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Abstract. Recently T. Iwaniec and G. Martin gave the first results where sets of positive
Hausdorff dimension are removable for bounded quasiregular mappings. Here we prove a converse
and show that for each λ > 0 there exists a Cantor set E in R3 with Hausdorff dimension
dimH E ≤ λ and a bounded K(λ) -quasiregular mapping f : R3 \ E → R3 that does not extend
continuously to any point of E .

1. Introduction

Let G be a domain in the Euclidean n -space Rn , n ≥ 2, and E ⊂ G closed
in G . We are interested in the following removability question. When does a
K -quasiregular mapping f : G \ E → R̄n = Rn ∪ {∞} have an extension to a
quasiregular mapping of G? See 2.1 for definitions. At an early stage of the
theory it was proved in [MRV2] and [Re] that f can be extended quasiregularly
if E is of zero n -capacity and f omits a set of positive n -capacity. For a long
time this remained as the only general removability result. Recently a satisfactory
solution for bounded quasiregular mappings was obtained in the following form.

1.1. Theorem [IM], [I]. There exists α = α(n,K) > 0 such that every

bounded K -quasiregular mapping f : G \ E → Rn extends quasiregularly to G
provided the Hausdorff dimension dimH E is at most α . In particular, E is

removable if dimH E = 0 . For even dimension n = 2ℓ , α(n,K) tends to ℓ as

K → 1 with fixed n .

Theorem 1.1 was first proved for even dimension by T. Iwaniec and G. Martin
in [IM]. Their paper is based on ideas from the work [DS] by S. Donaldson and
D. Sullivan and the main tool in [IM] is a singular integral operator S which is
a counterpart of the Beurling–Ahlfors operator in the planar case. Iwaniec and
Martin establish linear relations for certain differential ℓ -forms induced by the
mapping f and they give an estimate on α(n,K) in terms of the p-norm ‖S‖p of
the operator S . They also give explicit estimates for ‖S‖p . The odd dimensional
case still remained open until Iwaniec gave a nonlinear counterpart of [IM] in [I].
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For simplifications of the arguments in [I], see [IS]. An alternative approach to [I]
is given by J.L. Lewis in [L]. In [KM] P. Koskela and O. Martio improve slightly
the removabilty result in [MRV2]. They also study the removability question with
the additional assumption that f has an extension to a locally Hölder continuous
map of G and they obtain a counterpart to a result by L. Carleson (see [G, p. 78])
for analytic functions in the plane.

P. Järvi and M. Vuorinen [JV] study the removability of Cantor sets for
quasiregular mappings omitting a finite number of points and give an interest-
ing result complementary to that in [IM] and [I]. To state it let q(n,K) be the
bound in the Picard–Schottky type theorem [R2, 2.4].

1.2. Theorem [JV]. There exists a self-similar Cantor set E in Rn of

Hausdorff dimension d = d(n,K, β) > 0 such that every K -quasiregular mapping

f : Rn \ E → Rn omitting max
(

2n + 2, q(n,K)
)

points, with mutual chordal

distance at least β , extends quasiregularly to Rn .

In the literature there has been in dimensions n ≥ 3 a lack of good nonre-
movability results for quasiregular mappings that are for example bounded. The
purpose of this paper is to partially fill this gap and give a qualitative converse to
Theorem 1.1. We will prove the following.

1.3. Theorem. For each λ > 0 there exists a compact, totally discon-

nected set E in R3 with Hausdorff dimension dimH E ≤ λ and a bounded K(λ) -
quasiregular mapping f : R3 \ E → R3 that does not extend continuously to any

point of E . The set E can be constructed as a self-similar Cantor set.

We have formulated 1.3 for n = 3 only. The construction does not generalize
as such for n ≥ 4, see Remark 3.15. It was pointed out to the author by O. Martio
and J. Väisälä that with an auxiliary quasiconformal map Theorem 1.3 can be
modified to a form where E is contained in a line segment.

For any positive integer m there exists a quasiregular mapping of R3 into
itself omitting m points [R3]. That example gives a converse to 1.2 for n = 3
because ∞ is not removable.

Let us compare the above with some related results in the plane. For 1-
quasiregular, i.e. (complex) analytic functions, the classical theorem by P. Painlevé
and A.S. Besicovitch says that a bounded and analytic f extends to an analytic
function of G if the Hausdorff measure H 1(E) of E is zero. For K -quasiregular
mappings the corresponding holds if H

1/K(E) = 0. This follows from the repre-
sentation f = ϕ ◦ h , where h is K -quasiconformal and ϕ analytic, and the fact
that h is locally Hölder continuous with exponent 1/K (see [KM]).

