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Abstract. From the theory of covering surfaces by L.V. Ahlfors follows a pointwise defect
relation for meromorphic functions in the plane. The first part of the article contains a proof of
a counterpart of Ahlfors’ result for quasiregular mappings in all dimensions. The obtained defect
relation is an improvement of an earlier version by the author. In the second part the sharpness of
the defect relation is proved in dimension three. In this part the method is a modification of the
author’s proof of the sharpness of an analog of Picard’s theorem.

1. Introduction

Quasiregular mappings have turned out to form the right generalization of the
geometric part of the theory of analytic functions of one complex variable to real
n -dimensional space. These mappings are defined as quasiconformal mappings,
but without the injectivity requirement (see 2.2).

In 1980 a Picard-type theorem on omitted values for quasiregular mappings
was proved in the following form:

1.1. Theorem [R5]. For every dimension n ≥ 3 and every K ≥ 1 there
exists a positive integer q = q(n,K) such that every K -quasiregular mapping
f : Rn → Rn \ {a1, . . . , aq} is constant.

Proofs of 1.1 different from the one in [R5] has been given in [R7], [R8], [EL],
and [L]. For generalizations of Theorem 1.1, see [R8], [HR1], and [HR2]. It is
easy to construct a nonconstant quasiregular mapping of Rn into Rn omitting
one point [Z]. In dimension three Theorem 1.1 is known to be qualitatively best
possible, namely, any number of points can be omitted:

1.2. Theorem [R9]. For each positive integer p there exists a nonconstant
K(p) -quasiregular mapping f : R3 → R3 omitting p points.

The classical value distribution theory of meromorphic functions of R2 into
R2 = R2 ∪ {∞} by R. Nevanlinna [N1] gives a far reaching sharpening of Picard’s
theorem. One of the consequences is Nevanlinna’s defect relation. In 1935 L.V.
Ahlfors [A] gave a parallel theory which has a very geometric character. One part

1991 Mathematics Subject Classification: Primary 30C65; Secondary 30D35.



208 Seppo Rickman

of Ahlfors’ theory is contained in the following relation for the covering numbers of
a nonconstant meromorphic function f : R2 → R2 . Let n(r, y) be the number of
points of f−1(y) in the disk B(r) = {x ∈ R2 : |x| ≤ r} with multiplicity regarded.
Let A(r) be the spherical average, i.e., the average of the counting function n(r, y)
over all y in R2 with respect to spherical 2-measure. Then according to [A, p. 189]
(see also [N2, p. 350]) there exists a set E ⊂ [1,∞[ with finite logarithmic measure,
i.e., ∫

E

dr

r
<∞,

such that

(1.3) lim sup
r→∞
r /∈E

q∑

j=1

(
1 − n(r, aj)

A(r)

)
+

≤ 2

whenever a1, . . . , aq are distinct points in R2 . Here α+ = max(0, α) for α ∈ R1 .
We will call (1.3) Ahlfors’ pointwise defect relation and

δ(r, aj) =
(
1 − n(r, aj)/A(r)

)
+

the defect of aj in the disk B(r) or the defect function of aj .
This article consists of two parts. In the first part we shall establish the

counterpart to (1.3) for quasiregular mappings and improve an earlier version of
a defect relation from [R6]. The second part of the paper is devoted to proving in
dimension three the inverse of the defect relation. This means that for given defect
numbers of a given sequence of points we can construct a quasiregular mapping,
whose defect functions tend to these defect numbers, and whose dilatation depends
only on the sum of the defect numbers. A major task in the second part is to modify
the proof of Theorem 1.2 in [R9] for the case of an arbitrary configuration of the
omitted points.

Given a nonconstant quasiregular mapping f : Rn → Rn we define the count-
ing function n(r, y) as in the classical case, namely, by

(1.4) n(r, y) =
∑

x∈f−1(y)∩B(r)

i(x, f),

where i(x, f) is the local topological index. A nonconstant quasiregular mapping
is discrete and open by a theorem of Yu.G. Reshetnyak, and so i(x, f) is a well-
defined positive integer. Also now we let A(r) be the average of n(r, y) over Rn

with respect to the spherical n -measure. The defect relation takes the following
form.
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1.5. Theorem. Let f : Rn → Rn be a nonconstant K -quasiregular mapping
and n ≥ 3 . Then there exists a set E ⊂ [1,∞[ of finite logarithmic measure and
a constant C(n,K) <∞ depending only on n and K such that

(1.6) lim sup
r→∞
r /∈E

q∑

j=1

δ(r, aj) ≤ C(n,K)

whenever a1, . . . , aq are distinct points in Rn .

Theorem 1.1 is clearly a corollary of Theorem 1.5. Next we state the inverse
of the defect relation (for dimension three).

1.7. Theorem. Let a1, a2, . . . be a sequence of distinct points in R3 and let
δ1, δ2, . . . be numbers such that 0 < δj ≤ 1 and

(1.8)
∑

j

δj ≤ p+ 1

for some integer p . Then there exists a K -quasiregular mapping f : R3 → R3

with K depending only on p such that

lim
r→∞

(
1 − n(r, aj)

A(r)

)
= δj ,(1.9)

lim
r→∞

(
1 − n(r, y)

A(r)

)
= 0 if y /∈ {aj : j = 1, 2, . . .}.(1.10)

A weaker form of Theorem 1.5 was proved in [R6] where (1.6) is replaced by

(1.11) lim sup
r→∞
r /∈E

q

(
1

q

q∑

j=1

δ(r, aj)

)n−1

≤ C(n,K).

Theorem 1.7 shows for n = 3 that Theorem 1.5 gives qualitatively the right
asymptotic upper bound for the sum of the defect functions outside an exceptional
set of radii. This was not true with (1.11).

In dimension two it was a long standing problem whether arbitrary defects
with the defect sum at most two can be realized for meromorphic functions (the
case n = 2, p = 1, K = 1, in 1.7). The full solution to the inverse problem of
Nevanlinna theory was given by D. Drasin in [D].

With the bound p+1 = 2 Theorem 1.7 was proved in [R2] for n = 3 and the
method was extended to all dimensions n ≥ 3 in [R4]. For general p Theorem 1.7,
as well as Theorem 1.2, remains an open question for dimensions n ≥ 4.

For some other results on value distribution of quasiregular mappings we
refer to [R3], [MR], and [S]. For example, in [R3] upper bounds for n(r, a) in
terms of the spherical average are given. In [S] such bounds are proved for sums,
i.e., inequalities in the opposite direction to (1.6). Such results were obtained for
meromorphic functions in the plane by J. Miles [M].
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Part I: Proof of the defect relation

2. Covering averages

2.1. Some notation. The n -ball and (n− 1)-sphere in Rn with center x
and radius r are denoted by B(x, r) and S(x, r) . We also write B(r) = B(0, r) ,
S(r) = S(0, r) , B = B(1), S = S(1). Sometimes we indicate the dimension and
write for example Bn(x, r) = B(x, r) . The Euclidean distance in Rn is denoted
by d and the standard orthonormal basis vectors by e1, . . . , en . The Lebesgue
measure in Rn is m and the normalized k -dimensional Hausdorff measure in
Rn is H

k . Sometimes we write dx for dm . We set ωn−1 = H
n−1(S) . We

let Rn = Rn ∪ {∞} be equipped with the spherical metric via stereographic
projection so that Rn is isometric to an n -sphere in Rn+1 with radius 1/2. The
spherical distance in Rn is denoted by σ and balls and spheres with respect to σ
by Bσ(x, u) and Sσ(x, u) . The set of integers is Z . If γ: ∆ → Rn is a path, we
denote its locus γ∆ by |γ| . If Γ is a family of nonconstant paths in Rn , we let
Mn(Γ) = M(Γ) be the (n)-modulus of Γ (see [V, p. 16]). In Part I we shall use
the letter b , with subscript, prime, etc., to represent positive constants depending
only on the dimension n .

2.2. Quasiregular mappings. Let n ≥ 2 and let G be a domain in Rn . A
continuous mapping f : G→ Rn is called quasiregular if (1) f belongs to the local
Sobolev space W 1

n,loc(G) , i.e., f has first order weak partial derivatives which are
locally Ln -integrable, and (2) there exists a constant K , 1 ≤ K <∞ , such that

(2.3) |f ′(x)|n ≤ KJf (x) a.e.

Here |f ′(x)| is the supremum norm of the formal derivative f ′(x) defined by means
of the partial derivatives and Jf (x) is the Jacobian determinant. The smallest K
in (2.3) is the outer dilatation KO = KO(f) , and the smallest K , 1 ≤ K <∞ , in

Jf (x) ≤ K inf
|h|=1

|f ′(x)h|n

is the inner dilatation KI = KI(f) . The number K(f) = max
(
KO(f), KI(f)

)
is

the (maximal) dilatation of f . If f is quasiregular and K(f) ≤ K , f is called K -
quasiregular. The definition of quasiregularity extends in a straightforward manner
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to the case f : M → N where M and N are oriented and connected Riemannian
n -manifolds. If M ⊂ Rn , we call a quasiregular mapping f : M → Rn also
quasimeromorphic. A quasiregular homeomorphism is a quasiconformal mapping.
For the general theory of quasiregular mappings we refer to [MRV1], [MRV2], [BI],
[Re], [Vu].

2.4. Averages of the counting function. Let n ≥ 2 and let f : Rn → Rn

be a nonconstant K -quasiregular mapping. If A ⊂ Rn is any bounded Borel set
and y ∈ Rn , we write

n(A, y) =
∑

x∈f−1(y)∩A

i(x, f),

where we recall the notation i(x, f) for the local (topological) index of f at x (see
[MRV1, p. 6]). If Y is an (n−1)-sphere in Rn , we denote by ν(A, Y ) the average of
n(A, y) over Y with respect to the spherical (n−1)-measure of Y . We abbreviate
n(r, y) = n

(
B(r), y

)
, ν(r, Y ) = ν

(
B(r), Y

)
, and ν(r, t) = ν

(
B(r), S(t)

)
. The

average of n(r, y) over Rn with respect to the spherical n -measure is denoted
by A(r) . Sometimes we show the mapping f in the notation; for example, we
may write νf (r, t) = ν(r, t) . The following lemma is a slight improvement of [R3,
4.1] and the proof can be found in [R7] or [P].

2.5. Lemma. If θ > 1 and r, s, t > 0 , then

(2.6) ν(θr, t) ≥ ν(r, s) − KI

∣∣log ts
∣∣n−1

(log θ)n−1
.

The next lemma is essentially [R6, 2.4] and it relates the average A(r) to
averages over spheres.

2.7. Lemma. Let α = 2−1(n− 1)−1 . There exists a set E ⊂ [1,∞[ of finite
logarithmic measure such that the following holds. For every ε > 0 there exists
an increasing function ω: [0,∞[→ ]0,∞[ such that

(2.8)
∣∣∣ν(s, Y )

A(s′)
− 1

∣∣∣ < ε

and

(2.9)
ν(s, Y )

ν(s′, Y )
≥ 1 − ε

whenever Y is an (n − 1) -sphere in Rn with spherical radius u ≤ π/4 and
s′ ∈ [ω(| logu|),∞[ \E , where

(2.10) s′ = s+
s

A(s)α
.

A basic idea in the proof of Theorem 1.5 (and also of Theorem 1.1) is to
produce growth relations for averages of counting functions in terms of the number
of omitted values for certain restrictions of the map. The tool to obtain such
relations is the following result.
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2.11. Lemma. Let a1, . . . , aλ , λ ≥ 2 , be points in B(1/2) , let

σ0 =
1

4
min
j 6=k

|aj − ak|,

and let 0 < σ < σ0 . Suppose that F1, . . . , Fλ are disjoint continua in Rn each
connecting S and S(3/2) and such that fFj ⊂ B(aj, σ) , 1 ≤ j ≤ λ . Then there
exist aj such that

(2.12) (λ1/(n−1) − b′K2)
(
log

σ0

σ

)n−1

≤ b′′Kν
(
7/4, S(aj, σ0)

)
.

