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A SHARP RESULT CONCERNING

CERCLES DE REMPLISSAGE

John Rossi
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Abstract. Let f be a meromorphic function which satisfies the condition

lim sup
r→∞

T (r, f)/(log r)3 = ∞.

We prove that there is a sequence of cercles de remplissage for f such that given three distinct
rational functions R1 , R2 and R3 , the quantity f −Ri has infinitely many zeros for at least one
i = 1, 2, 3 in the union of any subcollection of the sequence. The condition is shown to be sharp.

1. Introduction

A sequence of disks of the form

(1.1) Cj = {z : |z − zj | < εj |zj|}

is (classically) called a sequence of cercles de remplissage for f meromorphic in
the complex plane, if zj → ∞ , εj → 0 as j → ∞ and f takes all but possibly two
extended complex values infinitely often in the union of any infinite subcollection
of the Cj .

The following theorem due to Valiron [5] establishes the existence of cercles

de remplissage under a sharp growth condition on the Nevanlinna characteristic
T (r, f) of f .

Theorem 1.1. If f is meromorphic in the complex plane and satisfies

(1.2) lim sup
r→∞

T (r, f)

(log r)2
= ∞,

then there exists a sequence of cercles de remplissage for f .
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We remark that (1.2) is a very natural condition on meromorphic functions.
Indeed functions not satisfying (1.2), known as slowly growing functions, grow
very regularly and have been thoroughly researched. Cercles de remplissage may
not exist for such functions.

A more general version of Theorem 1.1 which appears in [5, p. 38] can be
rephrased as follows:

Theorem 1.2. Let f be meromorphic satisfying

(1.3) lim sup
r→∞

T (r, f)

(log r)3
= ∞.

Then there exists a sequence Cj of cercles de remplissage for f , such that given

three distinct rational functions R1, R2, R3 and any infinite subcollection of the

Cj , at least one of f−Rk has infinitely many zeros in the union of this subcollection

for k = 1, 2, 3 .

(Note that in the above theorem we consider the constant infinity as a rational
function.)

By taking any accumulation point θ0 of the arguments of the centers of the
Cj , we find that there exists a ray L = {z : arg z = θ0} , such that given a positive
ε , the conclusions of the two theorems hold with

{z : θ0 − ε ≤ arg z ≤ θ0 + ε}

replacing the union of subcollections of the Cj . The ray L is classically called a
Julia direction.

Let Cj be a sequence of cercles de remplissage as in Theorem 1.2. Then
given a rational function R and 3 distinct extended complex numbers a1 , a2 and
a3 , the quantity f − (ai/R) must have infinitely many zeros in the union of any
infinite subcollection of the Cj for at least one i = 1, 2, 3. Since R is rational, so
must the quantity Rf − ai . We thus obtain

Corollary 1.3. Let f be as in Theorem 1.2 and let R be a rational function.

Then there exists a sequence Cj of cercles de remplissage common to both f
and Rf .

By letting Ri(z) = zM+1 + i , i = 1, 2, 3, in Theorem 1.2, we easily obtain

Corollary 1.4. Let f be as in Theorem 1.2 . Then there exists a sequence

Cj of cercles de remplissage of f in which f grows transcendentally to infinity.

That is there exists a sequence of points zn ∈
⋃∞

j=1 Cj approaching infinity such

that given any positive integer M

|f(zn)|/|zn|M → ∞.
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We remark that condition (1.3) does not appear explicitly in Valiron’s state-
ment of Theorem 1.2. What we consider extremely surprising and what may be
of interest to the reader is the fact that this seemingly unnatural condition is
sharp for this theorem and its corollaries. In Section 3 we will give an appropriate
example.

It was brought to the author’s attention by Jörg Winkler that the condition
(1.3) actually implies that if µ(r, f) is the maximum on {z : |z| = r} of the
spherical derivative of f ,

̺(f) :=
|f ′|

1 + |f |2 ,

then

(1.4) lim sup
r→∞

rµ(r, f)

log r
= ∞.

This is immediate since (1.3) implies that

lim sup
r→∞

A(r, f)

(log r)2
= ∞

where A(r, f) is the area of f(|z| < r) on the Riemann sphere. Equation (1.4) is
known to be true for all transcendental entire functions [1]; however our aforemen-
tioned example to be given in Section 3 shows that in the class of meromorphic
functions, the growth condition (1.3) is sharp.