In the plane we obtain a result like Theorem 1.3 directly as follows. First,
by a result of Gehring and Väisälä [GV] there exists a quasiconformal mapping
ψ of R2 which maps a Cantor set E with dimH E < λ onto another Cantor set
with dimH ψE > 1. There exists a bounded analytic function ϕ of R2 \ ψE (see
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[G, p. 78]). Then the quasiregular map f = ϕ ◦ ψ | R2 \ E has no extension to a
quasiregular map of R2 .

Theorem 1.2 is a counterpart of a result by L. Carleson [C] in the plane
when E is a Cantor set on the real line with positive logarithmic capacity and
f : R2 \ E → R2 is an analytic function omitting three points.

2. Preliminary constructions

2.1. Quasiregular mappings. Let G be a domain Rn . A continuous
map f : G → Rn is called quasiregular if f belongs to the local Sobolev space
W 1

n,loc
(G) , i.e. f is an ACLn map and

(2.2) |f ′(x)|n ≤ KJf (x) a.e.

for some K ∈ [1,∞[ . Here |f ′(x)| is the supremum norm of the formal derivative
defined by means of the partial derivatives and Jf (x) is the Jacobian determinant.
The smallest K in (2.2) is the outer dilatation KO(f) of f . The smallest K ′ ≥ 1
in the inequality

(2.3) Jf (x) ≤ K ′ inf
|h|=1

|f ′(x)h|n a.e.

is the inner dilatation KI(f) . A map f is called K -quasiregular if f is quasireg-
ular and K(f) = max

(

KO(f), KI(f)
)

≤ K . The definition extends to smooth
oriented Riemannian n -manifolds in a straightforward manner. A quasiregular
homeomorphism is called quasiconformal. Often a quasiregular mapping into
R̄n = Rn∪{∞} is also called quasimeromorphic. For the basic theory, see [MRV1]
or [R4].

2.4. The Cantor set. We first choose a positive integer m > 20 and δ > 0
such that 1/10 ≤ mδ ≤ 1/3. More precise bounds are described later. Set

(2.5) γ =

(

1 −mδ

m+ 1

)1/3

.

We perform the construction of our Cantor set by starting out from the rectangular
box

Q = [0, 1] × [0, γ]× [0, γ2]

and then deleting in each step m parallel slices. In the first step we delete the
slices

{x ∈ Q : jγ3 + (j − 1)δ < x1 < jγ3 + jδ}, j = 1, . . . , m.

Let the union of these be D1 . We are left with boxes Q1k = Ik × [0, γ] × [0, γ2] ,
k = 1, . . . , m+1, where the length |Ik| of Ik is γ3 . Each box Q1k is then similar
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to Q with ratio γ . Let the union of boxes Q1k be E1 . In the next step we delete
from each box Q1k similarly the m slices

{x ∈ Q1k : jγ4 + (j − 1)γδ < x2 < jγ4 + jγδ}, j = 1, . . . , m,

and we are left with m + 1 boxes of the form Q2kℓ = Ik × Jℓ × [0, γ2] , ℓ =
1, . . . , m+ 1, where |Jℓ| = γ4 . We denote the union of such slices by D2 and the
union of the boxes Q2kℓ by E2 . We continue similarly and have in the ith step a
union Di of slices and a union Ei of boxes. A slice in Di we call a Di -slice and
it has width γi−1δ . As a limit we get the Cantor set

E =
⋂∞

i=1
Ei.

2.6. Triangulations. We are going to extend the identity of R3 \Q succes-
sively into the slices to produce a quasiregular mapping R3 \ E → R3 omitting a
ball. In each slice we will define a decomposition into prisms by a certain triangu-
lation. Each prism will be mapped homeomorphically onto a half of a deformed
spherical ring which in general varies when we move along the slice.

To describe these triangulations let A be a D1 -slice. Then A is of the form
A = L×M where L is an open interval ]α, β[ of length δ and M = [0, γ]× [0, γ2] .
Let p and q be integers such that 4(p − 1) < γ/δ ≤ 4p , 4(q − 1) < γ2/δ ≤ 4q .
We first divide [0, γ] into 4p congruent intervals Yi and [0, γ2] into 4q congruent
intervals Zj . Then we triangulate M as shown in Figure 1, where we see four
rectangles Yi × Zj . The principle is that the boundary vertices in M belong to
five triangles and the interior vertices in M belong to an even number of triangles.
With a sufficiently small γ we may adjust the vertices slightly so that each vertex
v is in π1E and it is away from the slices according to the condition

(2.7) d(v,G1
k) ≥ γk−1δ for all k 6≡ 1 (mod3).

