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Abstract. An m -uniform domain in Rn is, roughly, a domain such that any two maps
from the i -sphere, 0 ≤ i ≤ m < n , into the domain can be homotoped to each other without
going too far or too close to the boundary, when seen from the perspective of the images of the
two maps. We establish several equivalent definitions for m -uniform domains. We apply the
theory by investigating the structure of the complementary domains of the fixed point set of a
quasiconformal reflection on the n -sphere Sn . Moreover, we establish the (ordinary) uniformity
of the complement of the fixed point set of an arbitrary periodic quasiconformal homeomorphism
of Sn .

1. Introduction

A domain D in Euclidean n -space Rn is uniform if, roughly speaking, any
point in D can be joined to any other point in D without (i) going too far, and
(ii) going too close to the boundary of D , compared to the location and mutual
distance of the two points. Uniform domains were introduced by Martio and
Sarvas [MS] in their study of injectivity problems in function theory. There are
several equivalent definitions for uniformity and the usefulness of the concept is
well established; see, for example, [Ge], [GO], [M1], [V4], [Vu2]. Here we take the
following definition: a domain D ⊂ Rn is said to be c-uniform, or simply uniform,
if there exists a constant c ≥ 1 such that each pair of points x1, x2 ∈ D can be
joined by a path F in D for which

(1.1) diam(F ) ≤ c |x1 − x2|

and

(1.2) dist
(

x, {x1, x2}
)

≤ c dist(x, ∂D)
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for each x ∈ F . Observe that an equivalent definition results when F is allowed
to be an arbitrary continuum [V4]. Here and in what follows, diam(·) denotes
Euclidean diameter and dist(·, ·) denotes Euclidean distance with the convention
that dist(x, ∂D) = ∞ if D = Rn .

The boundary of a uniform domain need not be of the same dimension every-
where. For example, Bn \ [0, e1] , the unit ball of Rn minus a radius, is uniform
provided n ≥ 3. In this paper we suggest a definition for a stronger concept of
uniformity that detects such lower dimensional impurities on the boundary. The
idea is to replace points in the definition with spheres of higher dimension and
paths with homotopies between spheres.

Before stating the definition, we fix some notation observed throughout this
paper. We let R

n
= Rn ∪ {∞} ≈ Sn denote the one-point compactification of

Rn , and unless otherwise stated n ≥ 2. By a domain we mean a connected, open
subset of Rn . For a nonnegative integer i , Bi+1 stands for the open unit ball of
Ri+1 with Si = ∂Bi+1 its boundary. In this paper, a singular i-sphere is a pair
(Σi, g) , where Σi is a subset of Rn and g is a continuous map of Si onto Σi .
Then we also say that g is a representation of Σi . Usually we drop the mapping g
from the notation and call simply Σi a singular i-sphere; it is important however
to understand that every singular i-sphere comes with its representation. We also
write (Σi, g) ⊂ X , meaning that Σi is a subset of X . Moreover, if Σi = (Σi, g)
is a singular i-sphere and h is a continuous map on Σi , we write h(Σi) for the
singular i-sphere

(

h(Σi), h ◦ g
)

.

1.3. Definition. Let ̺: [0,∞) → [1,∞) be an increasing function and
m < n a nonnegative integer. We say that a domain D ⊂ Rn is (m, ̺)-uniform if,
for each 0 ≤ i ≤ m , each pair of singular i-spheres Σi = (Σi, g) and Σ̃i = (Σ̃i, g̃)
in D can be joined by a homotopy F in D such that

(1.4) diam(F ) ≤ ̺(t) diam(Σi ∪ Σ̃i),

and

(1.5) dist(x,Σi ∪ Σ̃i) ≤ ̺(t) dist(x, ∂D)

for each x ∈ F , whenever

(1.6) max{diam(Σi), diam(Σ̃i)} ≤ t dist(Σi ∪ Σ̃i, ∂D).

We say that D is m-uniform if it is (m, ̺)-uniform for some ̺ , and D is (m, c)-
uniform if one can choose ̺(t) ≡ c for some constant c . We term D strongly

uniform if it is m-uniform for all m < n .
In the above definition, and throughout this paper, by “a homotopy F in D

joining Σi and Σ̃i ” we mean a continuous map

F : Si × [0, 1] → D
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such that

F (x, 0) = g(x) and F (x, 1) = g̃(x)

for each x ∈ Si , where g: Si → Σi and g̃: Si → Σ̃i are the representations of
Σi and Σ̃i , respectively. By x ∈ F we mean that x is a point in the image of
Si × [0, 1] under the map F . Thus we use F to denote both the map and its
image F

(

Si × [0, 1]
)

.
We reserve the letter m for a nonnegative integer which is less than n , the

dimension of the ambient space.

1.7. Remarks. (a) A domain D is m-uniform for m = 0 if and only if it
is uniform in the ordinary sense. Indeed, it is immediate that (0, ̺)-uniformity
implies c-uniformity with c = ̺(0). Conversely, suppose that D is c-uniform and
let g and g̃ be two continuous maps of S0 = {−1, 1} into D . Then we can find
two paths γ−1, γ1: [0, 1] → D joining g(−1), g̃(−1) and g(1), g̃(1), respectively,
such that the c-uniformity conditions (1.1) and (1.2) hold when F is replaced
with γ−1 and γ1 and c is replaced with c′ = c′(c) (see [V4, 2.6]). It is easy to
check that the homotopy F : {−1, 1} × [0, 1] → D ,

F (−1, s) = γ−1(s), F (1, s) = γ1(s),

satisfies (1.4) and (1.5) with ̺(t) = 3c′ . In particular, an m-uniform domain is
always uniform.

(b) An m-uniform domain is always m-connected, i.e. its ith homotopy
group is trivial for all 0 ≤ i ≤ m . We could have defined a weaker notion of
m-uniformity by only demanding that (1.4) and (1.5) hold for i = m . This would
result in a parallel but somewhat different theory, and we believe that the given
definition is more natural.

Clearly, a uniform domain need not be (m, ̺)-uniform for m > 0 even if it
is m-connected. For instance, if e is any unit vector in Rn , then for n ≥ 3 the
domain D = Bn\[0, e] is uniform and contractible but not (n− 2)-uniform.

(c) The definition for ordinary uniformity is usually extended to domains in
R

n
by declaring a domain D to be uniform if D∩Rn is uniform. The advantages

of a similar definition in general are not clear. The spherical metric could be used
to deal with the general case, but for simplicity we restrict our study to domains
that do not contain the point at infinity. Also note that Rn is trivially strongly
uniform.

(d) While preparing this manuscript, it was brought to our attention that
P. Alestalo in his forthcoming dissertation [A] has independently studied domains
which he calls (m, c)-uniform. According to Alestalo’s definition, a domain D ⊂
Rn is (m, c)-uniform if there exists a constant c ≥ 1 such that every continuous

map f : Sm → D can be extended to a continuous map F : B
m+1

→ D satisfying
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(i) diamF (B
m+1

) ≤ c diam f(Sm) and (ii) dist
(

F (x), f(Sm)
)

≤ c dist
(

F (x), ∂D
)

for each x ∈ B
m+1

. It is obvious that if D is (m, c)-uniform in the sense of 1.3,
then D is (i, c) uniform in the sense of Alestalo for all 0 ≤ i ≤ m . Conversely, it
is not difficult to show that if a domain is (i, c)-uniform in the sense of Alestalo
for all 0 ≤ i ≤ m , then it is (m, 3c)-uniform.