(We note in passing that the first instance of the use of (1.3) known to the
author occurs in a paper of Yang Lo [6]. Whether (1.3) is necessary in his result
remains unsettled. The interested reader will note that our example in Section 3
shows that his particular methods cannot be extended any further.)

2. Proof of the theorems

For completeness we give a proof of Theorem 1.1 and except for an important
technical lemma found in [4] we also prove Theorem 1.2. We feel these proofs
have a certain geometric character and are easily readable. Let E be any set in
the complex plane and let f be meromorphic in a neighborhood of E . Denote
by A(E, f) = A(E) the area of the image of E under f on the Riemann sphere
counting multiplicity. If D(z0, r) = {z : |z − z0| < r} , we define the Ahlfors–
Shimizu characteristic T0(z0, r, f) by

T0(z0, r, f) =

∫ r

0

A
(

D(z0, t), f
)

t
dt.

We recall that the Nevanlinna characteristic, T
(

r, f(z + z0)
)

, for f(z + z0) and
T0(z0, r, f) differ by at most a constant which depends only on f and z0 . We
now state and prove a very elementary lemma from which our result follows. We
denote the closed annulus centered at z with radii r1 < r2 by A (z, r1, r2) .
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Lemma 2.1. Let f be meromorphic in the plane, and let η, R and M be

arbitrary positive numbers with η < 1 and R > 2 . If f satisfies (1.3) then there

exists a positive number r > R such that

(2.1) A
(

A
(

0, (1 − η)r, (1 + η)r
))

> M log r.

If f only satisfies (1.2) then (2.1) is replaced by

(2.2) A
(

A
(

0, (1 − η)r, (1 + η)r
))

> M.

Proof. We only prove (2.1) as the argument for (2.2) is almost identical.
Assume that the lemma is false. Then for every t > R

(2.3) A
(

A
(

0, (1 − η)t, (1 + η)t
))

≤ M log t.

Choose r larger than 2R and set β =
(

(1 − η)/(1 + η)
)

. Then there exists
α > 0 such that

(2.4) R < (1 + η)βαr < 2R.

Define r0 = r and rn = βrn−1 . By (2.3) and (2.4), we have

(2.5)
A

(

A (0, 2R, r)
)

≤
[α]+1
∑

n=0

A
(

A (0, (1 − η)rn, (1 + η)rn)
)

≤ M([α] + 2) log r

where [α] denotes the greatest integer in α . But by (2.4)

(2.6) α ≤
(

log r + log(1 + η)
)

/ logβ−1.

Then since R and η are fixed, r is arbitrarily large and T0(0, r, f) is compara-
ble to T (r, f) , (2.5) and (2.6) imply that (1.3) is false. This gives the desired
contradiction.

The following lemma follows directly from Lemma 2.1. Its proof will be omit-
ted.

Lemma 2.2. Let f be as in Lemma 2.1 . Then there exists a sequence of

disks Cj of the form (1.1) such that

(2.7) lim
j→∞

A(Cj , f)

log r
= ∞

if f satisfies (1.3) and

(2.8) lim
j→∞

A(Cj , f) = ∞

if f satisfies (1.2) .
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Proof of Theorem 1.1. Let Cj be as in Lemma 2.2. We prove that 2Cj =
D(zj , 2εj |zj |) is a sequence of cercles de remplissage. Define

(2.9) gj(ζ) = f(zj + ζ2εj |zj |), |ζ| < 1.

If 2Cj is not a sequence of cercles de remplissage, then by Montel’s theorem
there exists a subsequence of gj , which we also call gj , which is normal in the
unit disk, D . Let 1

2
D be the disk centered at the origin of radius 1

2
. Then by

Lemma 2.2, A( 1
2D, gj) = A(Cj, f) → ∞ . This is an obvious contradiction since

a subsequence of gj must converge uniformly to infinity or to a meromorphic
function in 1

2D .

Proof of Theorem 1.2. The next lemma is a trivial modification of a lemma
in [4, p. 277]. Although it seems that its proof should be obvious, it depends on
a very clever use of Nevanlinna’s first fundamental theorem. It is well worth a
careful reading.

