∈ C(U ′′(0)) , |r(z)| ≤ C|z|4 .

In what follows we are interested in germs tangent to the identity, that is with
a1 = 1. We also confine ourselves to the case

(1.4) a2 6= 0.

The set of these germs is denoted by A . Our goal is to describe the conjugacy
classes of A under AC changes of variables. Namely we have the following defi-
nition:

1.2. Definition. Let f, g ∈ A . The germs f and g are AC equivalent if
there exists an AC germ h so that

h ◦ f = g ◦ h

in a neighborhood of 0.

It turns out, as in the analytic case (see [Ec1], [Vo]) that any f ∈ A is sectori-
ally conjugated to the standard germ f0(z) = z/(1 − z) and the AC classification
induces functional moduli.

1.3. Definition. Consider the pair M = (M1, M2) of quasiconformal maps
defined on D1 = {w : Imw > N} , D2 = {w : − Im w > N} , N > 0, where Mj

have the following properties:

(i) Mj(w − 1) = Mj(w) − 1, j = 1, 2;
(ii) Mj(w) = w + o(w) , j = 1, 2;
(iii) Mj are vertically asymptotically conformal (VAC), i.e.

µMj
(w) = O

(

1

| Imw|n

)

, n = 1, 2, . . . ; j = 1, 2.

We say that M is equivalent to M̃ if Mj(w + c1) = M̃j(w) + c2 for j = 1, 2
and some constants c1, c2 ∈ C .

The set U of equivalence classes is the space of moduli of AC classification
of germs from A . Namely, we have the following theorem.
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1.4. Theorem. For each f ∈ A we can assign mf ∈ U so that:

1) f is AC equivalent to g if and only if mf = mg ;

2) for each m ∈ U there exists f ∈ A such that mf = m .

This is a generalization to AC case of the Écalle–Voronin classification theo-
rem [Ec1], [Vo].

We will prove a result of sectorial conjugacy together with the first assertion
of this theorem in Section 2. The second assertion is proved in Section 3.

2. Sectorial conjugacy; AC classification

By a linear conjugacy we can reduce f to the form

f(z) = z + z2 + a3z
3 + r(z).

It is convenient to replace 0 by ∞ . So we consider

F (w) =
1

f

(

1

w

) , w ∈ U(∞).

Then we have

(2.1) F (w) = w − 1 −
A

w
+ R(w), w ∈ U(∞),

(2.2) |R(w)| ≤
C

|w|2
, w ∈ U(∞),

(2.3) µF (w) = O

(

1

|w|n

)

, n = 1, 2, . . . .

Denote F0(w) = w − 1. Consider the sector

S−(a, L) = {w : | arg(−w − L)| < a}, a ∈ ( 1
2π, π), L > 0.

The first result of this section is that F is conjugated to F0 in S−(a, L) for
any a ∈ ( 1

2
π, π) and sufficiently large L > 0. The normalizing homeomorphism is

AC. The classical result for analytic F was proved for the first time by Leau [Le].
Now it is known as “Petal theorem” (see [Be, p. 116–122]).

To prove ∂̄ -estimates of the normalizing function one can follow the lines of
[BP] or [Be, p. 116–122]. However some extra estimates are needed and this is
why we give the proof for the convenience of the reader.
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2.1. Lemma. Let F be as above. Then there exists a quasiconformal

mapping H−: S−(a, L) → C which satisfies:

1. H−

(

F (w)
)

= F0

(

H−(w)
)

, w ∈ S−(a, L) ;
2. µH−

(w) = O(1/|w|n) , n = 1, 2, . . .;
3. H−(w) = w + o(w) ;

for any a ∈ ( 1
2
π, π) and sufficiently large L .

Proof. Denote by Fn the nth iterate of F and let wn = Fn(w0) , for a
fixed w0 ∈ S−(a, L) . Using (2.1) and (2.2) we see that Fn(w) ∈ S−(a, L + 1

2
n) if

w ∈ S−(a, L) . In particular

(2.4) |Fn(w)| ≥ (L + 1
2
n) sina.

