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Abstract. If p is entire, g(z) = a + b exp(2πi/c) , where a , b , c are non-zero constants and
the normal set of g(p) has no wandering components, then the same is true for the normal set
of p(g) .

Let f be a rational function of degree at least 2 or a nonlinear entire function.
Let fn , for n ∈ N denote the nth iterate of f . Denote the set of normality by
N(f) and the Julia set by J(f) . Thus

N(f) = {z : (fn) is normal in some neighbourhood of z} ,
J(f) = C − N(f) .

By definition N(f) is open (and possibly empty) and it is well known (see for
example [8], [9]) that J(f) is nonempty and perfect and J(f) is completely in-
variant under f , that is, z ∈ J(f) implies f(z) ∈ J(f) and z0 ∈ J(f) for any z0

such that f(z0) = z . Consequently N(f) is completely invariant.
If U is a component of N(f) then f(U) lies in some component V of N(f) .

In fact V \f(U) is either ∅ or a single point, by an unpublished result of M. Herring.
By a slight abuse of language we write V = f(U) even when V \f(U) is a singleton.
If all fn(U) with n ∈ N are different components of N(f) then U is called a
wandering domain.

D. Sullivan [13] proved that the set of normality of a rational function has
no wandering domain, thus solving a problem open since the papers of Fatou and
Julia. On the other hand this is not so for transcendental entire functions. In [1]
the first author constructed an entire function f such that N(f) has wandering
domains. Since then several entire functions which have wandering domains with
various different properties have been constructed, see for instance [3], [7]. Also
at the same time there has been a move to classify those entire functions which
do not have wandering domains [2], [6], [11]. In particular this is the case for
functions which have only a finite number of asymptotic or critical values. Such
functions are denoted as having finite type. In this paper we shall identify a class
of composite entire functions which have no wandering domains and a class of
composite entire functions which have wandering domains. We shall prove
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Theorem 1. Let p(z) be a nonconstant entire function and let g(z) =
a + be2πiz/c where a , b , c are nonzero constants. If h = g(p) has no wandering

domains then neither does p(g) .

In particular for a polynomial p(z) it is known [2] ep(z) has no wandering
domain and consequently it follows immediately that p(ez) has no wandering
domain (also proved in [2]). As another application of the above theorem we shall
show that eez

− ez has no wandering domain. Also eez

− ez is not of finite type,
and so provides an example of an entire function which is of not finite type and
having no wandering domain.

Proof of Theorem 1. Suppose f = p(g) has a wandering domain say U1 .
Then Un = fn−1(U1) are distinct for all n = 1, 2, . . . . Since g(z + c) = g(z)
we have N(f) = N(f) + c . Now suppose Uj ∩ (Uk + cl) 6= ∅ for some j , k , l
then Uj+1 ∩ Uk+1 6= ∅ and so j = k . Thus for j 6= k , Uj ∩ (Uk + cl) = ∅ and
consequently g(Uj) ∩ g(Uk) = ∅ .

For each k , let Vk = g(Uk) . Then for j 6= k , Vj ∩ Vk = ∅ and h(Vk) =
h
(
g(Uk)

)
= g

(
f(Uk)

)
⊆ Vk+1 . Thus hn(Vk) ⊆ Vk+n and so does not meet Vk ,

n > 1. Thus (hn) is normal in each Vk and so Vk belongs to a component
of N(h) .

We finally show that Vk is a component of N(h) . We first show that if
β ∈ ∂Vk has the form β = g(α) , α ∈ ∂Uk then β ∈ J(h) . Indeed since Uk is a
component of f , ∂Uk ⊆ J(f) , and so α is a limit point of repelling periodic points
zn ( 6= α) of f say fνn(zn) = zn . Since g(fn) = hn(g) for all n , one obtains
hνn

(
g(zn)

)
= g(zn) . Thus g(zn) are periodic points of h (of arbitrarily large

order). Also g(zn) → g(α) = β (but g(zn) 6= g(α) for large n). Thus β ∈ J(h) .
To complete the proof we assume that there exists β ∈ ∂Vk with β /∈ J(h) .

Then β is (by the above) not a limit of points of J(h) , hence not a limit of
points in g(∂Uk) . Thus there is a disc D = D(β, r) , r > 0 which contains no
points of g(∂Uk \ {∞}). Since β ∈ ∂g(Uk) = ∂Vk , there exists w′ ∈ D(β, r) with
w′ = g(z′) , z′ ∈ Uk and without any loss of generality we assume w′ 6= a . We
can continue g−1(w) = c/(2πi) log

(
(w− a)/b

)
from w′ to β along a path γ in D

which avoids a and the values of g−1 lie in Uk since they can never meet ∂Uk .
Since β /∈ g(Uk) the only possibility is that g−1(γ) → ∞ in Uk and hence β is
an asymptotic value of g on this path, i.e. β = a .

Summing up, ∂Vk ⊆ J(h) except perhaps for a single isolated point. If there
is such an isolated point we add it to Vk and then have, since the Vk are distinct,
that the Vk are wandering components of h with h(Vk) = Vk+1 . This contradicts
the hypothesis and the proof is complete.