We do not know whether an (m, ̺)-uniform domain is always (m, c)-uniform
for some constant c . [See “Added in March 1994” below.]

This work was motivated by our examination of Yang’s proof [Y] that “qua-
siconformal reflection domains are uniform”. We believe that a quasiconformal
reflection domain satisfies conditions which are much more severe than those re-
quired from a uniform domain, and in Section 7 below we verify an observation in
this direction: a quasiconformal reflection domain is strongly uniform provided it is
1-uniform. We also study more general periodic quasiconformal maps in R

n
. We

prove that if f : R
n
→ R

n
is a periodic quasiconformal map and not a reflection,

then D = R
n
\ fix(f) is a uniform domain.

The paper is organized as follows. In Section 2 we give a sufficient condition
for m-uniformity from which many examples of strongly uniform domains follow.
Section 3 is devoted to an auxiliary geometric characterization of m-uniform do-
mains in terms of plumpness; this is needed in Section 4 where we prove one of the
main results in this paper: the compactness characterization for m-uniformity.
The idea is similar to Väisälä’s in [V4], but one expects extra topological diffi-
culties in this case. By using the compactness characterization, in Section 5 we
deliver another geometric criterion for m-uniformity which should be fairly easy to
check in practice; this is a quantitative connectivity condition given in terms of the
quasihyperbolic metric and resembles Gromov’s notion of k -contractibility [Gr,
p. 139]. In Section 6 we prove that m-uniformity is invariant under quasimöbius
maps; in particular, it is invariant under quasiconformal self maps of Rn . This
result is again based on compactness. In Section 7 we study the fixed point sets
of periodic quasiconformal maps.

We wish to point out that many of the proofs here—some with very few
changes—are valid in more general metric spaces. For instance, the compactness
characterization holds in any metric space that is homeomorphic to Rn and pos-
sesses an appropriate group of similarities. Important examples of such spaces are
the so-called homogeneous groups equipped with a Carnot–Carathéodory metric;
for instance, the n -dimensional Heisenberg group for each n ≥ 1 is such a group.
For simplicity of notation, we formulate our results in Rn .

Added in March 1994. While this paper was being written, we learned that
P. Alestalo at the University of Helsinki was working on similar ideas. As it turned
out, there is little overlap between his and our work. We did find many interesting
and new ideas in [A] and now these two works complement each other in a nice
way. Most importantly from our point of view, Alestalo shows that an (m, ̺)-
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uniform domain is always (m, c)-uniform for some constant c , thus answering our
question in the affirmative. In proving this, he uses Theorem 4.3 of this paper
together with a theory of higher order plumpness, developed in [A]. Furthermore,
Alestalo’s concept of homological uniformity will undoubtedly be useful in the
study of periodic quasiconformal maps. We chose to leave the first part of the
present paper more or less in the form it was submitted, and intend to return to
the consequences of Alestalo’s theory to periodic maps in a future note.

Acknowledgements. We wish to thank Fred Gehring for his encouragement
and suggestions, Robert Edwards for helpful discussions concerning Lemma 4.15,
Jussi Väisälä for bringing Alestalo’s work to our attention, Pekka Alestalo for
telling us more about his work, and Morton Brown and Gaven Martin for some
useful references. Special thanks go to Geoffrey Mess who pointed out an error
in an earlier version of this paper (we beg the colleagues who have the flawed
version to recycle it) and for valuable related discussions, and again Jussi Väisälä,
the referee, for his usual meticulous scrutiny of the manuscript which uncovered
errors and led to many improvements in the text.

2. A sufficient condition for strong uniformity

For a domain D we let kD(·, ·) denote the quasihyperbolic metric in D , de-
fined by using the density dist(x, ∂D)−1 |dx| for x ∈ D . We refer the reader
to [GP], [GO], [M1], [TV2, Section 6], or [Vu2] for the precise definition and basic
properties of this metric. Gehring and Osgood [GO] proved the existence of quasi-

hyperbolic geodesics; that is, for each pair of points x, y ∈ D there is an arc γ in D
from x to y such that the quasihyperbolic length of γ equals kD(x, y) . It is easy
to see that such a geodesic need not be unique. We say that D has the unique

quasihyperbolic geodesic property, or UQHG property, if every pair of points in D
can be joined by a unique quasihyperbolic geodesic in D . Generally, we have seen
that uniformity does not imply strong uniformity. The next result shows that if
D has the UQHG property, then uniformity does imply strong uniformity.

2.1. Theorem. If a domain D is c-uniform and has the UQHG property,

then D is (m, c′) -uniform for all m , where c′ = c′(c, n) is a constant.

Proof. Let Σi = (Σi, g) and Σ̃i = (Σ̃i, g̃) be two singular i-spheres, i < n ,
in D . For each x ∈ Si , let γx: [0, 1] → D parametrize the unique quasihyperbolic
geodesic joining g(x) and g̃(x) in such a way that

γx(0) = g(x), γx(1) = g̃(x)

and
kD

(

γx(0), γx(t)
)

= tkD

(

γx(0), γx(1)
)

for all t ∈ [0, 1] . Next define F : Si × [0, 1] → D by

F (x, t) = γx(t)
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for all x ∈ Si and t ∈ [0, 1] . We shall show that F is a desired homotopy between
Σi and Σ̃i .

To show that F is a homotopy from g to g̃ , it suffices to verify the continuity
of F . For this we first show that F (x, t) is continuous with respect to x . If this
is not the case, then there exist (x, t) ∈ Si × [0, 1] and a sequence (xν) , xν ∈ Si ,
such that xν → x and

F (xν , t) → z 6= F (x, t).

Then it follows that

kD

(

F (x, 0), z
)

= lim
ν→∞

kD

(

F (xν , 0), F (xν, t)
)

= lim
ν→∞

tkD

(

F (xν , 0), F (xν, 1)
)

= tkD

(

F (x, 0), F (x, 1)
)

.

Similarly,

kD

(

z, F (x, 1)
)

= (1 − t)kD

(

F (x, 0), F (x, 1)
)

.

This shows that there is more than one quasihyperbolic geodesic joining F (x, 0)
and F (x, 1), contradicting the UQHG property of D . Thus F (x, t) is continuous
with respect to x . Next, we use [GO, 1.2] and estimate

|F (x, t)− F (x, s)| ≤
(

exp
{

kD

(

F (x, t), F (x, s)
)}

− 1
)

dist
(

F (x, t), ∂D
)

=
(

exp
{

|t− s|kD

(

F (x, 0), F (x, 1)
)}

− 1
)

dist(F (x, t), ∂D
)

.

Since the terms on the right are bounded in x , we see that F is uniformly con-
tinuous with respect to t . Thus F is a homotopy from g to g̃ .

Finally, we prove that F satisfies the uniformity conditions (1.4) and (1.5)
with ̺ = c′ for some constant c′ = c′(c, n) . Since D is uniform, by [GO, Corol-
lary 2] there exists c0 = c0(c, n) > 0 such that for any (x, t) ∈ Si × [0, 1] we
have

(2.2) dist
(

γx(t), {γx(0), γx(1)}
)

≤ c0 dist
(

γx(t), ∂D
)

and

(2.3) l(γx) ≤ c0|γx(0) − γx(1)|,

where l(γx) is the Euclidean length of the geodesic γx . For condition (1.4), choose
(x, t), (y, s) ∈ Si × [0, 1] such that

diam(F ) = |F (x, t)− F (y, s)|.
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Then
diam(F ) ≤ |γx(t) − γx(0)| + |γx(0) − γy(0)| + |γy(0) − γy(s)|

≤ c0|γx(0) − γx(1)| + diam(Σi) + c0|γy(0) − γy(1)|

≤ (2c0 + 1) diam(Σi ∪ Σ̃i).