Proof. Let Γj be the family of paths in B(3/2) \ B connecting Fj and
F ∗
j =

⋃
k 6=j Fk . It is proved in [R6, pp. 186–188] that there exists j ∈ {1, . . . , λ}

such that

(2.13) M(Γj) ≥ b0λ
1/(n−1).

Suppose aj = 0 and define a function ̺′ by

̺′(y) =
1(

log σ0
σ

)
|y|

if σ < |y| < σ0,

̺′(y) = 0 elsewhere.

Set

L(x, f) = lim sup
|h|→0

|f(x+ h) − f(x)|
|h| .

Then (see [MRV1, 3.2])

b0λ
1/(n−1) ≤M(Γj) ≤

∫

B(3/2)

̺′
(
f(x)

)n
L(x, f)n dx(2.14)

≤ K

∫

B(3/2)

(̺′ ◦ f)nJf dm ≤ Kωn−1(
log σ0

σ
)n

∫ σ0

σ

ν(3/2, t)

t
dt.

By Lemma 2.5,

ν(3/2, t) ≤ ν(7/4, σ0) +K

(
log(σ0/σ)

)n−1

(
log(7/6)

)n−1 .

Substituting this into (2.14) gives (2.12). If aj 6= 0, we get (2.12) by performing
an auxiliary quasiconformal mapping. The lemma is proved.
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3. Defect sum and lifts of paths

In this section we shall mainly recall some notation and arguments from [R6].
Let f : Rn → Rn be a nonconstant K -quasiregular mapping and let E ⊂ [1,∞[
be the set given by Lemma 2.7. It will be the exceptional set in 1.5. We shall
first prove (1.6) for points a1, . . . , aq in B(1/2) and in the very end consider the
general case.

We write ν(F ) = ν(F, 1) for any bounded Borel set F ⊂ Rn and ν(r) =
ν(r, 1). By Lemma 2.7 there exists κ > 1 such that

(3.1)
∣∣∣A(s′)

ν(s)
− 1

∣∣∣ < 1

q

and

(3.2) ν(s′) ≤ 3

2
ν(s)

whenever s > 0 is such that s′ ∈ [κ,∞[ \E . We shall later make the bound κ
larger when necessary. Fix such s .

To prove 1.5 it suffices to show

q∑

j=1

(
1 − n(s′, aj)

A(s′)

)
+

≤ C(n,K) <∞.

Set J = {1, . . . , q} . We may assume q ≥ 2 and 1 − n(s′, aj)/A(s′) > 0 for all
j ∈ J . Set

(3.3) ∆j = 1 − n(s′, aj)

ν(s)
.

By (3.1) we then get

q∑

j=1

(
1 − n(s′, aj)

A(s′)

)
=

∑

j∈J

∆j +
∑

j∈J

n(s′, aj)

A(s′)

(A(s′)

ν(s)
− 1

)
(3.4)

≤
∑

j∈J

∆j + q
∣∣∣A(s′)

ν(s)
− 1

∣∣∣ ≤
∑

j∈J

∆j + 1.

To prove 1.5 it is therefore enough to give
∑

j ∆j an upper bound depending
only on n and K . Hence we may assume that ∆j > 0 for all j ∈ J and that∑
j ∆j ≥ 20.

The strategy for the proof is the following. Since n(s′, aj)/ν(s) < 1, the
point aj is covered less by f |B(s′) than a point y ∈ S by f |B(s) on average.
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This means that, on average, straight paths which join y and aj have maximal
lifts connecting f−1(y) ∩ B(s) and S(s′) , and the number of such lifts increases
with ∆j . If the total sum

∑
j ∆j is large, it means that one has such lifts for

many j ’s, again on average. The goal is to arrive at a point where Lemma 2.11
can be applied to produce a certain amount of growth on averages of the counting
function. For this we decompose B(s) into sets Ui , i = 1, . . . , p , by taking a
Whitney-type decomposition for B(s′) and restricting it to B(s) . In Lemma 2.11
U i will then correspond to B(1/2) and a set Wi will correspond to B(2). The
sets Wi will stay inside B(s′) and they will not overlap too much. We shall
obtain lower bounds for the ratios ν(Wi)/ν(Ui) , which in turn give a lower bound
for ν(s′) in terms of ν(s) . If

∑
j ∆j is too large, we contradict (3.2). To apply

Lemma 2.11 we have to study in detail what happens to the lifts described above.

3.5. Decomposition of B(s) . We start by giving precise conditions on the
decomposition of B(s) . Set d0 = s′ − s . We decompose B(s) into disjoint Borel
sets Ui , i ∈ I = {1, . . . , p} , such that

(1) 0 < An ≤ ̺0(Ui) ≤ Bn < ∞ , where ̺0(Ui) is the diameter of Ui in the
hyperbolic metric 4s′2 dx2/(s′2 − |x|2)2 of the ball B(s′) and where An and Bn
depend only on n .

(2) There exist b2 > 0 and K0 -quasiconformal mappings ϕi: R
n → Rn ,

b2 and K0 depending only on n , such that ϕ−1
i B(1/2) ⊂ Ui ⊂ ϕ−1

i B(1/2),
Wi = ϕ−1

i B(2) ⊂ B(s′) , and each point belongs to at most b2 of the sets Wi .

We obtain such a decomposition easily, for example, by making such a de-
composition on a cube and then using radial stretching. It follows from (3.1) that
the number of sets Ui has an upper bound of the form

(3.6) p ≤ b1(s/d0)
n−1 = b1A(s)1/2 ≤ 2b1ν(s)

1/2.

For each i ∈ I write

Xi = ϕ−1
i B(3/4), Yi = ϕ−1

i B(1), Zi = ϕ−1
i B(3/2).

Let

σ0 =
1

4
min
j 6=k

|aj − ak|

and for j ∈ J and y ∈ S let γjy: [0, 1] → B(1) be the path γjy(t) = (1 − t)y + taj
(note the difference in parametrization in [R6, p. 173]). Set f0 = f |B(s′ + 1).

3.7. Essentially separate lifts. Let i ∈ I and j ∈ J . For each y ∈ S
we choose a sequence λy,1, . . . , λy,k , k = n(s, y) , of essentially separate maximal
f0 -lifts of γjy starting in f−1(y) ∩B(s) . This means that each λy,ν is a maximal

(partial) f0 -lift of γjy , λy,ν(0) ∈ f−1(y) ∩B(s) , and

card {ν : λy,ν(t) = x} ≤ i(x, f) for all x and t.
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The existence of such a sequence is proved in [R1]. Let y ∈ S . Those lifts λy,ν
that start in Ui and satisfy |λy,ν | 6⊂ B(s′) are denoted by α1, . . . , ανy

. Set

(3.8) nji (y) = νy.

By [R6, Lemma 4.6 and p. 181] the choices of the sequences λy,1, . . . , λy,k , y ∈ S ,

can be made so that each function nji : S → R1 is measurable. At least n(s, y) −
n(s′, aj) of the lifts λy,1, . . . , λy,k must leave B(s′) , hence

∑

i∈I

nji (y) ≥ n(s, y)− n(s′, aj).

For the average we thus get, using (3.3), that

(3.9)
1

ωn−1

∫

S

∑

i∈I

nji (y) dy ≥ ν(s) − n(s′, aj) = ν(s)∆j .

For i ∈ I let

(3.10) Ji =

{
j : 2

∫

S

nji (y) dy > ωn−1ν(Ui)∆j

}
.

Note that summing the inequalities in (3.10) over i ∈ I gives (3.9) except for the
factor 2. From (3.9) it follows that

ωn−1

2
ν(s)

∑

j∈J

∆j =
ωn−1

2

∑

i∈I

∑

j∈J

ν(Ui)∆j ≥
ωn−1

2

∑

i∈I

∑

j∈J\Ji

ν(Ui)∆j

≥
∑

i∈I

∑

j∈J\Ji

∫

S

nji (y) dy =
∑

i∈I

∑

j∈J

∫

S

nji (y) dy −
∑

i∈I

∑

j∈Ji

∫

S

nji (y) dy

≥ ωn−1ν(s)
∑

j∈J

∆j −
∑

i∈I

∑

j∈Ji

∫

S

nji (y) dy.

We thus get the following lemma.

3.11. Lemma. The functions nji satisfy

(3.12)
∑

i∈I

∑

j∈Ji

∫

S

nji (y) dy ≥
ωn−1

2
ν(s)

∑

j∈J

∆j .

Inequality (3.12) gives a first step in the estimation of the number of lifts in
terms of the sum

∑
j ∆j .
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4. Completion of the proof of Theorem 1.5

In order to apply Lemma 2.11 we shall next study the positions of the lifts
α1, . . . , ανy

of γjy starting in Ui (see 3.7) for certain parameter values. First fix i

and j . For 1 ≤ ν ≤ νy = nji (y) we let ty,ν , uy,ν, vy,ν be the smallest numbers such
that 0 ≤ ty,ν < uy,ν < vy,ν and αν(ty,ν) ∈ ∂Ui , αν(uy,ν) ∈ ∂Xi , αν(vy,ν) ∈ Yi .
Set

Lji (y) =
{
ν ∈ {1, . . . , νy} :

1 − ty,ν
1 − uy,ν

≤ 1

σ0

}
,(4.1)

M j
i (y) =

{
ν ∈ {1, . . . , νy} :

1 − uy,ν
1 − vy,ν

≤ 3σ0

2σi

}
,(4.2)

where σi ∈ ]0, σ0] is chosen so that the equality

(4.3)
(
log

σ0

σi

)n−1

= Aiν(Ui)

holds with a nonnegative number Ai to be chosen in (4.7) for each i ∈ I .

The following averaging estimates for the cardinalities of the sets Lji (y) and

M j
i (y) are from [R6].

4.4. Lemma [R6, 3.8 and 3.16]. There exist nonnegative measurable func-
tions lji : S → R1 and mj

i : S → R1 such that

(1) cardLji (y) ≤ lji (y) for y ∈ S ,

(2) card
(
M j
i (y) \ Lji (y)

)
≤ m̃j

i (y) = Aim
j
i (y) for y ∈ S ,

and the following estimates hold:
∫

S

lji (y) dy ≤ b3K
(
log

1

σ0

)n−1

,

∑

j∈J

∫

S

mj
i (y) dy ≤ b4Kν(Ui).

For i ∈ I we now define (recall Ji from (3.10))

(4.5) J i =

{
j ∈ Ji : 3

∫

S

lji ≥
∫

S

nji or 3

∫

S

m̃j
i ≥

∫

S

nji

}
.

Lemma 4.4 gives first

∑

j∈Ji

∫

S

nji (y) dy ≤ 3
∑

j∈Ji

∫

S

(
lji (y) + m̃j

i (y)
)
dy

≤ 3b3Kq
(
log

1

σ0

)n−1

+ 3b4KAiν(Ui).
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With Lemma 3.11 and (3.6) we then get

(4.6)

∑

i∈I

∑

j∈Ji\Ji

∫

S

nji (y) dy =
∑

i∈I

∑

j∈Ji

∫

S

nji (y) dy −
∑

i∈I

∑

j∈Ji

∫

S

nji (y) dy

≥ ωn−1

2
ν(s)

∑

j∈J

∆j − 6b1b3Kq
(
log

1

σ0

)n−1

ν(s)1/2 − 3b4K
∑

i∈I

Aiν(Ui).

Up to this point the reasoning has been very similar to the one in [R6]. In fact,
(4.6) differs from [R6, (5.12)] only in the last term.

Set λi = card (Ji \ J i) . As Ai increases in the range [0,∞[ , the number λi
decreases from

λ0
i = card

{
j ∈ Ji : 3

∫

S

lji <

∫

S

nji

}

to some value λ∞i . We may assume that at the discontinuities of the function
Ai 7→ λi the jumps are 1. If this is not the case originally, we make small
variations in the functions mj

i for different j ’s. Then it is clear that we may
choose Ai ≥ 0 such that

(4.7) λi − 1 ≤ 9ω−1
n−1b4KAi ≤ λi.