As an application of Theorem 1 we shall show that eez

−ez has no wandering
domain. For its proof we shall need the following lemma.

Lemma 1. Let f and g be entire functions having a finite number of asymp-

totic values. Then so does f(g) .
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Proof. Let c be an asymptotic value for f(g) . Thus there exists a curve Γ →
∞ on which f(g) → c . Associated with this curve Γ we have either g(Γ) → ∞
or g(Γ) 6→ ∞ . If g(Γ) → ∞ then c is an asymptotic value for f . Since f has
only finitely many asymptotic values, such c ’s must be finite in number.

We next consider the case when g(Γ) 6→ ∞ . Since Γ is a curve tending to ∞ ,
we can find a sequence zn → ∞ on this curve for which limn→∞ g(zn) = w0 for
some finite w0 . Thus f(w0) = limn→∞ f

(
g(zn)

)
= c . Consider ̺ > 0 fixed, but

arbitrarily small. Then |f(w)−c| > ε > 0 for w ∈ (|w−w0| = ̺) . Next, as c is an
asymptotic value for f(g) ,

∣∣f
(
g(z)

)
−c

∣∣ < ε for all |z| > A on Γ where A is some

constant. In particular if |zn| are sufficiently large on Γ then
∣∣f

(
g(z)

)
− c

∣∣ < ε
for all z beyond zn on Γ and |g(zn) − w0| < ̺ . Thus |g(z) − w0| < ̺ for all
sufficiently large z on Γ. Thus w0 is an asymptotic value for g(z) on Γ, where
f(w0) = c . But the number of asymptotic values of g is finite. This completes
the proof.

Lemma 2. If f and g are entire functions of finite order then f(g) has at

most a finite number of asymptotic values.

The proof is immediate from Lemma 1 and the fact that an entire function of
order k has at most 2k different asymptotic values [12, p. 307].

Lemma 3 [6]. Let I denote the collection of transcendental entire functions

of finite type. Functions in I have no wandering domains.

Theorem 2. The function eez

− ez has no wandering domain.

Proof. Set g(z) = ez and p(z) = ez − z , then by Lemma 2 f(z) = g
(
p(z)

)

has a finite number of asymptotic values. Also clearly f(z) has e as the only
critical value. Thus eez

−z is of finite type and so by Lemma 3, eez

−z has no
wandering domain. We now apply Theorem 1 to conclude p

(
g(z)

)
= eez

− ez has
no wandering domain.

We next prove the following theorem.

Theorem 3. Let g be a transcendental entire function having at least one

fixed point. Then there exists an entire function f such that g(f) has a wandering

domain.

The proof of this theorem is based on the proof of theorems in [4], [5] and so on
the method of construction of wandering domain first introduced by A. Eremenko
and M. Lyubich [7]. We first recall the following facts: If F denotes a closed
subset of C and Ca(F ) the functions which are continuous on F and analytic
in F 0 then F is called a Carleman set (for C) if, for any g in Ca(F ) and for
any positive continuous function ε on F , there is an entire function f such that
|g(z) − f(z)| < ε(z) , z ∈ F . By Arakelyan’s theorem (e.g. [10, p. 137]) we have

(i) Ĉ \ F must be connected and also locally connected at ∞ . If in addition to
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(i) we have (ii) for each compact K the union W (K) of those components of F 0

which meet K is relatively compact in C , then F is indeed a Carleman set [10,
p. 157].

Proof of Theorem 3. Without any loss of generality let the fixed point z0 of
g satisfy Re(z0) < −2 and Im(z0) = 0. Let

B = {z : |z − z0| ≤ 1},

Lm = {z : Re(z) = 4m}, m ≥ 10,

Am = {z : |z − (4m + 2)| ≤ 1}, m ≥ 10.

Then clearly F = B
⋃{⋃

∞

m=10{Am ∪Bm}
}

is a Carleman set. As g is continuous
at the fixed point z0 , we can choose δ > 0 so small that |g(z)− z0| < 1

2 whenever
|z − z0| < δ . Now consider a branch value g−1(4m + 2) where m ≥ m0 . Then
again by the continuity of g , there exist δm > 0 such that |g(z) − (4m + 2)| < 1

2
for all |z − g−1(4m + 2)| < δm . By the above remark it follows that there exists
an entire function f such that

|f(z) − z0| < δ, z ∈ B,

|f(z) − z0| < δ, z ∈ Lm, m ≥ 10,

|f(z) − g−1(4m + 6)| < δm+1, z ∈ Am.

And clearly g(f) = h is an entire function with h(Am) ⊆ Am+1 . Also hn(z) → ∞
in each Am and so Am ∈ N(h) . On the other hand h maps B into a smaller
disc |z − z0| < 1

2 and so h contains an attractive fixed point ξ such that hn → ξ
in B . Finally h maps Lm (m ≥ 10) into B similarly. Further Lm belongs to
a component of N(h) different from a component of Gm to which Am belongs.
Thus each Gm is a wandering domain mapping to Gm+1 under z → h(z) .
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