For condition (1.5), let (x, t) ∈ Si × [0, 1] . Then

dist
(

F (x, t),Σi ∪ Σ̃i
)

≤ dist
(

γx(t), {γx(0), γx(1)}
)

≤ c0 dist
(

γx(t), ∂D
)

.

This completes the proof of Theorem 2.1.

Let D be a half-space in Rn . Then the quasihyperbolic metric in D coincides
with the hyperbolic metric in D , and so D has the UQHG property. On the other
hand, if D is a ball in Rn , the above proof obviously applies when quasihyperbolic
geodesics are replaced by hyperbolic geodesics. Since geodesics in balls and half-
spaces satisfy (2.2) and (2.3) with an absolute constant [V6, 6.6, 6.19], we obtain
the following corollary:

2.4. Corollary. Balls and half-spaces in Rn are (m, c) -uniform for all m
with an absolute constant c .

It is easy to see that if f : D → D′ is bi-Lipschitz and D is m-uniform, then
D′ is m-uniform. In particular, any bi-Lipschitz image of a ball or a half-space is
(m, c)-uniform for all m , where the constant c depends only on the bi-Lipschitz
constant of f . Thus the bi-Lipschitz Fox–Artin ball in R3 (see [M1, 3.7]) is
(1, c)-uniform. Interestingly, since the complement of that Fox–Artin ball can be
made non-simply connected, we see that the complement of a bi-Lipschitz 3-cell
in R3 need not be 1-uniform. For the ordinary uniformity no example like this is
possible [V5, 5.10]. (See also Example 6.6 below.)

We prove in Section 6 that m-uniform domains are invariant under quasicon-
formal maps f : Rn → Rn .

3. Plumpness and (m, b)-pairs

In this section we characterize m-uniform domains in other geometric terms;
this result will be needed in the next section. Similar characterization for uniform
domains was established by Väisälä in [V4], and we build on his ideas. We let
B(x, r) denote an open n -ball with center x and radius r .

3.1. Definition [V4, 2.13]. An open set U ⊂ Rn is a -plump, a ≥ 1,
if for every x ∈ U and 0 < r < diam(U) there exists z ∈ B(x, r) such that
B(z, r/a) ⊂ U .

The following two definitions are modified after [V4, 2.13]:
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3.2. Definition. A pair of singular i-spheres Σi , Σ̃i in a domain D is said
to be an (i, b)-pair, b ≥ 1, if there exist r1, r2 > 0 with 1/2 ≤ r1/r2 ≤ 2 such
that

Σi(r1) ⊂ D, Σ̃i(r2) ⊂ D

and
dist(Σi, Σ̃i) ≤ 4bmax{r1, r2},

where E(s) denotes the s -neighborhood of a set E ,

E(s) =
⋃

x∈E

B(x, s).

3.3. (i, b, σ)-condition. A domain D satisfies an (i, b, σ)-condition if there
exists a function σ: [0,∞) → [1,∞) such that each (i, b)-pair Σi , Σ̃i ⊂ D with

max{diam(Σi), diam(Σ̃i)} ≤ t dist(Σi ∪ Σ̃i, ∂D)

are homotopic to each other in D by a homotopy F such that

(3.4) diam(F ) ≤ σ(t) diam(Σi ∪ Σ̃i)

and

(3.5) dist(x,Σi ∪ Σ̃i) ≤ σ(t) dist(x, ∂D)

for each x ∈ F .

3.6. Theorem. If D is (m, ̺) -uniform, then D is both a -plump for some

constant a = a(̺) and satisfies an (i, b, σ) -condition for all b > 0 and 0 ≤ i ≤ m
with σ = ̺ .

Proof. The second assertion is trivial and the first follows from [V4, 2.15]
since the (m, ̺)-uniformity subsumes ordinary uniformity.

Our main goal here is to show that the converse is true. The following theorem
for m = 0 was proved by Väisälä [V4, 2.15].

3.7. Theorem. If a domain D is a -plump and satisfies an (i, b, σ) -condition

for all 0 ≤ i ≤ m , then D is (m, ̺) -uniform with ̺ = ̺(a, b, σ) . Furthermore, if

σ(t) ≡ constant, then ̺(t) ≡ constant.

Proof. Let t > 0 and fix a pair of singular i-spheres Σ = Σi , Σ̃ = Σ̃i in D
such that

max{diam(Σ), diam(Σ̃)} ≤ t dist(Σ ∪ Σ̃, ∂D).

Let
r = dist(Σ ∪ Σ̃, ∂D)
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and choose x ∈ Σ, y ∈ Σ̃ such that

dist(Σ, Σ̃) = |x− y|.

If |x− y| ≤ 4br , then Σ, Σ̃ is a (i, b)-pair in D since Σ(r) , Σ̃(r) ⊂ D . Thus the
homotopy given in the (i, b, σ)-condition satisfies (1.4) and (1.5) with ̺ = σ .

We may thus assume |x− y| > 4br . Because D satisfies a (0, b, σ)-condition
and because D is a -plump, D is c-uniform for some constant c = c(a, b, σ) by
[V4, 2.15]. Thus there is a homotopy F0 between x and y such that

diam(F0) ≤ c′ |x− y|

and
dist(z, {x, y}) ≤ c′ dist(z, ∂D)

for each z ∈ F0 , where c′ = c′(c) . Clearly Σ and x form an (i, b)-pair with

max
{

diam(Σ), diam({x})
}

≤ t dist(Σ ∪ {x}, ∂D).

Thus there is a homotopy F1 between Σ and x such that

(3.8) diam(F1) ≤ σ(t) diam(Σ ∪ {x})

and

(3.9) dist(z,Σ ∪ {x}) ≤ σ(t) dist(z, ∂D)

for each z ∈ F1 . Similarly, there exists a homotopy F̃1 between y and Σ̃ which
satisfies (3.8) and (3.9) with F1 , x and Σ replaced with F̃1 , y and Σ̃, respectively.
We have a homotopy

F = F1 ∪ F0 ∪ F̃1 ⊂ D

between Σ and Σ̃, and it remains to show that F satisfies conditions (1.4) and
(1.5) for some ̺ = ̺(t, a, b, σ) .

To show that condition (1.4) holds, we estimate

diam(F ) ≤ diam(F1) + diam(F0) + diam(F̃1)

≤ σ(t) diam(Σ) + c′|x− y| + σ(t) diam(Σ̃)

≤
(

2σ(t) + c′
)

diam(Σ ∪ Σ̃).

To verify condition (1.5), fix z ∈ F . If z ∈ F1 , then

dist(z,Σ ∪ Σ̃) ≤ dist(z,Σ ∪ {x}) ≤ σ(t) dist(z, ∂D),

and similar inequalities hold if z ∈ F̃1 . On the other hand, if z ∈ F0 , then

dist(z,Σ ∪ Σ̃) ≤ dist(z, {x, y}) ≤ c′ dist(z, ∂D),

and we deduce that (1.5) holds with ̺(t) = max{σ(t), c′} . Hence both (1.4) and
(1.5) hold with ̺(t) = 2σ(t) + c′ . Theorem 3.7 follows.
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4. Compactness characterization of strong uniformity

In this section we give an essentially different characterization for m-uniform
domains based on compactness. This characterization appears to be useful in
practice. We equip the compact space R

n
≈ Sn with the spherical metric and let

Kn = {A : ∅ 6= A ⊂ R
n
, A compact}.