Consider the sequence of functions

Hn(w) = Fn(w) − wn.

Suppose that we showed that {Hn} is a normal family of quasiconformal mappings.
Let {Hnk

} be a convergent subsequence of {Hn} and H− be its limit. As in [BP]
or [Be] we can conclude that H− satisfies 1. In order to see that {Hn} is a normal
family, consider

hn(w) =
Hn(w)

wn − wn+1
.

From (2.1), (2.4) it follows that wn − wn+1 → 1. Hence it is sufficient to check
that {hn} is a normal family. For this we use a well-known normality criterion
(see [LV, p. 73–74]) for sequences of quasiconformal mapping. Since {hn} is a se-
quence of quasiconformal mappings which take the same values on the three points
w0, w1,∞ , the criterion can be applied if we show that the Beltrami coefficients
µhn

are uniformly bounded away from 1. To estimate µhn
= µFn

, let us introduce
a(w) =

∑∞
0

∣

∣µF

(

Fn(w)
)
∣

∣ , w ∈ S−(a, L) . Let us note that (2.3), (2.4) ensure the
uniform convergence in S−(a, L) . Moreover by choosing L large enough we get
a(w) ≤ 1

4 . Clearly

∣

∣

∣

∣

µFn+1
(w) − µFn

(w)

1 − µFn
(w)µFn+1

(w)

∣

∣

∣

∣

=
∣

∣µF

(

Fn(w)
)
∣

∣,

and a trivial induction argument yields:

(2.5) |µFn
(w)| ≤ 2a(w) = 2

∞
∑

0

∣

∣µF

(

Fn(w)
)
∣

∣ ≤ 1
2 .

This shows that {Hn} is a normal family and we are done with 1. We will see
that uniformly in n , Hn(w) = w + o(w) . This shows 3.
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In order to get 2 we use the fact that µFn
(w) → µH−

(w) a.e. w ∈ S−(a, L) .
Hence we need to study the behavior of a(w) as w → ∞ . We use the estimates
on Fn from [Be, p. 120–122] adapted to our purpose: to have good estimates of
Fn(w) not only with respect to n but with respect to w as well.

(2.6)

∣

∣

∣

∣

Fn+1(w) −

(

w − (n + 1) −

n
∑

0

A

k − w

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

Fn(w) −

(

w − n −
n−1
∑

0

A

k − w

)
∣

∣

∣

∣

+
∣

∣R
(

Fn(w)
)
∣

∣ + |A|
|Fn(w) − (w − n)|

|Fn(w)| · |w − n|
.

2.2. Lemma. There exists B depending on C in (2.2) such that as soon as

L is large enough then

1.
∣

∣Fn(w) −
(

w − n −
∑n−1

0 A/(k − w)
)

| < 1 , w ∈ S−(a, L) ;

2.
∣

∣Fn(w)−
(

w−n−
∑n−1

0 A/(k − w)
)∣

∣ ≤ B
∑n−1

0 1/
(

|w − k −
∑k−1

0 A/(i − w)|2
)

+|A|
∑n−1

0

(
∣

∣

∑k−1
0 A/(k − w)

∣

∣ + 1)/(|w − k|
∣

∣w − k −
∑k−1

0 A/(i − w)
∣

∣

)

,

w ∈ S−(a, L) .

Proof. The proof will proceed by induction. But before using induction let
us choose B so that

(2.7) sup
|w′−w|

|R(w′)| ≤
B

|w|2
, for w, w′ ∈ S−(a, L).