Let d =
∑
j ∆j/10 and set

(4.8) I1 =
{
i ∈ I : λi ≤ d or ν(Ui) ≤ ν(s)1/4

}
.

Notice that d ≥ 2 since we have assumed
∑

j ∆j ≥ 20. We now easily obtain the
following basic estimate.

4.9. Proposition. With the choice (4.7) of Ai we have

(4.10)
∑

i∈I\I1

λiν(Ui) ≥
ν(s)

8

∑

j∈J

∆j

provided κ is large enough.

Proof. By (4.6) and (4.7) we obtain

∑

i∈I

λiν(Ui) =
∑

i∈I

∑

j∈Ji\Ji

ν(Ui) ≥
∑

i∈I

∑

j∈Ji\Ji

ω−1
n−1

∫

S

nji (y) dy

≥ 1

2
ν(s)

∑

j∈J

∆j − 6b1b3ω
−1
n−1Kq

(
log

1

σ0

)n−1

ν(s)1/2 − 1

3

∑

i∈I

λiν(Ui),
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from which we first get

(4.11)
∑

i∈I

λiν(Ui) ≥
ν(s)

4

∑

j∈J

∆j

for κ large enough. For the sum over I1 we get from (3.6) and (4.8) the estimate

∑

i∈I1

λiν(Ui) ≤
1

10
ν(s)

∑

j∈J

∆j + 2b1ν(s)
1/2qν(s)1/4.

With (4.11) this gives (4.10) for κ large enough.

We are now in a position to apply Lemma 2.11 to each map f ◦ϕ−1
i , i ∈ I \I1 .

Let i ∈ I \ I1 . For each j ∈ Ji \ J i we have by the definitions (3.10) and (4.5)
that ∫

S

(nji − lji − m̃j
i )(y) dy ≥

1

3

∫

S

nji (y) dy >
ωn−1

6
∆jν(Ui) > 0,

and hence nji (y)− lji (y)− m̃j
i (y) > 0 for some y ∈ S . By Lemma 4.4 we then have

nji (y)−card
(
Lji (y)∪M j

i (y)
)
> 0. This means with the notation in (4.1) and (4.2)

that there is an index ν ∈ {1, . . . , nji (y)} for which 1 − vy,ν ≤ 2σi(1 − ty,ν)/3 ≤
2σi/3. The corresponding lift αν has the following properties for some t ≤ 1:

(1) The restriction αji = αν |[vy,ν , t] connects ∂Yi and ∂Zi .

(2) |f ◦ αji | ⊂ B(aj , σi) .

Then ϕi ◦ αji connects S and S(3/2). We now apply Lemma 2.11 to the map

g = f ◦ϕ−1
i and the continua Fj = |ϕi ◦αji | , j ∈ Ji \ J i . We obtain that for some

j ∈ Ji \ J i ,

(4.12) (λ
1/(n−1)
i − b′K2

0K
2)

(
log

σ0

σi

)n−1

≤ b′′K0Kνg
(
7/4, S(aj, σ0)

)
.

By (4.3), (4.7), and λi ≥ d ≥ 2 we have

(4.13) λiν(Ui) = λiA
−1
i

(
log

σ0

σi

)n−1

≤ 18ω−1
n−1b4K

(
log

σ0

σi

)n−1

.

Lemma 2.5 together with a suitable quasiconformal mapping (as at the end of the
proof of 2.11) yields

(4.14) ν(Wi) = νg(2, 1) ≥ νg
(
7/4, S(aj, σ0)

)
− b′′′K

(
log(1/σ0)

)n−1

(
log (8/7)

)n−1 .
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Since i ∈ I \ I1 , by choosing κ originally large enough we can have the average

ν(Wi) (≥ ν(Ui)) exceeds b′′′K
(
log(1/σ0)

)n−1(
log(8/7)

)1−n
, which with (4.14)

gives

(4.15) νg
(
7/4, S(aj, σ0)

)
≤ 2ν(Wi).

Inequalities (4.12), (4.13), and (4.15) yield

(4.16) (λ
1/(n−1)
i − b5K

2)λiν(Ui) ≤ b6K
2ν(Wi).

We formulate the conclusion of this as follows.

4.17. Proposition. Let b5 and b6 be the constants in (4.16) . Suppose

(4.18)
∑

j∈J

∆j ≥ max
(
20, 10(2b5K

2)n−1
)
.

Then, for i ∈ I \ I1 and for large enough κ ,

(4.19) b5λiν(Ui) ≤ b6ν(Wi).

Proof. Since i ∈ I \ I1 , we have λi ≥ d =
∑
j ∆j/10 ≥ (2b5K

2)n−1 , hence

λ
1/(n−1)
i − b5K

2 ≥ b5K
2 and (4.19) follows from (4.16). Note that

∑
j ∆j ≥ 20

was needed for λi ≥ d ≥ 2 in (4.16).

4.20. Remark. Clearly with the same assumption (4.18) the stronger in-

equality λ
1+1/(n−1)
i ν(Ui) ≤ 2b6K

2ν(Wi) is also true, but we shall need (4.19).

Suppose that (4.18) holds and κ is large enough for Propositions 4.9 and 4.17.
Then by (3.2), 3.5(2), 4.9, and (4.19) we obtain

ν(s)

8

∑

j∈J

∆j ≤
∑

i∈I\I1

λiν(Ui) ≤ b−1
5 b6

∑

i∈I

ν(Wi) ≤ b−1
5 b6b2ν(s

′) ≤ 3

2
b−1
5 b6b2ν(s).

The final conclusion is therefore that

(4.21)
∑

j∈J

∆j ≤ max
(
20, 10(2b5K

2)n−1, 12b−1
5 b6b2

)
= C′(n,K).

With (3.4) this proves Theorem 1.5 when a1, . . . , aq ∈ B(1/2).

For the general case we replace S by another sphere Y = Sσ(z, u) , u ≤ π/20,
such that a1, . . . , aq ∈ Rn \ Bσ(z, 5u) . We apply Lemma 2.7 to Y . With ν(s)
replaced by ν(s, Y ) we get (3.4). We may need to increase κ . Let h be a spherical
isometry of Rn such that h(z) = ∞ , and let T be a Möbius transformation of
Rn that keeps 0 and ∞ fixed and takes hY onto S . Then Th

(
Rn \Bσ(z, 5u)

)
⊂

B(1/2) and νf (s, Y ) = νψ(s, 1) where ψ = T ◦ h ◦ f . Because K(ψ) = K(f) , we
conclude that the same bound in (4.21) is valid in the general case as well. This
completes the proof of Theorem 1.5.
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4.22. Remarks. 1. One can formulate and prove a corresponding defect
relation for quasiregular mappings of the unit ball into Rn (cf. [R6, Remark 6.13]).

2. M. Pesonen [P] has used the method from [R6] in a modified form to give
an alternative proof for quasiregular mappings of Ahlfors’ sharp result (1.3) for
n = 2. Ahlfors’ article [A] also includes the case of smooth quasiregular mappings
for n = 2.

Part II: Realization of given defects

5. Background of construction for p omitted points in R3

We shall now turn to the proof of Theorem 1.7. The main idea is to divide R3

into sectorlike sets according to the given numbers δj and to make the mapping

in a large part of each such set omit in R3 a certain subset of A = {a1, a2, . . .}
consisting of p+ 1 points. The main difficulties in carrying out this program are
the following. First, the construction in [R9] must be modified to the present
situation. In [R9] a quasiregular mapping f : R3 → R3 is constructed where the
omitted points form a special configuration, in particular, the ratios of their mutual
distances are bounded by a constant depending only on p . The second difficulty
is that we must be able to move from one sector to a neighboring sector with
different configurations of omitted sets. To accomplish this we use modifications
of ideas from [R2].

In this section we give a general overview of the method in [R9]. Let us first
look at the case p = 2, i.e., when the quasiregular mapping f : R3 → R3 omits
two points in R3 . This case is carried out in detail in [R9]. For general p the
outline is given in [R9, Section 8].

Following the notation and terminology in [R9] we choose the omitted points
to be u2 = −e3/2, u3 = e3/2, set u1 = ∞ , and let U1 , U2 , U3 be the components
of R3\(S2∪B2∪{u2, u3}) such that uj ∈ U j , j = 2, 3. Here R2 is identified with
R2 ×{0} ⊂ R3 . Each component of Wj = f−1Uj must necessarily tend to ∞ . In
[R9] the sets W1 and W2 consist of one component and W3 has six components.
The sets Wj stick into each other in a complicated way near ∞ . In a sense this
phenomenon is inevitable.

The construction of f is achieved by first giving an approximation of f−1(S2∪
B2) =

⋃
j ∂Wj denoted by |M∞| [R9, 4.1]. The components of the complement

of |M∞| are denoted by V1, V2, V3(h) , h = 0, 1, . . . , 5, and they are all topolog-
ical 3-balls. The set Vj is thus an approximation of Wj , j = 1, 2, 3, if we set
V3 = V3(0)∪· · ·∪V3(5). To get an idea how these sets Vj are constructed, consider
the half spaces H+ = {x ∈ R3 : x3 > 0} and H− = {x ∈ R3 : x3 < 0} to be the
first approximations of V1 and V2 . Then stick in six infinite cones with branches
between H+ and H− , which means that H+ and H− must be deformed some-
what. The idea is to get an approximation of V3 which is spread out “between” the
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common boundary of H+ and H− . Let us denote these approximations by V 1
j ,

j = 1, 2, 3. The key goal is to achieve the following condition: For any common
boundary point x of two of the sets Vj the third will intersect a neighborhood of
x of a specific size. To approach this situation, we next extend V 1

2 by a system
of branched cones “between” parts of the common boundary of V 1

1 and V 1
3 and

also V 1
1 by a system of branched cones “between” parts of the common boundary

of V 1
2 and V 1

3 . Next we repeat this with parts of the new common boundaries
and continue similarly until a certain size of the smallest cones is reached. This
gives a very rough picture about what is going on. In the actual construction we
use for the most part PL technique. The branched cones above will correspond
to objects called caves and the operator to produce caves in the next finer scale is
called a cave refinement [R9, 2.5].

To get an idea of the map f itself it is illuminating to look at preimages of
each half of the sets Uj , for example f−1(U1∩H+) and f−1(U1∩H−) . These can
be described as certain tubes starting from f−1(S2 ∪B2) and tending to infinity.
As x → ∞ in a tube, f(x) tends to u1, u2 , or u3 . The restrictions of f to
certain level surfaces, which for example in W1 are preimages of spheres S(̺i)
with a sequence (̺i) tending to ∞ , are determined by specific triangulations on
the surfaces, called map complexes [R9, 2.7 and 4.3], in the sense that alternate
simplices are mapped onto the upper hemisphere of S(̺i) and the rest onto the
lower (Alexander’s construction). These level surfaces for example in W1 are
obtained by a small move of ∂V1 followed by similarity maps [R9, 4.2 and (4.5)].
The triangulations differ topologically when we shift from one level surface to
another. To define the map between the level surfaces requires therefore a rather
general deformation theory for 2-dimensional discrete open maps [R9, Sections 5
and 6]. For the gluing of different tubes at f−1(S2 ∪B2) a still more delicate cave
refinement procedure is needed [R9, Section 7].

In the general case of p omitted points in R3 , the construction in [R9] is very
similar to the one for p = 2. The caves are replaced by what we call caves with

p− 1 passages [R9, 8.1]. These differ from the earlier caves in that the insides of
the earlier caves are now divided by walls into p − 1 components. The omitted
points u2, . . . , up+1 lie in this order on the x3 -axis in the ball B3 so that the
distances |uj+1 − uj | differ from each other by at most a factor depending only
on p .

6. Moving points by quasiconformal mapping

We modify the construction given in [R9] and described in the preceding
section to prove the following sharpening of Theorem 1.2.