Then Kn is a compact metric space under the Hausdorff metric; see [V5, Section 2]
for some basic properties of Kn . Next, let S denote the group of similarities of
Rn ; that is, α ∈ S if and only if there is λ > 0 such that

|α(x) − α(y)| = λ|x− y|

for all x, y ∈ Rn .

4.1. Definition [V4], [V5]. A family H ⊂ Kn is stable if (i) S (H) = H ,
and (ii) H2 = {A ∈ H : 0, e1 ∈ ∂A} is compact, where e1 = (1, 0, . . . , 0).

The following theorem is due to Väisälä [V4, 3.6]:

4.2. Theorem. For c ≥ 1 let Mc be the family of all A ∈ Kn such that

R
n
\A ⊂ Rn is a c-uniform domain. Then Mc is compact and stable. Conversely,

if M ⊂ Kn is a stable family such that the open set R
n
\ A ⊂ Rn is connected

for each A ∈M , then M ⊂Mc for some c ≥ 1 .

For given ̺: [0,∞) → [1,∞) we denote by M(m, ̺) the family of all A ∈ Kn

such that R
n
\A ⊂ Rn is an (m, ̺)-uniform domain. Our purpose is to prove the

following analogues of Theorem 4.2:

4.3. Theorem.

(1) S
(

M(m, ̺)
)

= M(m, ̺) .
(2) If {Aj : j = 1, 2, . . .} ⊂ M(m, ̺) and Aj → A in Kn , then A ∈ M(m, ̺′)

with ̺′(t) = 6̺(t+ 1) .

4.4. Theorem. If M ⊂ Kn is a stable family such that the open set

R
n
\A ⊂ Rn is m-connected for each A ∈M , then M ⊂M(m, ̺) for some ̺ .

Theorem 4.3 does not imply that M(m, ̺) is compact because we have to
change ̺ to ̺′ . It would be interesting to know whether M(m, ̺) is compact or
even stable for m > 0.

Before giving the proofs of the above results, we present a useful corollary:

4.5. Corollary. Let D ⊂ Rn be an m-connected domain with at least two

finite boundary points. Then D is not m-uniform if and only if there exists a

sequence of similarities (αj) such that {0, e1} ⊂ αj(∂D) , R
n
\ αj(D) → A in

Kn , and either 0 ∈ intA or πi(R
n
\A) 6= 0 for some 0 ≤ i ≤ m .
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Proof. Let Hm ⊂ Kn be the family of all A ∈ Kn such that R
n
\A ⊂ Rn is

m-connected. If D is not m-uniform, its complement cannot belong to any stable
subfamily of Hm by Theorem 4.4. Since S (Hm) = Hm and since ∂D contains
at least two finite boundary points, we obtain from [V4, 3.3] that the closure of
S (R

n
\D)2 in Kn is not contained in H2

m . This exactly means that there exists
a sequence (αj) of similarities as asserted in the theorem.

To prove the necessity, suppose that there exists a sequence (αj) as described
in the assertion. If D is m-uniform, then D is (m, ̺)-uniform for some ̺ , and
hence αj(D) is (m, ̺)-uniform for each j since αj is a similarity map. It fol-

lows from Theorem 4.3 that R
n
\A is (m, ̺′)-uniform for some ̺′ ; in particular,

πi(R
n
\A) = 0 for each 0 ≤ i ≤ m . On the other hand, the sets R

n
\αj(D) belong

to a stable family by Theorem 4.2, and it follows that 0 /∈ intA . This contradicts
our assumption and shows that D is not m-uniform.

Proof of Theorem 4.3. Let M = M(m, ̺) . It is clear that S (M) = M .
Next, let

Aj ∈M, Aj → A ∈ Kn,

and write

Dj = R
n
\Aj , D = R

n
\A.

We need to show that D is (m, ̺′)-uniform for ̺′(t) = 6̺(t+1). Fix two singular
i-spheres Σ, Σ̃ ⊂ D , 0 ≤ i ≤ m , satisfying

max{diam(Σ), diam(Σ̃)} ≤ t dist(Σ ∪ Σ̃, A)

for some t > 0. We may assume that Σ, Σ̃ ⊂ Dj and that

max{diam(Σ), diam(Σ̃)} ≤ (t+ 1) dist(Σ ∪ Σ̃, Aj)

for all j . Since Dj is (m, ̺)-uniform, there is a homotopy Fj between Σ and Σ̃
in Dj such that

diam(Fj) ≤ ̺(t+ 1) diam(Σ ∪ Σ̃)

and

(4.6) dist(x,Σ ∪ Σ̃) ≤ ̺(t+ 1) dist(x,Aj)

for all x ∈ Fj . We show that for large j , F = Fj is an appropriate homotopy in

D between Σ and Σ̃.
Fix x0 ∈ Σ and s > 0 such that Fj ⊂ B(x0, s) for all j . If A∩B(x0, 2s) = ∅ ,

then

dist(x,Σ ∪ Σ̃) ≤ s ≤ dist(x,A)
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for all x ∈ Fj , as desired. Suppose now that A ∩B(x0, 2s) 6= ∅ . Then

rj = max
x∈A∩B(x0,2s)

dist(x,Aj) → 0, j → ∞.

Next write

r = dist(Σ ∪ Σ̃, A) > 0.

Pick j so large that rj < r/4̺(t+ 1) and let F = Fj . We want to show that (4.6)
holds for each x ∈ F with ̺ replaced with 6̺ and Aj with A .

To this end, fix x ∈ F . If

dist(x,Σ ∪ Σ̃) < 2̺(t+ 1)rj < r/2,

then

dist(x,A) ≥ r − dist(x,Σ ∪ Σ̃) > r/2.

On the other hand, if

dist(x,Σ ∪ Σ̃) ≥ 2̺(t+ 1)rj,

then by (4.6)

dist(x,Σ ∪ Σ̃) ≤ ̺(t+ 1) dist(x,Aj) ≤ ̺(t+ 1)
(

dist
(

x,A ∩B(x0, 2s)
)

+ rj
)

≤ 3̺(t+ 1) dist(x,A) + 1
2 dist(x,Σ ∪ Σ̃)

which yields

dist(x,Σ ∪ Σ̃) ≤ 6̺(t+ 1) dist(x,A) = 6̺(t+ 1) dist(x, ∂D).

This shows that D is (m, ̺′)-uniform with ̺′(t) = 6̺(t + 1), as desired. The
theorem follows.

We need another theorem of Väisälä [V4, 3.4]:

4.7. Theorem. For a ≥ 1 let La be the family of all A ∈ Kn such that

(R
n
\A) ∩Rn is a -plump. Then La is compact and stable. Conversely, for every

stable family L ⊂ Kn there is a ≥ 1 such that L ⊂ La .

Proof of Theorem 4.4. We need to demonstrate the existence of a function
̺: [0,∞) → [1,∞) such that D = R

n
\A is (m, ̺)-uniform for any given A ∈M .