Choosing L sufficiently large we obtain

(2.8)
∞
∑

k=0

1
∣

∣w − k −
∑k−1

i=0 A/(i − w)
∣

∣

2 ≤
C1

|w|
,

(2.9)

∞
∑

k=0

∣

∣

∑k−1
i=0 A/(i− w)

∣

∣ + 1
(
∣

∣w − k −
∑k−1

i=0 A/(i − w)
∣

∣ − 1
)

|k − w|
≤ C2

log |w|

|w|
,

for w ∈ S−(a, L) . Now let us choose L so large that

(2.10) B ·
C1

|w|
+ |A| · C2 ·

log |w|

|w|
< 1, w ∈ S−(a, L).

Using (2.5)–(2.9) one can easily carry out the induction: 2n+1 follows from (2.6),
2n , 1n , (2.8)–(2.10); 1n+1 follows from 2n+1 , (2.8)–(2.10). Lemma 2.2 is proved.
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The first estimate of Lemma 2.2 is our main estimate for proving 3. In fact,
being combined with (2.3) and (2.5), it gives the estimate

|µHn
(w)| = O

(

1

|w|p

)

, p = 1, 2, . . .

which is uniform in n and implies 3.
Let us note that the first estimate of Lemma 2.2 also gives 2. Lemma 2.1 is

fully proved.

2.3. Remark. By the property 2 we have that Range(H−) contains a sector
of type S−(a′, L′) .

Next we show the uniqueness of H− .

2.4. Lemma. Let H ′
− satisfy 1 , 2 , 3 of Lemma 2.1 . Then H ′

−(w) =
H−(w) + c for some c ∈ C .

Proof. Consider the map H̃ = H ′
− ◦ H−1

− . By Remark 2.3 the domain of

definition of H̃ contains a strip of the form {w : Re w ∈ [N − 1, N ]} for some
N < 0. Using 1 we obtain

(2.11) H̃(w − 1) = H̃(w) − 1.

Hence we can extend H̃ to C using (2.11). Since both H ′
− and H−1

− are AC, using

3 we obtain that H̃ is AC. But (2.11) again shows that µH̃ is 1-periodic. But
asymptotically conformal mapping can be 1-periodic only if it is just conformal.
So H̃ is analytic. On the other hand H̃ has pole of the first order at ∞ and it is
univalent in {w : Re w ∈ [N − 1, N ]} . This shows that H̃(w) = aw + b and (2.11)
now gives H̃(w) = w + b from where Lemma 2.4 follows.

2.5. Remark. Consider S+(a, L) = {w : | arg(w − L)| < a} , a ∈ ( 1
2π, π) .

Then there exists H+: S+(a, L) → C with properties 1, 2, 3 of Lemma 2.1 for any
a ∈ ( 1

2
π, π) and sufficiently large L . Moreover, H+ is unique up to an additive

constant.

Now we are in a position to define the moduli space. Let us remark here
that the normalizing atlas was constructed for analytic germs by Leau. And many
years passed until Écalle [Ec1], Malgrange [M], Voronin [Vo] began considering the
moduli space.

Exactly as in these works let us consider Mj = H+ ◦ H−1
− | Sj , j = 1, 2,

where Sj are two components of the domain of H+ ◦ H−1
− situated in the upper

and lower half planes. It is easy to see that Mj(w − 1) = Mj(w)− 1. Because Sj

contains vertical half strips of width 1 (see Remark 2.3 for an explanation), using
the above relation we can extend Mj into half planes Dj , j = 1, 2. It is clear that
Mj satisfies i), ii), iii) of Definition 1.3. Consider M = (M1, M2) and let mF be
its class. The next result is basically the first assertion of Theorem 1.4. For the
sake of completeness we just repeat the classical proofs with obvious modifications.
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2.6. Theorem. Let F , G be two germs satisfying (2.1), (2.2) and (2.3).
Then F is AC equivalent to G if and only if mF = mG .