6.1. Theorem. For any distinct points a1, . . . , ap+1 in R3 there exists a

K -quasiregular mapping F : R3 → R3 omitting exactly the points a1, . . . , ap+1 ,
with K depending only on p .
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This modification will be accomplished in Section 8. In this section we shall
perform a preliminary quasiconformal mapping which moves the points a1, . . . , ap+1

to the x3 -axis in such a way that the mutual distances are roughly preserved. In
doing this we shall make use of the following lemma the proof of which is evident.

6.2. Lemma. Let 0 < C < 1 and let x1, . . . , xk, y1, . . . , yk , k ≤ p , be points
in B3(1/2) such that

min
i6=j

|xi − xj |, min
j 6=j

|yi − yj | ≥ C.

Then there exists a K -quasiconformal mapping H: R3 → R3 , K depending only
on C and p , such that

(1) H is the identity in R3 \B3 ,

(2) H is the translation in B3(xj, C/16) onto B3(yj, C/16) .

We start by giving a certain ordering on the given points. Let ̺0 be the
minimum of the spherical distances σ(aj, ak) . We assume that ̺0 = σ(a1, a2) .

Let h: R3 → R3 be a Möbius transformation such that h takes the spherical ball
Bσ(a1, ̺0) onto R3\B3(1/2), h(a1) = ∞ , and h(a2) = −e3/2. With the notation
bj = h(aj) we can relabel the points bj , j ≥ 2, such that (1) if Bj = {b2, . . . , bj} ,
then for j ≥ 3 the minimum dj of the distances |bk − bl| , bk, bl ∈ Bj , k 6= l , is
attained as dj = |bj − cj | for some cj ∈ Bj−1 , and (2) d3 ≥ d4 ≥ · · · ≥ dp+1 .
Notice that d3 = |b3 − b2| ≥ 1/8 because Bσ(a2, ̺0) does not contain any points
aj , j 6= 2. Notice also that Bp+1 ⊂ B3(1/2).

Next we shall form a partition of {2, . . . , p+1} into sets ∆µ according to the
sizes of dj as follows. Let ∆0 = {2} and write j0 = 2. In [R9] there is chosen
an integer ν = νp depending on p (ν2 = 24000 [R9, p. 199]). The construction
in [R9] works for larger integers as well. Here we choose ν > max(105p, νp) . Set
c = exp ν3 . Let j1 be the first j ≥ 3 such that dj/dj+1 > c . Then we define
∆1 = {3, . . . , j1} . Next we let j2 be the first j ≥ j1 + 1 such that dj/dj+1 > c
and set ∆2 = {j1 + 1, . . . , j2} , etc.

For each µ ≥ 1 and bq ∈ Bjµ−1
we define E(µ, q) to be the set of all bj

with j ∈ ∆µ for which there exist k1, . . . , km = j in ∆µ such that ckl+1
= bkl

,
1 ≤ l ≤ m− 1, and ck1 = bq . It follows from the definitions that the sets E(µ, q)
are disjoint and their union is Bp+1 . Notice that E(µ, q) may be empty. In
particular, E(µ, 2) = ∅ for all µ ≥ 2. Notice also that E(1, 2) = Bj1 \ {b2} . We
also write E∗(µ, q) = E(µ, q) ∪ {bq} .

By applying Lemma 6.2 repeatedly we shall move the points b2, . . . , bp+1 to
the x3 -axis X3 into a position according to their mutual distances by a quasicon-
formal mapping. We start with E∗(1, 2) = Bj1 . Let r = r1,2 > 0 be minimal

for which E∗(1, 2) ⊂ B3(b2, r) . The definition of j1 gives dj1 ≥ d3/c
p ≥ 1/(8cp) .

We shall apply Lemma 6.2 to get a K1 -quasiconformal mapping g1: R
3 → R3
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such that (1) g1 is the identity outside B3(b2, 2r) , (2) g1 takes the points bj
of E∗(1, 2) to points b1j that are equidistantly distributed on X3 ∩ B3(b2, r) , (3)

d
(
g1E

∗(1, 2)
)

= 2r , and (4) b12 = b2−re3 . Together with the translation x 7→ x+b2
and homotheties with factor 2r we apply 6.2 with C = min(dj1/2r, 1/p) to get
the required mapping g1 . Then g1 is the translation x 7→ b1j − bj + x in each ball

B3(bj , Cr/8), bj ∈ E∗(1, 2). Since dj1/r ≥ 1/(8cp) , we can make K1 depend on
p only.

Next let bq ∈ Bj1 be such that E(2, q) 6= ∅ . We observe

E(2, q) ⊂ B3(bq, pdj1+1)

and pdj1+1 ≤ pdj1/c ≤ Cr/16; hence E∗(2, q) is contained in the ball B3(bq, Cr/16)
and g1 is a translation in the concentric ball with double radius. We can therefore
repeat the above for g1E

∗(2, q) instead of E∗(1, 2). Let r′ = r2,q be minimal

such that E∗(2, q) ⊂ B3(bq, r
′) or g1E

∗(2, q) ⊂ B3(b1q, r
′) . Now we apply 6.2 with

C = min(dj2/2r
′, 1/p) . We have dj2 ≥ dj1+1/c

p and r′ ≤ pdj1+1 , hence dj2/r
′

has the lower bound (pcp)−1 , which depends only on p . Thus we obtain K2 ≥ K1

depending only on p and a K2 -quasiconformal mapping g2: R
3 → R3 which is

the identity outside B3(b1q, 2r
′) and takes the points g1E

∗(2, q) to equidistantly

distributed points in X3 ∩B3(b1q , r
′) such that d

(
g2g1E

∗(2, q)
)

= 2r′ . If q′ ∈ ∆1

and q′ 6= q , then d
(
g1E

∗(2, q), g1E
∗(2, q′)

)
≥ r/p − Cr/8 > r/2p and the corre-

sponding mapping for q′ does not interact with g2 . We can therefore repeat this
procedure for all E(µ,m) , bm ∈ Bjµ−1

, in order of increasing µ to obtain a K2 -
quasiconformal mapping ϕ′: R3 → R3 that takes the set Bp+1 into X3∩B3(b2, 2r)
and 1/16 ≤ r ≤ 1. We write v′j = ϕ′(bj) , j = 1, . . . , p+ 1. Then v′1 = ∞ and v′2
has the smallest x3 -coordinate among the points v′2, . . . , v

′
p+1 . Finally we compose

with the translation T (x) = x+ (−e3/2 − v′2) and write ϕ = T ◦ ϕ′ , vj = ϕ(bj) ,
j = 1, . . . , p+ 1.

7. Level surfaces

In this section we shall give modifications of the construction in [R9] as a
preliminary step in the goal of obtaining the mapping omitting the given points
a1, . . . , ap+1 in R3 . With the help of the quasiconformal mapping ϕ constructed
in the preceding section the problem is reduced to the case where the omitted
points are v1 = ∞ , v2, . . . , vp+1 , which lie on the x3 -axis X3 . Note that the
indexing of vj ’s does not correspond to the order on X3 except that v2 = −e3/2
has the smallest x3 -coordinate of v2, . . . , vp+1 . We shall denote by g the map to
be constructed and omitting v1, . . . , vp+1 . The map of Theorem 6.1 will then be
F = h−1 ◦ ϕ−1 ◦ g , with h as introduced at the beginning of Section 6.

7.1. Background. To start the construction we first recall more of the no-
tation in [R9]. We consider the case of p+1 omitted points u1 = ∞ , u2, . . . , up+1
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in R3 . In [R9, 8.2] the points u2, . . . , up+1 lie almost equidistantly on the segment
[−e3, e3] and in this order. More precisely, let S2

+
= {x ∈ S2 : x3 ≥ 0} , let ωp be

the Möbius transformation of R3 that keeps S1 fixed, maps S2
+

into B3 , and for
which S2

+
and ωpS

2
+

form a dihedral angle π/p . Then ωj−1
p S2

+
∪ ωjpS2

+
bounds a

subdomain U ′
p+2−j of B3 , j = 1, . . . , p . We let up+1 be the midpoint of the part

of the x3 -axis which lies in U ′
p+1 . Then set uj = ωp+1−j

p (up+1) , Uj = U ′
j \ {uj} ,

j = 2, . . . , p+ 1, so that the x3 -coordinates of the points uj increase with j . Let
f : R3 → R3 be the mapping given in [R9] that omits the points u2, . . . , up+1 .
Then each f−1∂Uj becomes approximated by |Mj| , which is the space of a union
Mj of certain 2-complexes constructed by the cave refinement operation [R9, pp.
213, 240]. The union M1 ∪ · · · ∪Mp+1 is denoted by M∞ . The set R3 \ |M∞|
has 2 + 6(p − 1) components V1, V2, Vj(h) , j = 3, . . . , p + 1, h = 0, . . . , 5, and
Mj = ∂Vj , j = 1, . . . , p+ 1, if we also write

Vj =
5⋃

h=0

Vj(h) for j ≥ 3.

On each |Mj | we also have a certain map complex denoted by Gj (see [R9, 4.1
and 8.2]). In V1 we have level surfaces ν2i|N1| , i = 0, 1, 2, . . ., where N1 is
obtained from M1 by moving vertices slightly (see [R9, 4.2 and 8.2]). Similarly
we are given level surfaces in the other domains V2, Vj(h) , j = 3, . . . , p + 1,
h = 0, . . . , 5.

7.2. µ-inheriting. The idea now is to modify parts of M∞ according to
the sizes of the distances |vj − vk| , j, k ≥ 3. More precisely, in the new form
there will be space between some of sets V1 , V2 , Vj(h) , j = 3, . . . , p + 1. This
space is obtained by moving vertices, applying homotheties, and performing more
cave refinements. Decisive in this procedure will be the relative sizes of the sets
E∗(µ, q) defined in Section 6.

In accordance with the notation in the preceding section we let rµ,q be the

minimal radius such that E(µ, q) is contained in the ball B3(bq, rµ,q) . Suppose
E∗(µ, q) ∩ E∗(λ, l) 6= ∅ for some λ < µ and bl ∈ Bjλ−1

, and let here µ̃ be the
maximal λ such that λ < µ . Note that E∗(µ̃, l) ∩ E∗(µ̃,m) = ∅ if m 6= l , so
given E∗(µ, q) we get a uniquely determined maximal µ̃ < µ and bq̃ ∈ Bjµ̃−1

such
that E∗(µ, q) ∩ E∗(µ̃, q̃) 6= ∅ . We have rµ̃,q̃/rµ,q ≥ djµ̃/pdjµ > c/p . Therefore
there exists a largest positive integer i such that exp ν2i ≤ rµ̃,q̃/rµ,q and we
denote this by iµ,q . Notice that q is never 1 or 2 in iµ,q . We order these as
i1 ≥ i2 ≥ · · · ≥ ik+1 with each pair µ, q (such that iµ,q is defined) corresponding
to exactly one index in the sequence (il) .

We say that bm is µ-inherited from bq if there are sequences bq = bq0 ,
bq1 , . . . , bql

= bm and µ0, . . . , µl with µ ≤ µ0 such that bqs+1
∈ E(µs, qs) , s =

0, . . . , l − 1. Let the set of m ’s such that bm is µ-inherited from bq be I(µ, q)
and set I∗(µ, q) = I(µ, q) ∪ {q} . The corresponding sets of bm ’s are denoted
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by D(µ, q) = {bm : m ∈ I(µ, q)} and D∗(µ, q) = D(µ, q) ∪ {bq} . It follows
from the definitions that D∗(µ, q) ⊂ D∗(λ, r) or D∗(µ, q) ⊃ D∗(λ, r) whenever
D∗(µ, q) ∩ D∗(λ, r) 6= ∅ . It also follows that if J is the minimal interval on X3

that contains ϕD∗(µ, q) , then vj ∈ ϕD∗(µ, q) for every vj in J .

7.3. Level surfaces, map complexes, first layer. Let v2, vk3 , . . . , vkp+1

be the order of the points on ϕBp+1 listed in the positive direction of X3 and
let σ: {1, . . . , p+ 1} → {1, . . . , p+ 1} be the permutation with σ(1) = 1, σ(2) =
2, σ(m) = km , m ≥ 3. Each set J∗(µ, q) = σ−1I∗(µ, q) is then of the form
{m1, m1 + 1, . . . , m1 + l} .