Here πi is the orthogonal projection forgetting the ith coordinate and

Gi
k = πi

(

∪{Dj : 1 ≤ j ≤ k, j 6≡ i (mod 3)}
)

.

Recall that γk−1δ is the width of the Dk -slices. The triangulation can be per-
formed so that each triangle is a 10-bilipschitz image of a triangle of side lengths
δ, δ,

√
2 δ . For other slices the triangulations are obtained by similarity from the

one described for M .

2.8. Extension to slices. The purpose of the special triangulations de-
scribed in 2.6 is that we are then able to follow the boundary correspondence
inherited from earlier extensions when we extend to a certain slice.

Let A = L×M be a D1 -slice as in 2.4. We will now describe more precisely
how each prism L× T will be mapped where T is a closed triangle of the trian-
gulation of M . The restriction to int(L × T ) will be K -quasiconformal with a
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Figure 1. Figure 2.

fixed K . Let us consider a boundary vertex v in the interior of a side s of M .
Let T1, . . . , T5 be the successive triangles that have v as vertex (Figure 2) and
let Pi = L × Ti , i = 1, . . . , 5, be the corresponding prisms. Figure 3 shows how
the various prisms are mapped. Recall that the boundary correspondence on the
rim of the slice A is the identity. Let Ci be the relative boundary of Ti . Each
part L × Ci of the boundary of Pi is mapped onto a ring domain in the plane
containing L × s . An end of a prism, like the triangle abc , is mapped onto a
somewhat deformed half sphere. If the image of a vertex of a prism differs from
the vertex, then the image is indicated by a prime. The principle is that when we
move to the next prism, there is only one common face with the preceding prism.
Therefore we are somewhat free to define the image in other parts of the prism.
If v is a corner vertex of M , we modify the above in an obvious way. Since each
interior vertex in the triangulation of M belongs to an even number of triangles,
we can continue the extension to the whole slice A as a quasiregular mapping.
We denote the extended map of (R3 \ Q) ∪ D1 by g1 . In addition, we require
that for each prism P , g1 | P is a Λ-bilipschitz map followed by similarity, where
K = Λ4 . The map g1 extends continuously to (R3 \ intQ) ∪ D̄1 and we denote
this extension also by g1 .

The next step is to extend g1 to all D2 -slices. The boundary correspondence
that we have to match now is inherited both from the original identity map and
the extensions to the D1 -slices. We have chosen the triangulation for the D1 -slices
by means of the condition (2.7) so that the boundary correspondence under g1 on
the rim of each D2 -slice is a local homeomorphism and this correspondence can
be assumed to be a diffeomorphism with obvious modification at the corners of
the rims. Let A = Ik×]α, β[×[0, γ2] be a D2 -slice, set Mα = Ik × {α} × [0, γ2] ,
Mβ = Ik × {β} × [0, γ2] and let Ṁα and Ṁβ be the relative boundaries of Mα
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Figure 3.

and Mβ . By the remark just made, the boundary correspondences g1 | Ṁα and

g1 | Ṁβ have the following property. If F is contained in Ṁα or Ṁβ and has
a diameter less than 3|β − α| , g1 | F approaches a similarity map when γ → 0.
Because of this property we can arrange the construction indicated in Figure 3 so
that with a fixed γ , depending on the dilatation bound for our final quasiregular
map, g1 has no effect on the dilatation bound for the extensions into the D2 -
slices. This is one point in the construction which needs a different treatment for
dimensions n ≥ 4 because the conclusion of g1 | F approaching a similarity map
does not hold anymore. We denote the extended map of (R3 \Q)∪D1∪D2 by g2 .
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The successive extensions to Dk -slices, k = 3, 4, . . ., are accomplished simi-
larly. Set

Uk = (R3 \Q) ∪ ⋃k
j=1

Dj

and
U =

⋃

k≥1
Uk = R3 \ E.

The limit of the extensions gk: Uk → R3 is a quasiregular mapping g: U → R3 .
We may require that each gk , and hence also g , omits a fixed ball, say V =
B3

(

(γ2/2, γ2/2, γ2/2), γ2/4
)

. In the next section we will put more constraints on
the extensions gk .

3. Proof of Theorem 1.3

The Hausdorff dimension of E satisfies dimH E < 3 and dimH E depends
on m and δ . Given λ > 0 we can by the method in [GV] map R3 onto itself by
a K0(λ)-quasiconformal mapping h so that hE is a Cantor set with dimH hE <
λ . Then g ◦ h−1 followed by a Möbius transformation is a required map for
Theorem 1.3 provided we prove that g does not extend to a continuous map at
any point of E .