By Theorem 4.7, D is a -plump for some constant a independent of A . Thus in
view of Theorem 3.7 it suffices to show that there exist σ: [0,∞) → [1,∞) and
b > 0 such that D = R

n
\A satisfies the (i, b, σ)-condition defined in 3.3 for each

A ∈M and 0 ≤ i ≤ m .
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Fix any real number b > 0 and suppose that no such σ exists. Then there
exists t > 0 and for each positive integer j there exist Aj ∈M and an (i, b)-pair

of singular i-spheres Σi
j = Σj , Σ̃i

j = Σ̃j in Dj = R
n
\Aj such that

(4.8) max{diam(Σj), diam(Σ̃j)} ≤ t dist(Σj ∪ Σ̃j , ∂Dj)

and that for each homotopy F in Dj between Σj and Σ̃j we have either

(4.9) diam(F ) > j diam(Σj ∪ Σ̃j)

or

(4.10) dist(x,Σj ∪ Σ̃j) > j dist(x, ∂Dj)

for some x ∈ F .
Since Σj and Σ̃j form an (i, b)-pair, there exist rj , sj > 0 with 1

2
≤ rj/sj ≤ 2

such that
Σj(rj) ⊂ Dj , Σ̃j(sj) ⊂ Dj ,

and

(4.11) dist(Σj , Σ̃j) ≤ 4bmax{rj , sj}.

We may assume that

(4.12) rj = sj = dist(Σj ∪ Σ̃j , Aj).

Choose xj ∈ Σj ∪ Σ̃j and yj ∈ Aj such that

rj = |xj − yj |.

If
max{|xj − z| : z ∈ Σj ∪ Σ̃j} < rj/2,

then
Σj ∪ Σ̃j ⊂ B(xj , rj/2) ⊂ Dj = R

n
\Aj ,

and in this case it is easy to verify (see Corollary 2.4) that Σj and Σ̃j can be
joined by a homotopy F in B(xj, rj/2) such that

(4.13) diam(F ) ≤ c diam(Σj ∪ Σ̃j)

and

(4.14) dist(x,Σj ∪ Σ̃j) ≤ c dist(x, ∂Dj)
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for all x ∈ F , where c is independent of j . This contradicts our assumptions (4.9)
and (4.10) above. Therefore, we may choose zj ∈ Σj ∪ Σ̃j such that

|xj − zj | ≥ rj/2.

On the other hand, for any z ∈ Σj ∪ Σ̃j , by (4.8), (4.11) and (4.12)

|xj − z| ≤ diam(Σj) + dist(Σj , Σ̃j) + diam(Σ̃j) ≤ (2t+ 4b)rj < c1rj ,

where c1 = 2t+ 4b+ 1. Thus we have

rj/2 ≤ |xj − zj | ≤ c1rj

and
Σj ∪ Σ̃j ⊂ B(xj, c1rj).

Next let Γj = ∂Aj ∩B(xj , 2c1rj) . If diam(Γj) ≤ rj/2, then

Σj ∪ Σ̃j ⊂ B(xj, c1rj)\B(yj , 3rj/4),

and
Aj ∩B(xj , 2c1rj) ⊂ B(yj, rj/2).

Since Σj and Σ̃j are homotopic in Dj , hence in the complement of the point yj ,
one can choose a homotopy

F ⊂ B(xj , c1rj)\B(yj, 3rj/4)

between Σj and Σ̃j . Then (4.13) and (4.14) hold for large j . This again con-
tradicts our assumptions above, and we may assume diam(Γj) > rj/2. Choose
aj , bj ∈ Γj such that

rj/2 ≤ |aj − bj| ≤ 3c1rj

and choose a similarity αj such that

αj(aj) = 0, αj(bj) = e1.

Then
|αj(x) − αj(y)| = Lj |x− y|

for all x, y ∈ Rn , where Lj = |aj − bj |
−1 . Since

0 <
1

3c1
≤ Ljrj =

rj
|aj − bj|

≤ 2
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and
|αj(xj)| = |αj(xj) − αj(aj)| ≤ 2c1Ljrj ,

by passing to a subsequence we may assume that

Ljrj → r > 0, αj(xj) → x0.

Then we have

dist
(

αj(Σj) ∪ αj(Σ̃j), αj(Aj)
)

= Lj dist(Σj ∪ Σ̃j , Aj) = Ljrj → r > 0

and
αj(Σj) ∪ αj(Σ̃j) ⊂ B

(

αj(xj), c1Ljrj
)

→ B(x0, c1r).

Thus, again by passing to a subsequence, we may assume that

αj(Aj) → A ∈ Kn,

and hence that there exists a compact set E in D = R
n
\A containing αj(Σj) ∪

αj(Σ̃j) for all j .
Because {0, e1} ⊂ ∂αj(Aj) and because M is stable, A ∈ M ; in particular,

D = R
n
\A is m-connected. By the topological lemma below, there is a compact

set E′ in D with E ⊂ E′ such that αj(Σj) and αj(Σ̃j) are homotopic to each
other in E′ . Obviously, one can assume

E′ ⊂ Rn\αj(Aj) = αj(Dj),

and
dist

(

E′, αj(Aj)
)

≥ δ > 0

for all j . Furthermore,

diam
(

αj(Σj) ∪ αj(Σ̃j)
)

≥ |αj(xj) − αj(zj)| = (rjLj)/2 → r/2 > 0.

Consequently, for all large j we can find a homotopy F ′ in E′ between αj(Σj)

and αj(Σ̃j) such that (4.13) and (4.14) hold for F = α−1
j ◦F ′ with c independent

of j . This contradicts (4.9) and (4.10), thus completing the proof of Theorem 4.4.

In the proof of Theorem 4.4 we required the following lemma:

4.15. Lemma. Suppose that D ⊂ Sn ≈ R
n

is an open, connected and

simply connected set with πm(D) = 0 for some 1 ≤ m < n . Then for any given

compact set E ⊂ D there is a path connected compact set E′ , E ⊂ E′ ⊂ D , such

that any continuous map f : Sm → E is homotopic to a constant map in E′ .
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Proof. Since E ⊂ P ⊂ D for some polyhedron P , we may assume that E
itself is a compact, connected (finite) polyhedron in D and, after triangulation,
that E is a finite simplicial complex. Then π1(E) is finitely generated with
generators gj: S1 → E , j = 1, . . . , k . Let X be a space obtained from E by
attaching 2-cells by the maps gj (see [Sp, p. 146]). Then X is compact and it
is easy to see that π1(X) = 0. Furthermore, X has finitely generated homology
groups and it follows from a theorem of Serre [Sp, p. 509, Corollary 16] that X
has finitely generated homotopy groups in every dimension. As above, we attach
to each generator of πm(X) an (m+ 1)-cell to kill that generator. The resulting
space Y is compact and path connected with πm(Y ) = 0.

Next, since π1(D) = 0, the inclusion i: E → D can be extended to a con-
tinuous map g: X → D . Similarly, since πm(D) = 0, g can be extended to a
continuous map h: Y → D . Then E′ = h(Y ) ⊂ D is the desired set.

4.16. Remark. R.D. Edwards and G. Mess have given an example which
shows that Lemma 4.15 is not true without the assumption π1(D) = 0, at least
when n is sufficiently high (n ≥ 7 will do).

5. m-uniformity and quasihyperbolic metric

In this section we use the compactness criterion (Corollary 4.5) to provide
an alternative and perhaps thus far the most appropriate characterization for m-
uniform domains.

5.1. Definition. We say that a domain D is quasihyperbolically m-

connected, or QHC(m) , if there is an increasing function ψ: [0,∞) → [0,∞) such
that every singular i-sphere Σi ⊂ D , 0 < i ≤ m , is homotopic to a point in D
through a homotopy F with

(5.2) kD(F ) ≤ ψ
(

kD(Σi)
)

.

Here kD(E) denotes the quasihyperbolic diameter of a set E and, as always, we
identify the map F : Si × [0, 1] → D with its image set.