We start with µ, q with largest iµ,q , also denoted by i1 . Suppose first that
there is only one such pair µ, q . Set

M(µ, q) =
⋃{Mj : j ∈ J∗(µ, q)},

Mc(µ, q) =
⋃{Mj : j /∈ J∗(µ, q)},

M−(µ, q) = M(µ, q) ∩Mc(µ, q),

so that the space |M−(µ, q)| is the boundary of

V (µ, q) = int
(⋃{V j : j ∈ J∗(µ, q)}

)
.

We now move M(µ, q) into V (µ, q) as in [R9, 4.2], where the level surface |N1|
is obtained by moving vertices of M1 . More precisely, we move the vertices of
M−(µ, q) slightly so that M−(µ, q) is replaced by a union M+(µ, q) of 2-complexes
whose space |M+(µ, q)| lies in V (µ, q) and is approximately at distance ν−1/2 d(A)
from |M−(µ, q)| near each 2-simplex A in M−(µ, q) . The vertices of M(µ, q) \
M−(µ, q) are kept fixed. For j /∈ J∗(µ, q) Vj , Mj , and Gj are also kept fixed in
this procedure. For j ∈ J∗(µ, q) Vj , Mj , and Gj now appear as V ′

j , M ′
j , and

G′
j . Also M(µ, q) and V (µ, q) will change to M ′(µ, q) and V ′(µ, q) . We also

write
Vc(µ, q) = int

(⋃{V j : j /∈ J∗(µ, q)}
)

= R3 \ V (µ, q).

Between Vc(µ, q) and V ′(µ, q) we have thus opened a layer Y (µ, q) = R3 \(
V c(µ, q) ∪ V

′
(µ, q)

)
. Its boundary consists of X−(µ, q) = Y (µ, q) ∩ V c(µ, q)

and X+(µ, q) = Y (µ, q) ∩ V ′
(µ, q) . They are the spaces of unions of 2-complexes

induced by Mc(µ, q) and M ′(µ, q) , which we denote by M−(µ, q) and M+(µ, q)
respectively. With the principles in [R9, 3.2–3.4] we also define map complexes
G−(µ, q) and G+(µ, q) on |M−(µ, q)| = X−(µ, q) and |M+(µ, q)| = X+(µ, q) re-
spectively.

Next we apply the homothety x 7→ ν2ω1x where ω1 = i1 − i2 . We shall
perform a certain amount of cave refinement constructions on both ν2ω1 |Mc(µ, q)|
and ν2ω1 |M ′(µ, q)| as follows. On ν2ω1 |Mc(µ, q)| we perform successively cave re-
finements guided by the map complexes ν2ω1Gj , j /∈ J∗(µ, q) , and ν2ω1G−(µ, q) .
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The number of cave refinement steps is determined by a principle similar to the
one in [R9, 3.4]. In connection with these cave refinements we also get a number
of level surfaces as follows. Let V be a component of Vj for some j /∈ J∗(µ, q) .
When two steps of cave refinement are performed on ν2ω1 |Mc(µ, q)| , ν2ω1Mj is
replaced by a new union Pj of 2-complexes and ν2ω1Vj is replaced by a set Aj .
A level surface in Aj is obtained by slight movement of those vertices of Pj that
lie on ∂Aj into Aj as in [R9, 4.2]; cf. the construction of M ′(µ, q) above. The
next finer level surface is obtained similarly after two more cave refinements etc.
In the same way we get level surfaces replacing Vj by Y (µ, q) above. The cave
refinements on ν2ω1 |M ′(µ, q)| together with level surfaces are obtained similarly.
Recall that these constructions always bring along also map complexes on the level
surfaces.

In addition to the level surfaces constructed in connection with the cave re-
finements described above we take the level surfaces ν2i|N1| , ν2i|N2| , ν2i|Nj(h)| ,
j = 3, . . . , p+ 1, h = 0, . . . , 5, i = ω1 + 1, ω1 + 2, . . ., together with corresponding
map complexes (see [R9, 4.3]).

7.4. Next layers. After completing the constructions above, objects such
as Mj , Vj etc. have been transformed into ones which we shall denote by adding

(1) as superscript. After this first step we thus have for example M
(1)
j , V

(1)
j , G

(1)
j

for all j , Y (1)(µ, q) , M
(1)
− (µ, q) , M

(1)
+ (µ, q) , G

(1)
− (µ, q) , and G

(1)
+ (µ, q) .

Now we proceed as follows. Let i2 = iλ,r and assume i2 > i3 . Suppose first
that J∗(µ, q) ∩ J∗(λ, r) = ∅ . This time we define

(7.5) M (1)
c (λ, r) = M

(1)
− (µ, q) ∪M (1)

+ (µ, q) ∪ ⋃{M (1)
j : j /∈ J∗(λ, r)},

i.e., M
(1)
c (λ, r) contains all that is not indexed by some j ∈ J∗(λ, r) . Then set

(7.6) M
(1)
− (λ, r) = M (1)

c (λ, r) ∩M (1)(λ, r).

Note that since J∗(µ, q)∩ J∗(λ, r) = ∅ , M (1)(λ, r) does not meet M
(1)
+ (µ, q) , but

it may meet M
(1)
− (µ, q) . If not otherwise stated, notations such as M (1)(λ, r) are

defined formally as for the pair µ, q by means of the M
(1)
j , that is,

M (1)(λ, r) =
⋃{M (1)

j : j ∈ J∗(λ, r)},

and similarly for other objects. The space |M (1)
− (λ, r)| is also now the bound-

ary of V (1)(λ, r) and we move M (1)(λ, r) into V (1)(λ, r) as before. For j ∈
J∗(λ, r) , V

(1)
j ,M

(1)
j , and G

(1)
j will change to V

(1)
j

′ , M
(1)
j

′ and G
(1)
j

′ . The ob-

jects M (1)(λ, r) and V (1)(λ, r) will change to M (1) ′(λ, r) and V (1) ′(λ, r) . Set

V
(1)
c (λ, r) = R3 \ V (1)(λ, r) and Y (1)(λ, r) = R3 \

(
V c

(1)(λ, r) ∪ V (1) ′(λ, r)
)
.
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As before, the boundary of Y (1)(λ, r) consists of two spaces of unions of 2-

complexes, namely, M
(1)
− (λ, r) and M

(1)
+ (λ, r) , which are induced by M

(1)
c (λ, r)

and M (1) ′(λ, r) . On |M (1)
− (λ, r)| and |M (1)

+ (λ, r)| we have map complexes G−(λ, r)
and G+(λ, r) .

Now we apply the homothety x 7→ ν2ω2x where ω2 = i3 − i2 . The original
union M∞ = M1 ∪ · · · ∪ Mp+1 has been transformed to three separate parts,

namely, ν2ω2M (1)(µ, q), ν2ω2M (1) ′(λ, r) , and the rest, which is ν2ω2

(
M

(1)
c (λ, r) \

M (1)(µ, q)
)
. We perform cave refinements on each of these parts and construct

level surfaces by the same principles as before. If T is a level surface from the
first step, it transforms to a level surface ν2ω2T . In particular, the level surfaces
ν2i|N1| etc., i = ω1 + 1, ω1 + 2, . . ., are transformed to level surfaces ν2i|N1| etc.,
i = ω1 + ω2 + 1, ω1 + ω2 + 2, . . . . The resulting objects are then provided with a
superscript (2).

Suppose next that J∗(µ, q)∩J∗(λ, r) 6= ∅ and consider first the case J∗(µ, q) ⊂
J∗(λ, r) . We write

M̃ (1)(λ, r) = M
(1)
− (µ, q) ∪M (1)

+ (µ, q) ∪ ⋃{M (1)
j : j ∈ J∗(λ, r)},

M (1)
c (λ, r) =

⋃{M (1)
j : j /∈ J∗(λ, r)},

M
(1)
− (λ, r) = M (1)

c (λ, r) ∩ M̃ (1)(λ, r).

The space |M (1)
− (λ, r)| is thus the boundary of

Ṽ (1)(λ, r) = int
(
Y (1)(µ, q) ∪ ⋃{V j

(1) : j ∈ J∗(λ, r)}
)
.

We move M̃ (1)(λ, r) as above into Ṽ (1)(λ, r) which then changes to Ṽ (1)′(λ, r) .

Set V
(1)
c (λ, r) = R3 \ Ṽ (1)(λ, r) and Y (1)(λ, r) = R3 \

(
V c

(1)(λ, r) ∪ Ṽ (1)(λ, r)
)
.

The procedure is now similar to the one in the case J∗(µ, q) ∩ J∗(λ, r) = ∅ .
Suppose then J∗(λ, r) ⊂ J∗(µ, q) . Here we proceed formally as in the case

J∗(λ, r)∩ J∗(µ, q) = ∅ , namely, we define M
(1)
− (λ, r) by (7.6) where M

(1)
c (λ, r) is

given by (7.5). The continuation is clear.
If i1 = i2 > i3 , the moves such as M(µ, q) → M ′(µ, q) are done for both

pairs µ, q and λ, r before the homothety, which in this case is x 7→ ν2(i3−i1)x .
After we have finished the second step, namely, the constructions for the pair

λ, r , we provide the new objects with superscript (2), for example M
(2)
j etc.

7.7. Graphs and the general step. We are now ready to give a description
of the general procedure. It will be sufficient to give a definition of an object like

M
(1)
− (λ, r) in (7.6) for the general step. That will then define the move, and

the rest of the step is accomplished by principles as described above. For this
it is convenient to let each step correspond to a connected graph which is a tree
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with the following properties. Its sides are open, the endsides are attached to one
vertex and the other sides to two vertices. Each vertex is attached to at least three
sides. The sides, vertices, and pairs (A,w) , where A is a side that is attached
to the vertex w , will correspond to the objects in the construction in a specific
way. To describe this we will list the correspondence after the first step where the
various objects are denoted by the addition of the superscript (1). An endside A

corresponds to some V
(1)
j and an inner side to Y (1)(µ, q) . Let the correspondence

be denoted by ψ ; hence in the first case ψ(A) = V
(1)
j . For a pair (A,w) , where A

is an endside with ψ(A) = V
(1)
j , we set ψ(A,w) = |M (1)

j | , which is the boundary

of V
(1)
j . If in (A,w) A is an inner side with ψ(A) = Y (1)(µ, q) , we take ψ(A,w)

to be either |M (1)
− (µ, q)| or |M (1)

+ (µ, q)| depending in an obvious way on which of
the two possible vertices w is. Finally, to a vertex w corresponds ψ(w) , which
will be the union of all ψ(A,w) where A runs over the sides A that are attached
to w .

Figure 1.

Let us use a specific example to make the idea easier to understand. Let
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p = 7, J∗(µ, q) = {3, 4, 5} , J∗(λ, r) = {6, 7} , i1 > i2 > i3 . In Figure 1 we see
four consecutive stages. The graph in (a) represents the original Vj ’s and Mj ’s.
A number j at a side corresponds to Vj . In (b) the first step is performed and in
addition to the endsides the correspondences are

ψ(A1) = Y (1)(µ, q), ψ(A1, w1) = |M (1)
− (µ, q)|, ψ(A1, w

′
1) = |M (1)

+ (µ, q)|.

In (c) the second step is performed and we have the correspondences

ψ(A2) = Y (2)(µ, q),

ψ(A2, w2) = |M (2)
− (µ, q)|,

ψ(A′
2, w2) = |M2

−
(λ, r)|,

ψ(A′
2) = Y 2(λ, r),

ψ(A2, w
′
2) = |M2

+
(µ, q)|,

ψ(A′
2, w

′′
2 ) = |M2

+
(λ, r)|.