To prove that g can be constructed so that it does not extend continuously
to E it is enough to show that for every k and any box C of Ek there exist
u, v ∈ C ∩ U such that |g(u) − g(v)| ≥ γ2/20. We may assume k ≥ 3, k ≡ 3
(mod3), and that C is bounded by Dj -slices, j = k− 2, k− 1, k . Recall from 2.8
the decomposition of a slice into prisms. For j = k − 2, k − 1, k set

(3.1) τC,j = min{d(gP ) : P is a prism in a Dj -slice and P̄ ∩ C 6= ∅},

(3.2) τC = min(γ2τC,k−2, γτC,k−1, τC,k).

Given a certain bound for the dilatation of g we may increase the diameter d(gP )
of the image of prisms P when we move inside a slice. Depending on the dilatation
bound K we find a number s = s(K) > 1 which is the allowed average ratio of
these sizes for neighboring prisms. More precisely, if P and P1 are prisms in a
slice so that moving from P of P1 within the slice we have to pass through at
least i ≥ 20 prisms, then the construction given in 2.8 allows a ratio

(3.3)
d(gP1)

d(gP )
≥ si.

The idea is to choose m and δ so that we can have τC′ ≥ 2τC for some box
C′ ⊂ C of Ek+3 . Here τC′ is defined as in (3.2) by shifting the indices by 3.

We first take two neighboring Dk+1 -slices Ak+1 = L × ℓ2 × ℓ3 and Ãk+1 =
L̃×ℓ2×ℓ3 in C . The lengths of the line segments are |L| = |L̃| = γkδ , |ℓ2| = γk+1 ,
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and |ℓ3| = γk+2 . Let ℓ∗2 be the line segment concentric to ℓ2 with |ℓ∗2| = |ℓ2|/2
and similarly ℓ∗3 . Set Xk+1 = L × ℓ∗2 × ℓ∗3 , X̃k+1 = L̃ × ℓ∗2 × ℓ∗3 . Next, let
Ak+2 = ℓ1 ×L′× ℓ3 and Ãk+2 = ℓ1 × L̃′× ℓ3 be neighboring Dk+2 -slices touching
Xk+1 and X̃k+1 . Finally, let Ak+3 = ℓ1 × ℓ′2 × L′′ and Ãk+3 = ℓ1 × ℓ′2 × L̃′′

be neighboring Dk+3 -slices between Ak+1 and Ãk+1 touching Xk+1 , and then
necessarily also X̃k+1 . The slices Aj, Ãj , j = k+ 1, k+ 2, k+ 3, bound a box C′

of Ek+3 .
Now we will study what constraints the boundary correspondence on ∂C puts

on d(gP ) for prisms P in various slices listed above. We first consider the move
in the slice Ak+1 from a Dk -slice to Xk+1 . This distance is |ℓ3|/4 = γk+2/4 and
we travel through at least

(3.4)
γk+2

4γkδ
=
γ2

4δ
=

1

4

1

δ

(

1 −mδ

m+ 1

)2/3

>
1

4
(m+ 1)1/3

prisms P in Ak+1 when going from a Dk -slice to Xk+1 . Without regarding other
constraints we may by (3.3) and (3.4) increase d(gP ) in this move by a ratio

sγ2/4δ . To apply (3.3) we need a certain lower bound for m . A Dk -slice has
width γk−1δ and |L| = γkδ , so there is a drop of ratio γ in the height of the
prisms when we shift from a Dk -slice to Ak+1 . Putting these observations and
similar ones for X̃k+1 together we obtain

(3.5) d(gP ) ≥ cKs
γ2/4δγτC,k

for prisms P in Xk+1 or X̃k+1 . Here cK ∈ ]0, 1[ is a constant depending on K ,
which takes into account the behavior at the rim of Ak+1 and Ãk+1 . In (3.5) we
have not taken into account the effect of the boundary correspondence from other
slices.

The effect of the boundary correspondence from the Dk−1 -slices to Xk+1 and
X̃k+1 is estimated similarly. In place of (3.4) we get

(3.6)
γk+1

4γkδ
=

γ

4δ
>

1

4
(m+ 1)2/3.