For a connected set A ⊂ D the quasihyperbolic diameter can conveniently be
estimated in terms of the ratio

rD(A) =
diam(A)

dist(A, ∂D)
.

More precisely, we have

(5.3) log

(

1 +
rD(A)

2

)

≤ kD(A) ≤ τn
(

rD(A)
)

,

where the function τn: [0,∞) → [0,∞) is increasing and depends only on n ;
see [TV2, Lemma 6.9]. It follows that a domain D is QHC(m) if and only if
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there is a function ψ′: [0,∞) → [0,∞) such that every singular i-sphere Σi ⊂ D ,
0 < i ≤ m , is homotopic to a point in D through a homotopy F with

(5.4) rD(F ) ≤ ψ′
(

rD(Σi)
)

.

Moreover, the functions ψ and ψ′ depend only on each other and n .

5.5. Theorem. A domain D is m-uniform if and only if it is both uniform

and QHC(m) . The functions ̺ and ψ depend only on each other and n .

Proof. Suppose that D is (m, ̺)-uniform and that Σi is a singular i-sphere
in D for some 1 ≤ i ≤ m . We can find a homotopy F ⊂ D between Σi and a
point x0 ∈ Σi such that

diam(F ) ≤M diam(Σi)

and
dist(x,Σi) ≤M dist(x, ∂D)

for x ∈ F , where M = ̺
(

rD(Σi)
)

. Since also

dist(Σi, ∂D) ≤ dist(x,Σi) + dist(x, ∂D) ≤ (M + 1) dist(x, ∂D)

for any x ∈ F , we have

rD(F ) =
diam(F )

dist(F, ∂D)
≤
M(M + 1) diam(Σi)

dist(Σi, ∂D)
= M(M + 1)rD(Σi).

Thus (5.4) holds with ψ′(t) = ̺(t)
(

̺(t) + 1
)

t , proving that D is QHC(m) .
To prove the sufficiency part of the assertion, we apply Corollary 4.5. Suppose

that D is not m-uniform. Then there is a sequence of similarities (αj) such that
{0, e1} ⊂ ∂Dj , where Dj = αj(D) , and

R
n
\Dj = Aj → A ∈ Kn

such that πi(R
n
\ A) 6= 0 for some 0 ≤ i ≤ m . Note that the possibility that

0 ∈ intA is ruled out because D is uniform (this is Corollary 4.5 for m = 0
which follows from Väisälä’s Theorem 4.2); similarly we infer that D0 = R

n
\ A

is connected, so that i > 0.
Let Σi be a singular i-sphere in D0 . Because R

n
\ Dj → R

n
\ D0 in the

Hausdorff metric, we may assume that

kDj
(Σi) ≤M,

where M is independent of j . Similarities are isometries in the quasihyperbolic
metric, and so

kD

(

α−1
j (Σi)

)

≤M
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for all j . Since D is QHC(m) by assumption, each α−1
j (Σi) is homotopic to a

point through a homotopy Fj ⊂ D such that

kD(Fj) ≤M ′;

in particular,
kDj

(αj ◦ Fj) ≤M ′,

where M ′ is independent of j . We infer from this and (5.3) that αj ◦Fj lies in D0

for all j sufficiently large, whence Σi is null-homotopic in D0 . This contradicts
our assumption that πi(D0) 6= 0. Clearly, ̺ and ψ depend only on each other
and n , and the theorem follows.

5.6. Remarks. (a) In Theorem 5.5 it is not enough to assume that D is
QHC(m) . For example, the domain D = R2 × (0, 1) ⊂ R3 is QHC(1) but not 1-
uniform. One can also infer that being QHC(m) is invariant under quasiconformal
maps while uniformity is not; see next section.

(b) Vuorinen [Vu1, 2.49] and recently Väisälä [V6, 6.8] have studied ψ -
uniform domains D which satisfy the inequality

kD(x, y) ≤ ψ
(

rD({x, y})
)

for each pair of points x, y ∈ D and for some homeomorphism ψ: [0,∞) → [0,∞) .
Interestingly, Väisälä [V6, 6.16] has shown that if D is ψ -uniform with ψ(t)/t→ 0
as t → ∞ , then D is uniform. In light of this and Theorem 5.5 one may ask
whether a slow growth for ψ in (5.2) together with uniformity implies (m, c)-
uniformity for some constant c .

6. Quasiconformal maps and strong uniformity

We study the invariance of m-uniform domains under quasiconformal and
related maps. We establish that if D is m-uniform and f : Rn → Rn is quasi-
conformal, then f(D) is m-uniform. Again, the compactness criterion is crucial
here. We also show that a contractible quasiconformally homogeneous domain is
strongly uniform if and only if it is uniform.

6.1. Quasimöbius and quasisymmetric maps. The cross-ratio of four
distinct points a, b, c, d ∈ R

n
is the number

|a, b, c, d| =
|a− b||c− d|

|a− c||b− d|

with the usual convention if one of the points is ∞ . If X ⊂ R
n
, an embedding

f : X → R
n

is θ -quasimöbius if

|f(a), f(b), f(c), f(d)| ≤ θ(|a, b, c, d|)
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for some homeomorphism θ: [0,∞) → [0,∞) and for all quadruples (a, b, c, d) of
distinct points in X .

Similarly, if X ⊂ Rn , an embedding f : X → Rn is η -quasisymmetric if

|f(a)− f(b)|

|f(a)− f(c)|
≤ η

(

|a− b|

|a− c|

)

for some homeomorphism η: [0,∞) → [0,∞) for all triples (a, b, c) of distinct
points in X .

The basic theory of quasimöbius and quasisymmetric maps in Euclidean
spaces is given in [V2] and [V3]; see also [TV1]. We recall that an η -quasisym-
metric map is always θ(η)-quasimöbius and, if X is an open set, a θ -quasimöbius
map is K -quasiconformal with dilatation K = K(θ, n) . The following theorem
explains the close kinship between quasimöbius and quasisymmetric maps and
uniform domains; for a proof, see [V3, Theorem 5.6].

6.2. Theorem. Suppose that D is a uniform domain and that f is a

quasiconformal map of D onto D′ . Then D′ is uniform if and only if f is

quasimöbius. The relevant parameters depend only on each other and n .

We prove the following theorem.

6.3. Theorem. If f is a θ -quasimöbius homeomorphism of an (m, ̺) -
uniform domain D onto D′ ⊂ Rn , then D′ is (m, ̺′) -uniform, where ̺′ depends

only on ̺ , θ , and n .

6.5. Corollary. Suppose that D is an (m, ̺) -uniform domain and f is

K -quasiconformal self-homeomorphism of R
n
. If f(D) ⊂ Rn , then f(D) is an

(m, ̺′) -uniform domain with ̺′ = ̺(n,K, ̺) .

Combining Theorems 6.3 with 6.2, we obtain an interesting corollary which
states that quasiconformal maps cannot destroy strong uniformity without de-
stroying the ordinary uniformity:

6.5. Corollary. A domain that can be mapped quasiconformally onto a

strongly uniform domain is strongly uniform if and only if it is uniform. In par-

ticular, a quasiconformal ball is strongly uniform if and only if it is uniform. The

relevant parameters depend only on each other and n .