We make the following observations. To obtain the graph in (b) from that in (a)
we take the minimal connected subgraph Γ containing the sides corresponding to
J∗(µ, q) = {3, 4, 5} . This subgraph has the vertex w0 in common with the closure

Γ̃ of the complement of Γ. To obtain (b) from (a) we move Γ away from Γ̃ and
connect them with a side A1 at vertices w1 and w′

1 corresponding to w0 . We note
that (c) is obtained from (b) with the same principle. From (b) we also can read

the space |M (1)
− (λ, r)| . If now Γ1 is the graph corresponding to J∗(λ, r) = {6, 7}

and Γ̃1 is the closure of the complement, they have the uniquely determined
common vertex w1 . We form the union of all ψ(A,w) = ψ(A,w1) where A ∈ Γ1 ,

which gives |M (1)(λ, r)| , and the union of all ψ(A,w) where A ∈ Γ̃1 , which gives

|M (1)
c (λ, r)| as in (7.5). The intersection of these two gives |M−(λ, r)| as in (7.6).

Let us assume that i3 = iκ,s > i4 and J∗(κ, s) = {3, 4, 5, 6, 7} . Then the
common vertex in (c) for the two subgraphs is w2 and the graph is changed to
the one in (d).

In the general case too the splitting of the graph corresponding to a given
stage into two subgraphs is uniquely determined by the next J∗ -set, say J∗(γ, s) ,
according to the rules described above. This splitting gives then M−(γ, s) , which
in turn determines the move and so on. If the il ’s coincide for several consecutive
indices l , the corresponding moves, homotheties, and cave refinements are per-
formed simultaneously for those indices (cf. the case i1 = i2 > i3 above). The last
homothety is x 7→ ν2ik . Observe that in the end the layer Y (µ, q) has been mod-
ified to a layer Y (k)(µ, k) whose “width” is roughly ν2i1 times that of Y (µ, q) ,
the “width” of the next layer Y (1)(λ, r) is multiplied roughly by ν2i2 etc. For
notational convenience we have used the pairs µ, q and λ, r to have special values
attached to i1 and i2 . In what follows we shall regard these pairs as free variables.
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8. Mapping with arbitrary omitted points

We are now ready to describe the final steps in the proof of Theorem 6.1.
By Section 6 we may assume that the points are v1 = ∞ and v2, . . . , vp+1 which
lie on the x3 -axis X3 . In addition, v2 = −e3/2. We shall use notation from
Sections 6 and 7. The set {v2, . . . , vp+1} is obtained as the image of Bp+1 under
the quasiconformal mapping ϕ . The order on X3 is v2, vk3 , . . . , vkp+1

and σ is a
permutation such that σ(1) = 1, σ(2) = 2, σ(m) = km , m ≥ 3.

Let E(µ, q) 6= ∅ . Let d1, . . . , ds be the points of ϕE∗(µ, q) ⊂ ϕBp+1 in the
positive order on X3 . Recall that |dl−dl−1| is constant for all l . In the beginning
of Section 7 we described the domains U ′

j bounded by spheres and containing uj .
Now we do a similar thing for the points dl in place of the uj ’s. As a result, we
obtain domains D′

l ∋ dl bounded by spheres. We suppose that E∗(1, 2) 6= Bp+1 ,
for otherwise the construction reduces to the original one in [R9].

Following the notation in Section 7.2 we let µ̃, q̃ be the uniquely determined
pair such that µ̃ is maximal for the property µ̃ < µ and E∗(µ, q) ∩ E∗(µ̃, q̃) 6= ∅
provided iµ,q is defined, which means that E∗(µ, q) meets some E∗(λ, r) with
λ < µ . Let the points of ϕ∗E∗(µ̃, q̃) be f1, . . . , ft , again in increasing order
on X3 . Similarly we get domains F ′

m ∋ fm bounded by spheres. Since E∗(µ, q)∩
E∗(µ̃, q̃) 6= ∅ , dσ = fτ for uniquely determined σ and τ , and the union of the
sets D′

l is contained in F ′
τ . In Figure 2 we see the location of these points and

domains for s = 4, t = 3, σ = 4, τ = 2. Note because of our choice of c , the
picture is far from being in the right scale.

To get an idea of the quasiregular map g to be constructed we begin by
describing how different parts of R3 from the construction in Section 7 will
roughly be mapped. Each layer Y (k)(µ, q) will be approximately mapped onto
the ring domain F ′

τ \ ⋃
l Dl

′ , with the notation above, such that the boundary

part |M (k)
+ (µ, q)| corresponds to ∂

⋃
l Dl

′ and the boundary part |M (k)
− (µ, q)|

to ∂F ′
τ . Each domain V

(k)
j will be approximately mapped onto a domain like

Dl = D′
l \ {dl} , where dl = vkj

provided D′
l does not contain similar domains of

smaller category. This is equivalent to saying that I∗(µ+ 1, kj) contains only kj .
The level sets in a layer Y (k)(µ, q) are mapped onto certain spheres Σ con-

centric to ∂
⋃
lDl

′ such that
⋃
lDl

′ remains inside each Σ. The level sets in a

set V
(k)
j are mapped onto certain spheres Σ in D′

l with center dl , where D′
l is

in the same meaning as above. The mapping on the level sets is constructed with
the same principles as in [R9, Section 4].

Observe that we can recognize the final graph described in Section 7 from the
configuration of the sets like Dl and Fm etc. as follows. In Figure 3 part of the
graph is drawn by dotted line segments and it represents a case where only one
of the sets I∗(µ+ 1, kj) contains more than one point for vkj

= dl , l = 1, . . . , 4,
namely, the one corresponding to d4 .

It remains to define the map g between the level sets and around the bound-
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Figure 2.

aries of layers Y (k)(µ, q) and sets V
(k)
j . Between the level surfaces the principles in

[R9, Section 6] apply almost without changes. The construction around the bound-

aries of the sets Y (k)(µ, q) and V
(k)
j can also be copied without much change from

[R9, Section 7] with the remarks from [R9, Section 8]. In particular, the map com-

plex G
(k)
− (µ, q) on the boundary part |M (k)

− (µ, q)| of Y (k)(µ, q) has the effect on

the construction like the map complex G
(k)
j on ∂V

(k)
j . A similar remark applies

to the map complex G
(k)
+ (µ, q) .

We pay special attention to the definition of g in g−1U , where U is a round
neighborhood of v1 = ∞ or v2 = −e3/2. As follows from the construction in
Section 7, after the final step we have level surfaces ν2i|N1| etc. for integers i ≥
w1 + · · ·+wk + 1 = i1 − ik+1 + 1, in particular, for i ≥ i1 . Since a1 and a2 have
a special role among the points aj (in particular, the indices 1 or 2 never occur
for q in iµ,q (see 7.2)), we may construct g so that it has the following additional

property. For j = 1, 2 let Xj be the closed set in V
(k)
j which is bounded by

ν2i1 |Nj | and which does not touch |M (k)
j | . In X1 we define g exactly as in [R9,

Section 8] (in [R9] the map is called f ) and in X2 we take the map from [R9]
followed by the obvious translation x 7→ v2 − u2 + x . With this normalization
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Figure 3.

we have that if g′ is the corresponding map for another sequence a′1, . . . , a
′
p+1 of

points such that the mutual spherical distances attain the minimum for the pair
a′1, a

′
2 and if X ′

j corresponds to Xj , j = 1, 2, then g and g′ coincide in Xj ∩X ′
j ,

j = 1, 2.
This completes the proof of Theorem 6.1. We shall in the following sections

not only use the result of Theorem 6.1, but also the actual construction because
we need to know the behavior of the mapping to a certain extent.

9. Mappings of cylinders

In this and the next section we shall apply ideas from [R2] to complete the
proof of Theorem 1.7. The main idea is to define mappings in infinite cylinders
with square base by means of mappings given by Theorem 6.1 and glue such
mappings together along the faces of the cylinders. The cylinders will fill R3 and
the mappings in various cylinders are chosen according to the amount of defect the
points aj are given. Let κ: R3 → R3 be the radial stretch map which maps each
ball B3(t) onto the cylinder Q(t) = B2(t)× ] − t, t[ . We shall construct a map
f which satisfies the statements in Theorem 1.7 with respect to the exhaustion
of R3 by the cylinders Q(t) . The required map for Theorem 1.7 is then f ◦ κ .
The main difference from the constructions in [R2] is that the mapping given by
Theorem 6.1 is of complicated nature whereas a mapping of a cylinder in [R2] is
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essentially a composition of two Zorich maps (see [Z] or [R7, p. 222]). Here special
attention must be paid on the gluing process.

9.1. Quasiconformal maps of half cylinders. We start by defining some
auxiliary quasiconformal maps. We let H+

i (H−

i ) be the half space {x ∈ R3 :
xi > 0} ({x ∈ R3 : xi < 0}) and we also write H+ = H+

3 , H− = H−

3 . We cut
out the closed half plane P = {x ∈ R3 : x2 = −x1/

√
3, x1 ≥ 0} from R3 and

let ϕ1 be the folding ϕ1: H
+

2 → R3 \ P given by (r, ϕ, x3) 7→ (r, 2ϕ− π/6, x3) in
cylindrical coordinates. Let ϕ2: H

+

2 → H+

3 be the rotation about the x1 -axis such
that ϕ2(e2) = e3 . We consider sequences w = (w1, . . . , wp+1) of p + 1 distinct

points in R3 such that σ(w1, w2) is minimal among σ(wj , wk) , j 6= k , and denote
the map, given by Theorem 6.1 and constructed in Sections 6–8, by Fw . Write
ηw = Fw ◦ ϕ1 ◦ ϕ−1

2 . The maps h and ϕ from Section 6 are denoted by hw and
ϕw and the map g from Section 8 by gw .

If (k,m) ∈ Z× Z , we set

Bkm = {x ∈ R3 : k < x1 < k + 1, m < x2 < m+ 1}
and B+

km = Bkm ∩ H+ , B−

km = Bkm ∩ H− . Let C+ be the cylinder {x ∈
H+ : x2

1 + x2
2 < 1} and write C+

t = {x ∈ C+ : x3 < t} . We translate B+

00 by

ϕ3: x 7→ x−(e1/2, e2/2) onto B̃+

00 and rotate B̃+

00 by ϕ4(r, ϕ, x3) = (r, ϕ−π/4, x3)

onto B̂+

00 = {x ∈ H+ : |x1| + |x2| < 1/
√

2 } . We map C+ onto B̂+

00 by ϕ5 , which

is the radial stretching ϕ5(r, ϕ, x3) = (r′, ϕ, x3) defined by (r′/r, ϕ, x3) ∈ ∂B̃+

00

for r > 0. Let ϕ6: C
+ → H+ be a quasiconformal map such that

(1) for x3 ≥ 1, ϕ6(r, ϕ, x3) = (̺, ϕ, θ) , ̺ = ex3 , θ = πr/2, where we have
used cylindrical and spherical coordinates such that θ is the angle between the
x3 -axis and the radius vector;

(2) ϕ6 induces the identity on the disk B2 ⊂ R2 = ∂H+ ;

(3) ϕ6 induces (1, ϕ, x3) 7→ (ex3 , ϕ, π/2) on the boundary part {x ∈ ∂C+ :
0 < x3} .

Set ψ = ϕ6 ◦ ϕ−1
5 ◦ ϕ4 ◦ ϕ3 . Then ηw ◦ ψ is a quasiregular map of B+

00

onto R3 \ {w1, . . . , wp+1} . Let u+

km (u−

km) be the map of B+

km (B−

km) onto B+

00

obtained by repeated reflection with respect to the faces of the cylinders and let
u: H+

3 → H+

3 be the reflection with respect to the x2x3 -plane. Set

ϕ±

km = ψ ◦ u±

km if u±

km is orientation preserving,

ϕ±

km = u ◦ ψ ◦ u±

km if u±

km is orientation reversing.