The drop of heights of prisms from a Dk−1 -slice to Ak+1 or Ãk+1 now has a ratio
γ2 and in place of (3.5) we have

(3.7) d(gP ) ≥ cKs
γ/4δγ2τC,k−1

for prisms P in Xk+1 or X̃k+1 . By (3.5) and (3.7) the constraints from the
Dk -slices and Dk−1 -slices allow thus an estimate

(3.8)

d(gP ) ≥ cK min
(

sγ/4δγ2τC,k−1, s
γ2/4δγτC,k

)

≥ cKγs
γ2/4δ min(γτC,k−1, τC,k)

≥ cKγs
γ2/4δτC > c2Kγs

γ2/4δτC



Nonremovable Cantor sets for bounded quasiregular mappings 163

for prisms P in Xk+1 or X̃k+1 .
The effect of the boundary correspondence from the Dk−2 -slices to Xk+1

and X̃k+1 does not change the estimate (3.8). To see this it is enough to consider
Xk+1 and the case where Ak+1 is the first Dk+1 -slice in C from a given Dk−2 -
slice Ak−2 . Let Âk+2 be a Dk+2 -slice touching Ak−2 and Xk+1 . We travel
through at least

(3.9)
γk+3

δγk+1
=
γ2

δ
> (m+ 1)1/3

prisms in Âk+2 when going from Ak−2 to Xk+1 . The drop of heights of prisms
from Ak−2 to Âk+2 has a ratio γ4 and the drop from Xk+1 to Âk+2 is γ . The
constraint from Ak−2 allows therefore an estimate

(3.10) d(gP ) ≥ c2Kγ
−1sγ2/δγ4τC,k−2 ≥ c2Kγs

γ2/δτC

for prisms P in Xk+1 . Since this is stronger than (3.8), we conclude that the
boundary correspondence on ∂C allows the earlier given estimate (3.8).

Our next task is to consider estimates of the type (3.8) for prisms in the part
Yk+2 = ℓ1 ×L′× ℓ∗3 ( Ỹk+2 = ℓ1 × L̃′ × ℓ∗3 ) of Ak+2 (Ãk+2 ). Similarly as above we
conclude that the boundary correspondence from a Dk -slice allows the estimate

(3.11) d(gP ) ≥ cKγ
2sγ/δτC,k

for prisms P in Yk+2 or Ỹk+2 . The drop of heights of prisms from Xk+1 and
X̃k+1 to Yk+2 and Ỹk+2 is γ . Hence the boundary correspondence from Xk+1

and X̃k+1 allows by (3.8) the estimate

(3.12) d(gP ) ≥ c2Kγ
2sγ2/4δτC

for P in Yk+2 or Ỹk+2 . No further constraints have to be taken into account for
Yk+2 and Ỹk+2 . Since (3.12) is weaker than (3.11), the boundary correspondence
on ∂C allows the estimate (3.12).

Finally we study the situation in Ak+3 and Ãk+3 . The only constraints that
matter are those coming from Xk+1 , X̃k+1 and Yk+2 , Ỹk+2 . The drops of heights
of prisms is γ2 when we enter Ak+3 from Xk+1 or X̃k+1 , and γ when we enter
Ak+3 from Yk+2 or Ỹk+2 . By (3.8) and (3.12) we get then that the boundary
correspondence on C allows the estimate

(3.13) d(gP ) ≥ c3Kγ
3sγ2/4δτC

for prisms P in Ak+3 or Ãk+3 .
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In conclusion we get then from (3.8), (3.12), and (3.13) the estimate

(3.14) τC′ = min(γ2τC′,k+1, γτC′,k+2, τC′,k+3) ≥ c3Kγ
3sγ2/4δτC .

For sufficiently large m we have c3Kγ
3sγ2/4δ ≥ 2. Recall the connection between

δ , m , and γ from 2.4. Suppose τC < γ2/20. Applying the inequality τCi+1
≥ 2τCi

successively to pairs Ci ⊃ Ci+1 of boxes like C , C′ , we find a box Cℓ ⊂ intC
with τCℓ

≥ γ2/20. This construction can be accomplished so that each gk omits
the ball V . Theorem 1.3 is proved.

3.15. Remarks. 1. Details to obtain Theorem 1.3 for n ≥ 4 have not been
worked out. In 2.8 we used the fact that smooth maps in dimension one do not
carry local dilatation. Therefore, to get a canonical construction for n ≥ 4 in the
sense that the dilatation in a previous slice is not inherited to the next slice—
and cause a cumulating increase on the dilatation—the method in 2.8 should be
modified. Another difference is that boundary correspondences into slices are not
locally homeomorphic for n ≥ 4. This fact would also cause extra complications
to the construction.

2. Similar ideas as in the proof of Theorem 1.3 to change the size and position
of images of prisms have been used in [R1]. The method presented here would
simplify the arguments in [R1].
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