6.6. Example. Corollary 6.5 immediately provides examples of domains
that cannot be mapped quasiconformally onto a ball. We next exhibit a possibly
new example 1 by claiming that there is a domain D in R3 such that

1 Jussi Väisälä pointed out that Tukia has essentially the same example in [T1, p. 69]; Tukia’s

argument for the second assertion in (6) is different.
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(1) both D ⊂ R
3

and D
∗

= R
3
\D are homeomorphic to B

3
;

(2) ∂D is smooth except at one point;
(3) ∂D has tangent at each point;
(4) D∗ is bi-Lipschitz equivalent to an open half space and hence is a strongly

uniform domain;
(5) D is a uniform domain;
(6) D is not 1-uniform, and hence not a quasiconformal ball by (5) and 6.5.

The domain D is a modification of the bi-Lipschitz Fox–Artin ball; we sketch
the construction. Let {Bj : j = 1, 2, . . .} be a collection of disjoint open disks in
R2 = R2 × {0} ⊂ R3 centered at (0, 2j, 0) with radius 1/2. To each disk Bj

we attach a domain Dj ⊂ {x3 > 0} which is an appropriate modification of the
domain obtained at the j th stage in the construction of the bi-Lipschitz Fox–Artin
ball [M1, p. 176]. This construction can be done in such a way that

D∗ = {x ∈ R3 : x3 < 0} ∪
∞
⋃

j=1

Dj ∪
∞
⋃

j=1

Bj

and D = R
3
\ D∗ satisfy (1)–(4). That D is uniform, follows from (4) and a

theorem of Väisälä [V5, 5.10]. On the other hand, if we fix an appropriate loop
in D around D1 , then all homotopies of its translates (x 7→ 2jx) to a point have
to go arbitrarily close to the boundary ∂D as j → ∞ , showing that D is not
1-uniform.

6.7. Quasihyperbolic metric and quasiconformal maps. We make use
of the following important property of quasiconformal maps: there is a homeo-
morphism ϕK,n: [0,∞) → [0,∞) such that

(6.8) kD′

(

f(x), f(y)
)

≤ ϕK,n

(

kD(x, y)
)

whenever f : D → D′ is K -quasiconformal and x, y ∈ D . See [GO, Theorem 3].
This uniform continuity in the quasihyperbolic metric is sometimes called the
solidity of a quasiconformal map, cf. [TV2].

Proof of Theorem 6.3. Suppose that the claim is not true. Then there is a
sequence of (m, ̺)-uniform domains Dj and θ -quasimöbius maps fj: Dj → D′

j ⊂
Rn with the following property: there is no ̺′ such that all the image domains
D′

j are (m, ̺′)-uniform. Of course, it may happen that fj = f1 for all j . Let M
be the closure of the family

{α(R
n
\D′

j) : α ∈ S , j = 1, 2, . . .}

in Kn . Then S (M) = M . Moreover, since each D′

j is c(θ, ̺, n)-uniform (see
Theorem 6.2), M is a compact subset of a stable family, and hence stable itself by
Väisälä’s Theorem 4.2. In particular, R

n
\A is connected for each A ∈M . Thus
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by our contrapositive assumption and by Theorem 4.4, there is A′

0 ∈M such that
πi(R

n
\A′

0) 6= 0 for some 1 ≤ i ≤ m . After relabeling we may assume that

A′

j = αj(R
n
\D′

j) → A′

0

in the Hausdorff metric, where D′

0 = R
n
\A′

0 ⊂ Rn is a uniform domain.
In the rest of the proof we let 1 ≤ C1, C2, . . . denote any constants that are

independent of j . Fix an essential singular i-sphere Σi in D′

0 . We may assume

dist(Σi, A′

j) ≥ 1/C1 > 0,

so that by (5.3)
kαj(D′

j
)(Σ

i) ≤ C2.

Now using the solidity of quasiconformal maps (6.8) we deduce that

(6.9) kDj

(

g−1
j (Σi)

)

≤ C3

and hence by (5.3) that

diam
(

g−1
j (Σi)

)

≤ C4 dist
(

g−1
j (Σi), ∂Dj

)

,

where gj = αj ◦ fj . Next, fix a point x0 ∈ Σi . Because Dj is (m, ̺)-uniform, we
can find a homotopy Fj between g−1

j (Σi) and g−1
j (x0) such that

kDj
(Fj) ≤ C5;

see the proof of Theorem 5.5. In consequence, F ′

j = gj ◦Fj is a homotopy between

Σi and x0 in R
n
\A′

j such that

kαj(D′

j
)(F

′

j) ≤ ϕK,n(C5) = C6 <∞.

This implies that F ′

j lies in D′

0 for all j large enough, contradicting the assumption

that Σi is essential. The theorem follows.

6.10. Quasiconformally homogeneous domains. Recall that a domain
D is homogeneous with respect to a quasiconformal family if for some K there is
a family Γ of K -quasiconformal self-homeomorphisms of D such that for each
pair of points x, y ∈ D there exists an f ∈ Γ with f(x) = y . We also say that D
is quasiconformally homogeneous.

Every quasiconformal ball is quasiconformally homogeneous and the converse
is true if the domain possesses an (n − 1)-tangent at a single finite boundary
point [GP]; see also [M2]. However, for all n ≥ 3 there are topological balls
(even interiors of topologically flat n -cells) in Rn which are quasiconformally
homogeneous yet not quasiconformal balls. Tukia [T2] was the first to construct
such examples. Tukia’s example domain is uniform, and the next theorem shows
that it is even strongly uniform.
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6.11. Theorem. An m-connected quasiconformally homogeneous domain

is m-uniform if and only if it is uniform. In particular, a contractible quasicon-

formally homogeneous domain is strongly uniform if and only if it is uniform.

Proof. We use Corollary 4.5: if D is not m-uniform, there is a sequence (αj)

of similarities such that {0, e1} ⊂ αj(∂D) and R
n
\αj(D) = Aj → A in Kn with

πi(R
n
\A) 6= 0 for some 1 ≤ i ≤ m . Take notice that the assertion is trivial if D

has only one finite boundary point, and the possibility that 0 ∈ intA or i = 0 is
excluded by Theorem 4.2.

Fix points x0 ∈ D and y0 ∈ D0 = R
n
\A ; we may assume y0 ∈ Dj = R

n
\Aj

for all j . Next choose a quasiconformal self-map fj of D such that fj(x0) =
α−1

j (y0) . Because D is quasiconformally homogeneous, we may assume that fj is
K -quasiconformal for some fixed K . Then the sequence

{gj = αj ◦ fj: D → Dj}

is an equicontinuous family of K -quasiconformal maps by [V1, 19.3]. Since
gj(x0) = y0 ∈ D0 , by passing to a subsequence we may assume that gj → g ,
where g is a K -quasiconformal map of D onto D0 ; see [V1, 21.9, 37.4]. This
is a contradiction in light of the assumption πi(D) = 0 6= πi(D0) . The theorem
follows.

7. Periodic quasiconformal maps

Suppose that f is a self-homeomorphism of R
n
. We call f periodic if there

is an integer k > 0 such that fk = id = identity ; the order of a periodic f is
the smallest such k , and is denoted by ord(f) . We let fix(f) denote the set of all
fixed points of f , i.e.

fix(f) = {x ∈ R
n

: f(x) = x}.

It is a classical issue to try to identify the geometry of the fixed point set of a peri-
odic transformation. We record the following well known result of P.A. Smith [Sm]
for an easy reference; it will be crucial in what follows.

7.1. Theorem. Suppose that f is a periodic self-homeomorphism of R
n

with prime power order, i.e. ord(f) = ps for p prime. Then fix(f) is a mod p
Čech cohomology r -sphere for some −1 ≤ r ≤ n . Moreover, n− r is even when

p is odd.