We write ϕkm for the map of Bkm defined by ϕkm|B±

km = ϕ±

km . Then ηw◦ϕkm is a

quasiregular map of Bkm onto R3\{w1, . . . , wp+1} . Let (s1, t1) and (s2, t2) be two
vertices of the base of some B+

km such that (s1, t1)−(1, 0) ∈ 2Z×2Z and (s2, t2)−
(0, 1) ∈ 2Z× 2Z . Then, according to the construction, ηw ◦ ϕkm(sj, tj, x3) → wj
as |x3| → ∞ , j = 1, 2. We set Λ1 = (1, 0) + 2Z× 2Z , Λ2 = (0, 1) + 2Z× 2Z .
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9.2. Deformation maps. In order to glue maps defined in cylinders Bkm
with different w ’s we introduce some more quasiconformal maps. Let

ξ: [1,∞[×[0,∞[→ [0,∞[

be the function defined by

ξ(d, s) = d2
( s

d2

)1/2

if 0 ≤ s ≤ d2,

ξ(d, s) = s if d2 ≤ s.

Let ∆α be the interval [(α − 1)π/2, απ/2] , α = 1, 2, 3, 4. For µ, ν ∈ {1, 2, 3, 4}
we define functions σµν of [0, 2π] into [1, 2] , with the following conditions. Each
σµν is continuous, it is affine on each interval ∆α , it has the same value at the
endpoints 0 and 2π , and it is the smallest such function with σµν |∆µ ∪ ∆ν = 2.
Notice that here |ν − µ| = 2 implies σµν = 2. In fact, we only employ the cases
µ = ν and ν − µ = 1 (mod 4), and then define quasiconformal selfmaps λqµν ,
q = 0, 1, . . ., of H+ in spherical coordinates by

(9.3) λqµν(̺, ϕ, θ) =
(
ξ
(
2qσµν(ϕ), ̺

)
, ϕ, θ

)
.

We also write

(9.4) λq(̺, ϕ, θ) =
(
ξ(2q, ̺), ϕ, θ

)
.

In addition to these radial stretching maps we need maps which change the
angle ϕ . Let ζ: [−π/2, π/2] → [−π/2, π/2] be the function whose graph consists
of the line segments [(−π/2,−π/2), (−π/8, π/8)] and [(−π/8, π/8), (π/2, π/2)] .
We define quasiconformal selfmaps ω and ω∗ of H+ in cylindrical coordinates by

(9.5)
ω(r, ϕ, x3) =

(
r, ζ(ϕ), x3

)
if − π/2 ≤ ϕ ≤ π/2,

ω(r, ϕ, x3) = (r, ϕ, x3) if π/2 ≤ ϕ ≤ 3π/2,

(9.6)
ω∗(r, ϕ, x3) =

(
r, ζ(ϕ− π), x3

)
if π/2 ≤ ϕ ≤ 3π/2,

ω∗(r, ϕ, x3) = (r, ϕ, x3) if − π/2 ≤ ϕ ≤ π/2.

Notice that ω∗ is ω followed by the rotation (r, ϕ, x3) 7→ (r, ϕ+ π, x3) .

9.7. Standard maps. Next we define for a given w = (w1, . . . , wp+1) a
positive integer l = lw as follows. We know from the end of Section 8 that the
constructed map g , now call it gw , is of a normalized form in the domains Xj

“outside” the level surfaces ν2i1 |Nj | , j = 1, 2. In Figure 4 we have illustrated
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schematically how ϕ2 ◦ϕ−1
1 ν2i1 |Nj| , j = 1, 2, is seen on the boundary of H+ (ϕ1

and ϕ2 are defined in 9.1). In the same picture we have drawn lines L and L′ ,
which together with the x1 -axis consist of the union of images (on the boundary)
of the x1 -axis under the maps ω, ω−1, ω∗, ω∗−1 . Far enough from the origin the
sets ϕ2 ◦ϕ−1

1 ν2i1 |Nj | , j = 1, 2, stay (on the boundary) inside the angular domains
in ∂H+ meeting the x1 -axis and bounded by L and L′ . We take l to be the least
integer such that this happens outside the disk B2(2l) ⊂ ∂H+ . Now we are in a
position to define what we will call a standard map of Bkm for w . It is denoted
by τwkm and defined by

(9.8) τwkm = ηw ◦ λl ◦ ϕkm.

Recall the maps ηw = Fw ◦ ϕ1 ◦ ϕ−1
2 and ϕkm , from 9.1, and λl from (9.4).

Here and in the following extensions of maps to the boundary of the domain of
definition are used without further notice if the extensions make sense. Thus, for
example, the definition (9.8) extends naturally to the base of B+

km . The map f
will for pairs (k,m) in certain subsets of Z×Z be defined by the rule (9.8). These
subsets will be determined according to the defect numbers in the next section.

9.9. Gluing maps of cylinders. First we shall describe how to glue stepwise
maps of the form ηw ◦ λq ◦ ϕkm with different q ’s. To this end, assume that for
fixed w and q we have defined f |Bkm as ηw ◦λq ◦ϕkm for (k,m) in A0 ⊂ Z×Z .
Suppose we want to increase q gradually to r > q when (k,m) leaves A0 . We
define inductively sets A1, A2, . . . such that Ai is the set of pairs (k,m) ∈ Z× Z

for which Bkm ∩Bst 6= ∅ for some (s, t) ∈ Ai−1 . We also write BA = int
(
∪{Bst :

(s, t) ∈ A}
)
, where A ⊂ R2 . For (k,m) ∈ A1 \ A0 we define f in Bkm by

ηw ◦λqµν ◦ϕkm , where λqµν is the function defined in (9.3) such that σµν is maximal
(depending on (k,m)) with the condition that ηw◦λqµν◦ϕkm agrees on the common
boundary of Bkm and BA0

. Then, on the common boundary of BA1
and any

Bkm , (k,m) ∈ A2 \A1 , the constructed map agrees with ηw ◦ λq+1 ◦ϕkm , and so
the construction can be continued similarly if needed.

As a second gluing process we describe how to change w . Suppose again that
for fixed w and q we have defined f |Bkm as ηw ◦ λq ◦ ϕkm for (k,m) ∈ A0 . Let
w′ = (w1, w

′
2, . . . , w

′
p+1) be such that σ(w1, w

′
2)/σ(w1, w2) ∈ [1/2, 2] . We assume

that q ≥ max(lw, lw′) . Let D1 and D2 be the domains in ∂H+ bounded by the
lines L and L′ (Figure 4) and such that D1 meets the positive and D2 the negative
x2 -axis. Then gw ◦ϕ1 ◦ϕ−1

2 and gw′ ◦ϕ1 ◦ϕ−1
2 agree on (D1 ∪D2)∩∁B3(2q) . We

can fix an absolute constant Q > 1 and a Q -bilipschitz map ϑ: R3 → R3 with
respect to the spherical metric such that ϑ ◦ ηw and ηw′ agree on D1 ∩ ∁B3(2q)
and ϑ ◦ ηw and ηw agree on D2 ∩ ∁B3(2q) .

For (k,m) ∈ A1 \A0 we define f |Bkm as one of the following three maps:

(a) ηw ◦ ω ◦ λq ◦ ϕkm ,
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Figure 4.

(b) ηw ◦ ω∗−1 ◦ λq ◦ ϕkm ,

(c) ηw ◦ ω∗−1 ◦ ω ◦ λq ◦ ϕkm .

The rule for the choice among (a)–(c) is that on the common boundary of BA0
and

Bkm the constructed maps agree and in case of ambiguity (c) has preference to (a)
and (b). Next we let A′

2 be a set with A1 ⊂ A′
2 ⊂ A2 and such that no point of

Λ1 = (1, 0)+2Z×2Z appears on the boundary of ∪{∂H+∩Bs,t : (s, t) ∈ A′
2} . For

(k,m) ∈ A′
2 \A1 we define f |Bkm with the same rule as above with A0 replaced

by A1 . In fact, this time only (c) will be the choice among (a)–(c). We now
observe that on ∂BA′

2
the constructed map agrees with

(d) ϑ ◦ ηw ◦ w∗−1 ◦ ω ◦ λq ◦ ϕkm

if ∂BA′
2
∩ ∂Bkm 6= ∅ . We use (d) as a definition for (k,m) ∈ A3 \A′

2 .
Next we strive for changing the role of Λ1 and Λ2 . For this we stepwise

replace ω∗−1 ◦ ω in (d) by ω∗−1, ω, id, ω∗, ω−1, ω∗ ◦ ω−1 . Preference in the final
step is given to ω∗ ◦ ω−1 . We get that on ∂BA7

the constructed map agrees with

(e) ηw′ ◦ ω∗ ◦ ω−1 ◦ λq ◦ ϕkm

if ∂BA7
∩ ∂Bkm 6= ∅ . By replacing ω∗ ◦ ω−1 in (e) stepwise by ω∗, ω−1 , and id

so that id has the preference we get that on ∂BA9
the constructed map agrees

with ηw′ ◦ λq ◦ ϕkm if ∂BA9
∩ ∂Bkm 6= ∅ . This completes the gluing process for
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changing w to w′ . Keeping w2 fixed we can similarly move w1 . As a result, given
two arbitrary w and w′ we can after a finite number of steps move from a map
ηw ◦ λq ◦ϕkm to ηw′ ◦ λq ◦ϕst provided q ≥ max(lw, lw′) . Recall the definition of
lw from 9.7.

In the next section we consider gluing procedures also for certain parts of the
initial set A0 . Such modifications will always be clear from the context.

10. Completion of the proof of Theorem 1.7

10.1. Defect numbers and sectors. Now let δ1, δ2, . . . be as in 1.7, let p
be the integer such that

p < β =
∑

i

δi ≤ p+ 1,

and assume that p ≥ 2. (The case 0 ≤ p ≤ 1 is considered in [R2].) We arrange
the indexing so that δ1 ≥ δ2 ≥ δ3 ≥ . . . . Set

sk =
k∑

i=1

δi, s0 = 0,

and Di = [si−1, si[ , i ≥ 1. Let α: [0, p + 1[→ [0, 1[×{1, . . . , p + 1} be de-
fined by α(s) = (s − j + 1, j) when j − 1 ≤ s < j , j = 1, . . . , p + 1, and let
π1: [0, 1[×{1, . . . , p+ 1} → [0, 1[ be the projection. Each set D′

i = αDi is either
one or two intervals. Each fibre π−1

1 (t) contains either p or p + 1 points of the
sets D′

i and all indices i are different. Observe that each δi ≤ 1. The projections
π1D

′
i define a set of intervals in [0, 1[ and the endpoints of these intervals define

a set of subintervals. We denote these subintervals in the part [0, β − p[ of [0, 1[
by γµ = [tµ−1, tµ[ , µ = 1, 2, . . ., and in the part [β − p, 1[ by ων = [uν−1, uν [ ,
ν = 1, . . . , ν0 . The indexing is such that t0 < t1 < · · ·, u0 < u1 < · · · < uν0 .
If β = p + 1, the intervals [uν−1, uν [ are missing. If there are only finitely many
positive terms in

∑
i δi , the set of intervals γµ is finite. For each γµ (ων) there is

a set Iµ (Jν ) of p+ 1 (p) indices i such that π−1
1 (t) ∩D′

i 6= ∅ , t ∈ γµ (t ∈ ων ).
We define sectors of R2 by means of the intervals γµ and ων by setting (in polar
coordinates)

Γµ = {(t, ϕ) ∈ R2 : ϕ/2π ∈ γµ}, µ ≥ 1,

Ων = {(t, ϕ) ∈ R2 : ϕ/2π ∈ ων}, ν = 1, . . . , ν0.

10.2. Sectors and the quasiregular map. In cylinders Bkm , whose base
Bkm ∩ R2 is contained in some sector Γµ , we mostly define f by a standard
map τw

µ

km given in formula (9.8). Here wµ = {ai : i ∈ Iµ} . Exceptions of this

rule appear only for cylinders Bkm with base near Γ̇µ , the boundary of Γµ with
respect to R2 . A precise description of this procedure is given below.
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For a sector Ων we add to the set {ai : i ∈ Jν} points as follows. We
pick a point a0 with a spherical distance δ > 0 from

{
ai : i ∈ ⋃

ν Jν
}

. We

let (zκ) be a sequence in Bσ(a0, δ/2) \ {a0} converging to a0 such that 1/2 ≤
d(zκ+1, a0)/d(zκ, a0) < 1, κ = 1, 2, . . . . In (10.11) we shall give more precise
conditions on the sequence (zκ) . We also decompose Ων into sets Ωνκ defined by

Ωνκ = {x ∈ Ων : C2κ ≤ d(x, Ω̇ν) < C2κ+1},

where C is large enough for the gluing process described below. For cylinders
Bkm with base in Ωνκ we mostly define f by a standard map τw

νκ

km , where wνκ =
{ai : i ∈ Jν} ∪ {zκ} . Again exceptions appear only for cylinders Bkm with base
near the boundaries Ω̇νκ .