Proof. Let H+ , H− be sectorial AC normalizators for F and H ′
+ , H ′

−

denote the same objects for G . Without loss of generality we can assume that
(H ′

+)−1 ◦ H+ = (H ′
−)−1 ◦ H− on S+(a, L) ∩ S−(a, L) up to some additive con-

stants. Defining the mapping

H =

{

(H ′
−)−1 ◦ H− in S−(a, L),

(H ′
+)−1 ◦ H+ in S+(a, L),

we see that H ◦ F = G ◦ H . Clearly H is a well defined AC homeomorphism in
U(∞) .

The converse is also straightforward. It is based on the uniqueness
(Lemma 2.4). If H ◦ F = G ◦ H then H− ◦ H−1 and H+ ◦ H−1 satisfy 1, 2,
3 of Lemma 2.1 for G , hence H ′

− = H− ◦ H−1 and H ′
+ = H+ ◦ H−1 . Thus

mF = mG .

In the next section we show that the operation f → mf is onto which is the
second assertion of Theorem 1.4.

3. The space of moduli; Surjectivity of f → mf

3.1. Theorem. For each m ∈ U one can find f ∈ A such that m = mf .

Before proving Theorem 3.1 let us explain why it is not an immediate corollary
of the classical analytic version. It happens that the natural change of variable
leads not to Theorem 3.1 but to Theorem 3.2 below.

Given a pair of qc mappings (M1, M2) = m ∈ U satisfying i), ii), iii) of
Definition 1.3 it would be very natural to convert them into a pair of conformal

mappings (N1, N2) = n with i) Nj(w−1) = Nj(w)−1, j = 1, 2; and ii) Nj(w) =
w+o(w) , j = 1, 2. This is possible by the following standard reasoning. Mapping
M1 maps a certain conformal structure σ1 into the standard structure σ0 . By
means of i) σ1 is 1-periodic. Consider σ1 on a half-strip of width 1, which can
be viewed as a unit disc. Apply the measurable Riemann mapping theorem to σ0

on the disc into σ1 on the disc. Again let us view the disc as a half-strip and let
us call q the mapping we have just constructed. It can be extended as a map of
the half-plane D1 onto itself such that F0 ◦ q = q ◦ F0 . Now put

N1 = M1 ◦ q.

Clearly N1 preserves σ0 . The same can be done in D2 for M2 , N2 . Again
N2 = M2 ◦ q . We write this as

(3.1) n = m ◦ q.
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Now n is an element of the moduli space for holomorphic germs. As in [Vo] one
can construct a representative of the class of germs corresponding to n as follows.
First as in [Vo] let us factorize n :

n = H+ ◦ H−1
− in S−(a, L) ∩ S+(a, L),

where H± are conformal in S±(a, L) . Now one can restore the germ corresponding
to n : it is H−1

+ ◦ F0 ◦ H+ in S+ and H−1
− ◦ F0 ◦ H− in S− . But we are going to

write it down in a different way:

(3.2) Φ =

{

H−1
+ ◦ F0 ◦ H+ in S+(a, L),

H−1
− ◦ q−1 ◦ F0 ◦ q ◦ H− in S−(a, L).

Here q is from (3.1).

3.2. Theorem. For any AC germ F we can build a conformal germ Φ in

such a way that

1) F1 is AC equivalent to F2 ⇒ Φ1 is conformally equivalent to Φ2 ;

2) Φ = G−1 ◦ F ◦ G , where

µG(w) = O(| Imw|−n), n = 1, 2, . . . .

That is, G is a VAC mapping.

Proof. 1) If F1 is AC equivalent to F2 then mF1
is equivalent to mF2

(Theorem 2.1) and q is the same. So n1 is equivalent to n2 which means that
Φ1, Φ2 are conformally equivalent ([Ec1], [Vo]).

2) In the proof of Theorem 3.1 we will see that F can be written in the form
similar to (3.2):

(3.3) F =

{

Q−1
+ ◦ F0 ◦ Q+ in S+(a, L),

Q−1
− ◦ F0 ◦ Q− in S−(a, L),

where Q± are AC in S±(a, L) and

m = Q+ ◦ Q−1
− .