For a proof of Theorem 7.1, see [Sm], [Br, Chapter III]. We recall that a com-
pact set A ⊂ R

n
is a Čech cohomology r -sphere if the reduced Čech cohomology

groups with coefficients in Zp = Z/pZ satisfy

ˇ̃Hi(A;Zp) ≃

{

Zp, if i = r
0, otherwise.
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The purpose of this section is to analyze fix(f) , or rather its complement in
R

n
, when f is periodic and quasiconformal. We call f a reflection if it is a

sense-reversing involution of R
n
; then f interchanges two domains D and D∗ in

R
n

with ∂D = ∂D∗ = fix(f) . It follows from Smith’s theorem that (under its
assumptions) R

n
\fix(f) is connected except when f is a reflection; moreover, the

latter occurs if and only if r = n− 1 in Theorem 7.1. Also note that the interior
of the fixed point set of a nontrivial periodic transformation is always empty by a
theorem of Newman [N], [Br, p. 157].

We prove the following two theorems.

7.2. Theorem. Suppose that f is a periodic sense-preserving quasiconformal

self-homeomorphism of R
n
, and suppose that ∞ ∈ fix(f) . Then R

n
\ fix(f) is a

uniform domain.

7.3. Theorem. Suppose that f is a quasiconformal reflection in R
n

with

∞ ∈ fix(f) . Then both components of R
n
\ fix(f) are uniform; if either of them

is 1 -uniform, then both are strongly uniform.

7.4. Remarks. (a) The normalization ∞ ∈ fix(f) in above theorems is just
for convenience, cf. Remarks 1.7 (c).

(b) The first assertion in Theorem 7.3 was proved by Yang [Y]. We do not
know whether the assumption “either of them is 1-uniform” in Theorem 7.3 is
necessary. The proof will show that it is not necessary provided the complementary
components of the fixed point set of a quasiconformal reflection are always simply
connected. For diffeomorphisms this is well-known to be true, but not necessarily
so for topological reflections; see [Bi].

(c) In general it is not true that the domain R
n
\ fix(f) in Theorem 7.2 is

m-uniform for m > 1, even if it is 1-uniform; in other words, a direct analog
of Theorem 7.3 for arbitrary periodic maps is false. To see this, consider, an
orthogonal transformation O in R4 such that fix(O) = R1 . Then R4 \ fix(O) is
1-uniform but π2

(

R4 \ fix(O)
)

6= 0. We do not know if there is a similar example

under the extra assumption that R
n
\ fix(f) is m-connected.

(d) It is easy to see that neither of Theorems 7.2 and 7.3 need hold for general
topological transformations.

Proof of Theorem 7.2. Let D = R
n
\fix(f) . The claim is obviously true if ∂D

contains only two points in R
n

or if D = ∅ , so we may assume that {0, e1} ⊂ ∂D .
Next, if f is not of prime power period, f t has a prime power period for some
positive integer t < ord(f) ; because fix(f) ⊂ fix(f t) and because int

(

fix(f t)
)

= ∅ ,

we see that R
n
\fix(f) is uniform if R

n
\fix(f t) is uniform (see [V4, Remark 2.12]).

Thus we may assume that ord(f) is a prime power.

Suppose now that the claim is false. Then by Väisälä’s Theorem 4.2 (cf. Corol-
lary 4.5) there is a sequence of similarities (αj) such that {0, e1} ⊂ αj

(

fix(f)
)

,
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αj

(

fix(f)
)

→ A in Kn , and either 0 ∈ intA or R
n
\A is not connected. Consider

the maps
gj = αj ◦ f ◦ α−1

j .

Then each gj is a K -quasiconformal self-homeomorphism of R
n

with K in-
dependent of j and ord(gj) = ord(f) = ps for some prime p and integer s .
Moreover,

gj(0) = 0, gj(e1) = e1, gj(∞) = ∞,

and hence by passing to a subsequence we may assume that gj → g uniformly

in R
n
, where g is a K -quasiconformal self-homeomorphism of R

n
(see [V1,

Chapters 19, 29 and 37.3]).
Clearly g is periodic and sense-preserving. Pick x0 ∈ A . Then x0 =

limαj(xj) for some xj ∈ fix(f) , whence

g(x0) = lim
j→∞

αj ◦ f ◦ α−1
j

(

αj(xj)
)

= lim
j→∞

αj(xj) = x0.

Thus A ⊂ fix(g) . If fix(g) = R
n
, then gj converges uniformly to the identity

map in R
n
. This is impossible in view of the fact that each compact Lie group G

acting on R
n

has an orbit of diameter at least ε(G) > 0 (see [Br, Theorem 9.6,
p. 158]). Thus fix(g) 6= R

n
, and hence fix(g) can not have interior points by

the aforementioned theorem of Newman. Consequently, A cannot have interior
points.

Next we claim that ord(g) = ord(f) . Indeed, if this is not the case, then
gq =identity for some 1 < q < ord(f) = ord(gj) , and it follows that

gq
j → gq = identity

uniformly in R
n
. Since gq

j 6= id, we arrive at a contradiction by invoking [Br,
Theorem 9.6, p. 158] as above.

In consequence, g is a periodic self-homeomorphism of R
n

with ord(g) = ps

for some prime p . Smith’s theorem ascertains that fix(g) is a cohomology r -sphere
for some 1 ≤ r ≤ n− 1; note that r ≤ 0 is excluded because {0, e1,∞} ⊂ fix(g) .
By the Alexander duality

ˇ̃Hi
(

fix(g);Zp

)

≃ H̃n−i−1

(

R
n
\ fix(g);Zp

)

,

where we have the reduced Čech cohomology on the left and the reduced singular
homology on the right. Thus if R

n
\ fix(g) is not connected, we must have

Ȟn−1
(

fix(g);Zp

)

6= 0

or r = n− 1. However, this cannot be the case since g is not a reflection.
It follows that R

n
\ fix(g) and hence R

n
\ A is connected. As we already

demonstrated that intA = ∅ , the theorem follows.
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Proof of Theorem 7.3. Let D and D∗ denote the two complementary com-
ponents of fix(f) . By [Y, Theorem 3.1], both D and D∗ are uniform. Since f
interchanges D and D∗ , by Theorem 6.3 it suffices to show that D is m-uniform
for all m , provided it is 1-uniform. Suppose that this is false. As before, we may
select similarities αj such that {0, e1} ⊂ αj(∂D) , that R

n
\ αj(D) → A in Kn ,

and that πi(R
n
\ A) 6= 0 for some 2 ≤ i ≤ m ; because D is 1-uniform, R

n
\ A

is simply connected (see Theorem 4.3). As in [Y, Proof of 3.1] we can assume
that gj = αj ◦ f ◦ α−1

j converges uniformly to a sense-reversing quasiconformal
involution g with fix(g) = ∂A ; moreover, the Smith theory and duality imply that
∂A is a cohomology (n−1)-sphere and that R

n
\∂A has exactly two components:

intA and R
n
\A . Since g interchanges the components of R

n
\ ∂A , we see that

also intA is simply connected.
Next we invoke [Br, Theorem 7.13, p. 146], which implies that the ith Čech

cohomology groups with integer coefficients of the quotient space A = R
n
/{id, g}

are zero for all 0 ≤ i ≤ n− 2. The Alexander duality then gives

Hi(R
n
\A;Z) = 0

for 0 < i < n . Because R
n
\ A is simply connected, the Hurewicz isomorphism

theorem [Sp, p. 398] now gives

πi(R
n
\A) ≃ Hi(R

n
\A;Z) = 0

for 0 < i < n . This contradicts our assumption, and the theorem follows.
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