To work out these principles in detail we do the following. We start the
construction by defining f |Bkm to be the standard map τw

11

km for (k,m) ∈ Ω11 .

Then we use the gluing method from 9.9 to change from the standard maps τw
11

km

to standard maps τw
12

km when (k,m) leaves Ω11 and enters Ω12 . Note that at
this point we have not defined f in cylinders Bkm with (k,m) ∈ R2 \ Ω1 . In the

next step we use the gluing process to change the standard maps τw
12

km to standard

maps τw
13

km when (k,m) leaves Ω12 and enters Ω13 . We continue similarly and, as
a result, f is defined for cylinders Bkm, (k,m) ∈ Ω1 . Because of the special choice
of the sequence (zκ) each gluing stage is completed after M steps, M independent
of κ (see the end of Section 9). Since C is large, we obtain the standard maps

τw
12

km for (k,m) ∈ Ω12 well before the common boundary of Ω12 and Ω13 . Since
the width of Ω1κ increases with κ , the corresponding condition in later stages is
satisfied too.

Next we perform the gluing process from the standard maps τw
11

km to standard

maps τw
21

km when (k,m) leaves Ω1 . After a finite number of steps we obtain
a (minimal) neighborhood Ω′

1 of Ω1 (in R2 ) such that f |Bkm is defined for

(k,m) ∈ Ω′
1 and it is the standard map τw

21

km when Bkm meets the boundary
of BΩ′

1
. Recall the notation from 9.9. We define f |Bkm as the standard map

τw
21

km for (k,m) ∈ Ω21 \ Ω′
1 . We can then continue the definition for the cylinders

Bkm in the rest of BΩ2
as we did for Ω1 above.

We continue similarly. We find a neighborhood Ω′
2 of Ω′

1 ∪ Ω2 such that f

is defined in BΩ′
2

and f |Bkm is the standard map τw
31

km when Bkm meets the
boundary of BΩ′

2
. Then we continue as before and f is defined in BΩ′

2
∪Ω3

. When
we have treated all Ων ’s this way, we have f defined in BΩ′

ν0−1
∪Ων0

, where Ω′
ν0−1

is a neighborhood of Ω1 ∪ · · · ∪ Ων0−1 . Observe that we have chosen C so large
that the gluing processes work.

To proceed we next consider the sector Γ1 . We find a (minimal) neighborhood
Γ′

0 ⊂ R2 of Ω′
ν0−1 ∪Ων0 such that f is defined in BΓ′

0
and f |Bkm is the standard

map τw
1

km when Bkm meets the boundary of BΓ′
0
. We extend the definition of f
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to BΓ1
\BΓ′

0
by standard maps τw

1

km . Next we find a neighborhood Γ′
1 of Γ′

0 ∪Γ1

such that f is defined in BΓ′
1

and f |Bkm is the standard map τw
2

km if Bkm meets
the boundary of BΓ′

1
. We extend the definition of f to BΓ2

\BΓ′
1

by the standard

maps τw
2

km . We continue similarly through all Γµ ’s. Then f becomes defined in
the whole space R3 . This completes the construction of f .

10.3. Value distribution. It remains to show that the constructed map
f : R3 → R3 is a realization for the given defect numbers δi . For this we need
to study the value distribution behavior of the standard maps τwkm where w is
wµ or wνκ . The behavior of f in cylinders Bkm , where some gluing process
is performed, has no effect asymptotically. This is so because the bases of such
cylinders are contained in strips whose total angular measure asymptotically tends
to zero. Moreover, during the gluing process the map is distorted only by a
bounded amount from the corresponding standard maps.

We shall study value distribution of the maps gw (see 9.7). Recall from the
end of Section 8 that g = gw is of a normalized form in each set Xj bounded by
the level surfaces ν2i1 |Nj | , j = 1, 2. Fix a level surface T = ν2i|N1| , where i ≥ i1 .
Recall that on T we are given a map complex G , that g maps each 2-simplex
of G injectively onto the upper or lower hemisphere of a sphere S2(ti) , and that
these 2-simplexes appear in adjacent pairs A,B so that g|A∪B covers the sphere
S2(ti) once when some part of the boundary of A ∪ B is ignored (see [R9, 4.3]).
Let ξi(r) be the number of these pairs A,B which are contained in T ∩ B3(r) .
Fix β = 1/6. According to the construction of g there are constants c1, c2 > 0,
depending only on p , and r′′0 = r′′0 (w, i) ≥ 1 such that for r ≥ r′′0 we have

ng(r, z) ≤ c2r
2 for z ∈ R3,(10.4)

c1r
2 ≤ ξi(r) ≤ c2r

2,(10.5)

c1 ≤ d(A) ≤ c2r
β if A is a 2-simplex of G in B3(r),(10.6)

ξi(r + r2β) ≤ ξi(r) + c2r
1+2β.(10.7)

For (10.5)–(10.7) we refer to the discussion in [R9, 3.4]. We may assume that
r′′0 (w, i) increases in i .

Let v1, . . . , vp+1 be the points on the x3 -axis corresponding to w and omitted
by g . Set

σ0 =
1

4
min
j 6=k

σ(vj, vk)

and let 0 < ε < σ0 . To an adjacent pair A,B of 2-simplices of G corresponds a
“branched tube” V , which g maps in a one to one way (with proper interpretation
on boundary) onto R3 \ {v1, . . . , vp+1} (see [R9, Sections 6, 7, 8]). Such branched

tubes fill disjointly R3 . Let Qε = Qwε = R3 \ ⋃
j Bσ(vj , ε) . The diameter of the
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intersection V ∩ g−1Qε satisfies

(10.8)
d(V ∩ g−1Qε)

d(A)
≤ c(i, ε, w).

From (10.6)–(10.8) we get that if r is large enough, then

ng(r, y) ≤ ξi(r + r2β) ≤ ξi(r) + c2r
1+2β , y ∈ Qε,

and similarly,

ξi(r) − c2r
1+2β ≤ ξi(r − r2β) ≤ ng(r, y), y ∈ Qε.

With (10.5) we conclude that there exists

(10.9) R = R(i, ε, w) ≥ r′′0

such that

(10.10) 1 − c2
c1
r−4β ≤ nq(r, y)

ξi(r)
≤ 1 +

c2
c1
r−4β , r ≥ R, y ∈ Qε.

We let sw ∈ ]0, 1/2] be maximal such that the map gw is of normalized form
in g−1

w Bσ(∞, sw) . If gw′ is another map, gw and gw′ coincide in g−1
w Bσ(∞, s) =

g−1
w′ Bσ(∞, s) for 0 < s ≤ min(sw, sw′) . Because of the special choice of the

sequence (zκ) , we have

s0 = min
1≤ν≤ν0

min
κ≥1

(swνκ) > 0.

Suppose the sequence Γ1,Γ2, . . . is infinite. If ι ≥ 1 is an integer, we let Dι be
the union of all sectors Ων , ν = 1, . . . , ν0 , and Γµ , 1 ≤ µ ≤ ι . If t ≥ 1, we let
P (ι, t) be twice the number of pairs (k,m) for which the base of Bkm is contained
in Dι ∩B2(t) and f |Bkm is a standard map. Set

sι = min
(
s0, min

1≤µ≤ι
swµ

)
.

For a minimal i(ι) , each gw is of normalized form on the level surface T =
ν2i|N1| and T ⊂ g−1

w Bσ(∞, sι) for i ≥ i(ι) , when w is wνκ , ν = 1, . . . , ν0 ,
κ = 1, 2, . . ., or wµ , 1 ≤ µ ≤ ι . We let Gι be the set of these w ’s. We recall
from (9.8) that a standard map τwkm is of the form ηw ◦λl ◦ϕkm , l = lw , and here
λl: H+ → H+ is the identity outside B3(22l) ∩H+ . Again, by the special choice
of the sequence (zκ) from 10.2,

lι = max
w∈Gι

lw <∞.
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To give a precise condition on the sequence (zκ) we write δι = δ2−ι−4 ,
ι = 1, 2, . . . . Recall from 10.2 the notation δ for the spherical distance of a0 to{
ai : i ∈ ⋃

ν Jν
}

. There is a fixed constant γ > 0, independent of the particular

choice of the sequence (zκ) , such that for ει = γδι we have R3 \⋃
j Bσ(wj , δι) ⊂

h−1
w ϕ−1

w Qwει
for all w = wνκ , κ = 1, 2, . . ., ν = 1, . . . , ν0 . Set

Rι,ε = max
w∈Gι

R
(
i(ι), ε, w

)
,

rι = max(22lι , Rι,ει
),

tι = log rι.

We now require that

(10.11) zκ /∈ Bσ(a0, 2δι) if Ωνκ ∩B2(tι) 6= ∅ for some ν = 1, . . . , ν0.

This condition is fulfilled when (zκ) tends to a0 slowly enough and (10.11) is
needed to ensure the right covering of a0 by the map f .

Let y ∈ R3 \ {a1, a2, . . .} . We want to show that

(10.12) lim
t→∞

nf
(
Q(t), y

)

Af
(
Q(t)

) = 1,

where Af (B) is the average of nf (B, y) over R3 for any Borel set B ⊂ R3 . Recall
the notation Q(t) from the beginning of Section 9. We let mσ be the spherical
3-measure on R3 . If ι ≥ 1 is an integer and ε > 0, we have

(10.13)
mσ(h

−1
w ϕ−1

w Qwε )

mσ(R3)
≥ 1

1 + ζ(ι, ε)
, w ∈ Gι,

where ζ(ι, ε) → 0 as ε→ 0. Let 0 < ε ≤ ει . By (10.4), (10.5), (10.10) and (10.13)
we obtain

P (ι, ε)(1 − c2c
−1
1 e−4βt)ξi(e

t)

1 + ζ(ι, ε)
≤ Af

(
Q(t)

)
(10.14)

≤ 2π(t+ 2)2(1 + c2c
−1
1 e−4βt)

(
1 +

c2
c1
ζ(ι, ε)

)
ξi(e

t)

if t ≥ tι,ε = max(tι, logRι,ε) and i = i(ι) .
Suppose y 6= zκ , κ = 1, 2, . . . . For fixed ι we find ει,y ∈ ]0, ει] such that

y ∈ h−1
w ϕ−1

w Qwε for 0 < ε ≤ ει,y and w ∈ Gι . Let 0 < ε ≤ ει,y . Then (10.10)
yields

P (ι, t)(1 − c2c
−1
1 e−4βt)ξi(e

t) ≤ ηf
(
Q(t), y

)
(10.15)

≤ 2π(t+ 2)2(1 + c2c
−1
1 e−4βt)ξi(e

t)
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if t ≥ tι,ε . From (10.14) and (10.15) we conclude that for given γ > 0 we can first
choose ι , then ε ≤ ει,y , and then tγ ≥ tι,ε such that

1

1 + γ
≤ nf

(
Q(t), y

)

Af
(
Q(t)

) ≤ 1 + γ if t ≥ tγ .

If y = zκ for some κ , the same conclusion holds because

m2

(
Ωνκ ∩B2(t))

m2

(
B2(t)

) = O
(1

t

)
as t→ ∞

for every Ωνκ . If the sequence Γ1,Γ2, . . . is finite, the arguments above simplify.
The proof that

lim
t→∞

nf
(
Q(t), aj

)

Af
(
Q(t)

) = 1 − δj

is accomplished in a similar way by taking into account that the sectors Γµ and
Ων are chosen according to the given defect numbers δj . The proof of Theorem 1.7
is complete.
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