Put

(3.4) G
def
=

{

Q−1
+ ◦ H+ in S+(a, L),

Q−1
− ◦ q ◦ H− in S−(a, L).

The definition is correct, because

H−1
+ ◦ Q+ = H−1

− ◦ q−1 ◦ Q−

which is exactly (3.1).
On the other hand all factors in (3.4) are either conformal or VAC mappings.

Thus G is VAC and Theorem 3.2 is proved.



118 Z. Balogh and A. Volberg

Remark. VAC classification is much rougher than AC one for AC germs.
VAC classification has at most as many slices as conformal classification of confor-
mal germs. And we know that these are periodic holomorphic functions in D1∪D2 .
AC classification of AC germs has more slices: they correspond to asymptotically
holomorphic periodic functions in D1 ∪ D2 .

Proof of Theorem 3.1. Given a pair (M1, M2) with properties (i), (ii) and (iii)
from Definition 1.3 we construct H− and H+ with property 2 from Lemma 2.1
so that Mj = H+ ◦ (H−)−1 on Dj . Then we define:

F =

{

(H+)−1 ◦ F0 ◦ H+ in S+(a, M),
(H−)−1 ◦ F0 ◦ H− in S−(a, M),

and show that F satisfies (2.1), (2.2) and (2.3). In fact H+ and H− will be
constructed on D′

j which denotes sets similar to Dj but defined with N ′ > N .
We have the freedom to choose N ′ as large as we need. We may also choose
M > N ′ .

For a ∈ R let γa,+ denote the piece of the curve M1(x + iN ′) , x ∈ [a, a + 1]
and let γa,− be the piece of the curve M2(x−iN ′) , x ∈ [a, a+1]. Let ℓa denote the
vertical segment connecting the “left” end-points of γa,+ , γa− . Correspondingly
ra connects their right end-points. It is easy to see that one can choose a in
such a way that the curve ℓa ∪ γa,+ ∪ ra ∪ γa,− is a quasicircle. We have the
mapping M1: [a + iN ′, a + 1 + iN ′] → γa,+ and M2: [a− iN ′, a + i− iN ′] → γa,−

which can easily be extended as a qc mapping of the rectangle R with end-points
a + iN ′ , a + 1 + iN ′ , a + 1 − iN ′ , a − iN ′ onto the curvilinear rectangle Q
bounded by ℓa ∪ γa,+ ∪ ra ∪ γa,− . This gives us the extension H into a vertical
strip a ≤ x ≤ a + 1. Using Mj(w − 1) = Mj(w) − 1 we can extend H to C by
H(w − 1) = H(w) − 1.

In order to construct the decomposition H− and H+ let us introduce R(a, N ′)
= {w : |Re w| < N ′/(tana), | Imw| < N ′} ,

S′
−(a, N ′) = {w : | Imw| ≥ tan a · Re w} \ R(a, N ′),

and

S′
+(a, N ′) = {w : | Imw| ≥ − tana · Re w} \ R(a, N ′) for a ∈ (0, 1

2
π).

Consider the measurable mapping µ : C → C by

µ =

{

µH in C \ S′
−(a, N ′)

0 in S′
−(a, N ′).

By the existence theorem of quasiconformal mapping with prescribed Beltrami
coefficient we obtain G: C → C , quasiconformal, so that µG = µ .
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Observe that G = aw+o(w) as w → ∞ for a 6= 0. Without loss of generality
we assume that a = 1. Define H̃ = H ◦ G−1 , H+ = H̃ | G(S′

+(a, N ′)) , H− =

H−1 ◦ H̃ | G(S′
−(a, N ′)) . Using this one can see immediately that H+ and H−

satisfy 2. Moreover we have that H±(w) = a±w + o(w) for a+, a− 6= 0.