Lemma 2.3. Let w(z) be meromorphic in the plane and let gk(z) be rational,

k = 1, 2, 3, 4 . Define

(2.10) f(z) =
g1(z)w(z) + g2(z)

g3(z)w(z) + g4(z)
.

Then

(2.11) A
(

D(z0, r), f
)

≤ C
{

A
(

D(z0, 64r), w
)

+ log+ |z0| + log+ r
}

,

where C is a constant depending only on w and gk , k = 1, 2, 3, 4 .

(To see that Lemma 2.3 follows from [4] in the form just given, let ∆ = ∆0 =
D(z0, r) , set ζ = z on p. 279 and use the fact that gk is rational.)

To prove Theorem 1.2, let Cj be as in Lemma 2.2 satisfying (2.7). We will
show that 64Cj = D(zj , 64εj|zj |) is the required sequence of cercles de remplissage.
Suppose this is not the case. Then there exist Rk , k = 1, 2, 3, distinct rational
functions such that if

w =
f − R1

f − R2

R3 − R2

R3 − R1
,

then a subsequence of the family

wj(ζ) = w(zj + ζ64εj |zj |), |ζ| < 1

is normal in the unit disk. As in the proof of Theorem 1.1, this means that
A(64Cj, w) is bounded for a subsequence of {j} which we continue to call {j} .
Clearly f has the form (2.10); so by substituting zj for z0 in (2.11) with r = εj |zj | ,
we find that A(Cj, f) = O(log |zj |) contradicting (2.7). The theorem is proved.
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3. An example

We offer the following example which shows that Theorem 1.2 is sharp. Let

(3.1) f(z) =
∞
∏

n=1

z + e
√

n

z − e
√

n
.

Clearly
n(0, r, f) = n(∞, r, f) =

(

1 + o(1)
)

(log r)2.

Using Valiron’s representation [3, p. 271] for a meromorphic function of order no
greater than one with negative zeros and positive poles, we obtain for given η > 0
that

(3.2)

log |f(z)| =
(

2 + o(1)
)

∫ ∞

0

(

log(sr)
)2 (s2 − 1) cos θ

s4 − 2s2 cos 2θ + 1
ds

=
(

4 + o(1)
)

log r

∫ ∞

0

log s
(s2 − 1) cos θ

s4 − 2s2 cos 2θ + 1
ds

as r → ∞ , where z = reiθ , η ≤ |θ| ≤ π − η . (The last equality follows by

writing
(

log(sr)
)2

= (log s)2+2 log r log s+(log r)2 and observing that appropriate
integrals equal zero.)

Equation (3.2) shows first of all that

T (r, f) =
(

1 + o(1)
)

N(r, f) =
(

1
3 + o(1)

)

(log r)3.

Secondly it shows that given ε > 0, f(reiθ) → 0 uniformly for 1
2
π+ε ≤ θ ≤ 3

2
π−ε .

(Since the representation is not valid at θ = π , we have also used the maximum
principle for subharmonic functions to obtain this result.) Similarly f → ∞
uniformly in the analogous region in the right half plane. Thus given ε > 0, any
sequence of cercles de remplissage must eventually lie in a Stoltz angle of opening
ε surrounding the positive and negative imaginary axes. But again by (3.2), if ε
is sufficiently small, then f(z)/z is bounded in such a Stoltz angle. Thus f does
not satisfy Theorem 1.2 with, for example, Rk = z2 + k and hence the theorem
is sharp. Similarly the example proves that the corollaries are sharp as well. We
mention in passing that the function obtained by replacing

√
n by n in (3.1) shows

that Theorem 1.1 is sharp.
We mentioned earlier that (1.3) implies (1.4). The function f in (3.1) also

shows that condition (1.3) is sharp for this result. Indeed if (1.4) holds for this
f then there exist points zn such that |zn|̺

(

f(zn)
)

/ log |zn| → ∞ . By a result
of Lehto [2] this means that the sequence Cn of disks centered at zn of radius
ε|zn|/ log |zn| is a sequence of cercles de remplissage for f , where ε > 0 is arbitrary.
Thus as before the |zn| must approach the positive or negative imaginary axes.
Hence if z ∈ Cn , the argument of z varies from either π/2 or −π/2 by at most
c/ log |zn| , where c is a positive constant independent of n . Substituting the
argument of z for θ in (3.2), we find that f is bounded in Cn , a contradiction
since the Cn are cercles de remplissage.
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