For a more geometric explanation of the above construction let σ1 be the
1-periodic conformal structure which is mapped into the standard structure σ0

by H . G is constructed in such a way that maps σ0 into σ0 in S′
−(a, N ′) and σ1

into σ0 otherwise. From the picture below one can understand how the composi-
tion H ◦ G−1 maps the corresponding structures (represented by fields of ellipses
respectively circles) and the properties of H− respectively H+ :

From the definition of F we obtain that F (w) = w + o(w) and F is AC.
Conjugate F back to germ f around the origin and obtain that f is AC and
f(z) = z + o(z) . Consequently

f(z) = z + a2z
2 + a3z

3 + r(z), z ∈ U(0).

To complete the proof we need to show that a2 6= 0.

For this we use an idea of Voronin (see [Vo]). The idea is based on the fact
that if we take N ′ large enough we get that ‖µH+

‖∞ and ‖µH−
‖∞ are as small

as we want.

Conjugate H− and H+ to h− and h+ and let s−(a, N ′) , s+(a, N ′) the
corresponding domains of h− and h+ . We have that ‖µh−

‖∞ and ‖µh+
‖∞ are

small and hence h− and h+ are Hölder continuous with exponent q close to 1.
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The formula for f is:

f =

{

(h+)−1 ◦ f0 ◦ h+ in s+(a, N ′),
(h−)−1 ◦ f0 ◦ h− in s−(a, N ′),

where f0(z) = z/(1 − z) .
Therefore c2|z|

2 ≤ |f0(z) − z| ≤ c1 · |z|
2 . If z ∈ s+(a, N ′) we have:

c2|h+(z)|2 ≤
∣

∣f0

(

h+(z)
)

− h+(z)
∣

∣ ≤ c1|h+(z)|2.

If z ∈ s+(a, N ′) we have:

c2|h+(z)|2 ≤
∣

∣f0

(

h+(z)
)

− h+(z)
∣

∣ ≤ c1|h+(z)|2.

On the other hand, by the Hölder continuity of h+ and h−1
+ we get:

c3

∣

∣f0

(

h+(z)
)

− h+(z)
∣

∣

1/q
≤

∣

∣(h+)−1f0

(

h+(z)
)

− z
∣

∣ ≤ c4

∣

∣f0

(

h+(z)
)

− h+(z)
∣

∣

q
.

Combining this and the above relation obtain that:

c2 · c3|z|
2/q ≤ |f(z) − z| ≤ c1 · c4|z|

2·q for z ∈ s+(a, N ′).

Since q is close to 1 we conclude that a2 6= 0 and, therefore, f ∈ A . Consequently
F satisfies (2.1) and (2.2).

4. Final remarks

4.1. Remark. If we consider strongly asymptotically conformal germs (SAC)
with the property that µf (z) = O

(

exp(−n/|z|)
)

for n ∈ N , then we obtain similar
results with H+ , H− in SAC.

Moreover, in the space of moduli the corresponding Mj in addition to (i),
(ii), (iii) will have the representations close to the one in [Vo] and [Ma] by the
formulae:

Mj(w) = aj
0 + w +

∞
∑

k=1

aj
ke±2πikw−gj(w) + εj(w),

where εj ∈ C(Dj) with εj(w) = O(e−n| Im w|) , and 1-periodic functions gj are
such that gj ∈ L∞(Dj) ∩ C∞(Dj) and such that |D̄gj(w)| = o(e−n| Im w|) n =
1, 2, . . ., j = 1, 2.

4.2. Remark. Suppose f is AC or SAC and

f(z) = z + aqzq + aq+1z
q+1 + r(z), q > 2

then the classification of these germs also can be given. It is completely analogous
to the classical case with asymptotically holomorphic functions playing the role of
holomorphic. Also similar results are valid for a1 = e2πip/q .

4.3. Remark. Also these results can be easily reformulated for germs in
Carleman classes, in particular for quasianalytic classes.
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