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Abstract. We construct a quasiconformal group acting on the unit ball in 3 -space which
is not quasiconformally conjugate to any Möbius group. F. Gehring and P. Palka first asked if
each quasiconformal group acting on Euclidean n -space is quasiconformally conjugate to a Möbius
group. The answer to the question is positive for n = 2 (D. Sullivan and P. Tukia) and is negative
for higher dimensions (P. Tukia). A similar question for groups leaving the unit ball in n -space
invariant was answered negatively for n > 3 ; but the question has remained open for n = 3.

1. Introduction

The purpose of this paper is to prove the following result.

1.1 Theorem. There exists a quasiconformal group acting on B3 that is not

quasiconformally conjugate to any Möbius group.

The above theorem answers a question raised by G. Martin in [M] about
the existence of such groups. F. Gehring and B. Palka first asked whether each
quasiconformal group acting in R

n
is conjugate to a Möbius group via a qua-

siconformal map [GP]. For n = 2, the question was answered affirmatively by
D. Sullivan [S] and by P. Tukia [T1]. For n ≥ 3, the answer to the question is
negative. P. Tukia [T2] constructed a quasiconformal group not quasiconformally
conjugate to a Möbius group. Later, G. Martin modified Tukia’s construction to
provide a discrete group with the above property [M]. Moreover, for n ≥ 4 there
are quasiconformal Fuchsian groups (discrete groups that leave a ball invariant)
which are not quasiconformally conjugate to any Möbius group [M, Theorem 2.4].
But the problem of existence of a quasiconformal group acting on B3 which is
not quasiconformally conjugate to any Möbius group remained open. The basic
idea in Tukia’s construction is to use the rigidity of quasiconformal maps in higher
dimensions to construct a quasiconformal group of the form G = fΓf−1 where
Γ is a Möbius group and f is not a quasiconformal map and show that G is
not quasiconformally conjugate to any Möbius group. We follow the same idea.
Our construction can be best described as the “cylindrical version” of Tukia’s
construction.
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After some preparations in Section 2, we prove the main result in Section 3
and in Section 4 we present an example of a finite quasiconformal reflection group
acting in B3 which is not conjugate to any Möbius group via a quasiconformal
map. The group constructed in Section 3 is not discrete and the group presented
in Section 4 is finite. I do not know if there is a non-elementary discrete group G
for Theorem 1.1.

2. Preliminaries

2.1. Notation. As usual, Rn denotes the Euclidean n -space and R
n

=
Rn ∪ {∞} . For a set A ⊂ R

n
we write ∂A , Ā for the boundary and the closure

of A , respectively. The ball centered at x or radius r is denoted by Bn(x, r) and

R1 = R, Bn = Bn(0, 1), Sn−1 = ∂Bn, Hn = {x ∈ Rn : xn > 0}.

When working in R2 we sometimes use the complex notation z = x1 + ix2 .

2.2. Möbius and quasiconformal groups. Let X be a non-empty set. If
G is any group of permutations of X , then the G-orbit of x is

G(x) = {g(x) : g ∈ G}.

The fixed points of G is denoted by Fix(G) . Two subgroups G1 and G2 of G are
conjugate in G if for some h ∈ G , G2 = hG1h

−1 . Clearly G2(hx) = h
(

G1(x)
)

.

A Möbius transformation acting in R
n

is a finite composition of reflections in
spheres and planes. The group of Möbius transformations acting on R

n
is called

general Möbius group and is denoted by GM(R
n
) . The Möbius group M(R

n
) is

the subgroup of GM(R
n
) consisting of all orientation preserving Möbius trans-

formations. Finally, we call G a quasiconformal group if it is a K -quasiconformal
group for some K .

We need the next two lemmas for the proof of Theorem 1.1.

2.3. Lemma. Suppose that Γ1 is a subgroup of M(R̄3) . If Γ1 fixes more

than two points in R
3
, then Γ1 is conjugate to a group of rotations about a line L .

Proof. After conjugating with a Möbius transformation, we may assume that
Γ1 fixes the points 0, ∞ and x0 . Let g ∈ Γ1 and let L be the line passing
through 0 and x0 . Then g fixes L pointwise because g(L) = L and g fixes three
points in L . Since g fixes 0 and ∞ , g is a similarity by [A, II, Lemma 1] and
since g fixes L pointwise g is an isometry.

If P is a hyperplane perpendicular to L , then g(P ) is a plane perpendicular
to L again containing P ∩ L . Hence g(P ) = P and g in P is an isometry fixing
P ∩L . Therefore g in P is either a rotation of P about the point P ∩L , or it is
a reflection in a line L1 through P ∩ L in P .

If g in P is a rotation, we choose a rotation g0 of R3 about L which agrees
with g on P . Then g−1

0 g = id in P and hence g−1
0 g = id in R3 or g−1

0 g is a
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reflection in P by [B; Theorem 3.2.4]. But both g0 and g are sense preserving
and g is a rotation about L as desired.

It remains to see what happens if g is a reflection about L1 in P . In that
case, g fixes the plane P1 containing the lines L and L1 because it fixes both L1

and L pointwise. Therefore g is a reflection in P1 which is impossible.

2.4. Lemma. Let Γ1 and L be as in Lemma 2.3 and let Γ2 be a subgroup

of M(R
3
) . If there is x0 ∈ R

3
so that Fix(g) = {x0} for each g ∈ Γ2 , g 6= id

and if Γ = 〈Γ1, Γ2〉 is abelian, then Γ2 |L is conjugate to a group of translations

along L and each element of Γ2 is a combination of a translation and a rotation

along L .

Proof. Let g2 ∈ Γ2 , g2 6= id and let g1 ∈ Γ1 . Then g1(x0) = g1g2(x0) =
g2g1(x0) and hence g1(x0) ∈ Fix(Γ2) = {x0} and thus x0 ∈ Fix(Γ1) . After
conjugation, we may assume that x0 = ∞ and Fix(Γ1) = L is a line passing
through ∞ . Next if x ∈ L and g2 ∈ Γ2 , then

g1g2(x) = g2g1(x) = g2(x)

for each g1 ∈ Γ1 . Hence g2(x) ∈ Fix(Γ1) = L and g2 |L is a translation, or
g2 |L = ax + b . Now if a 6= 1, then g2 |L has a finite fixed point contrary to our
assumption. Therefore g2 |L = x + b and g2 − b fixes L2 pointwise. Hence g2 − b
is a rotation along L .

2.5. Maps. We consider K -quasiconformal, η -quasisymmetric and L -
bilipschitz maps. For definitions of quasiconformal and quasisymmetric maps see
[V1], [V2; 1.3 and 3.1].

2.6. Quasihyperbolic metric. Suppose that D ⊂ Rn , D 6= Rn is a
domain. The quasihyperbolic metric KD of D is defined by the element of length
|dx|/d(x, ∂D) where d(x, ∂D) is the distance from x to ∂D , see [GP]. If D ⊂ R2

is simply connected then

hD/2
<
= KD

<
= 2hD

where hD is the hyperbolic metric of D .
The following result is contained in the proof of [G2; 2.11] for a special case,

the general case needs only minor modifications.

2.7. Lemma. Suppose that D and D′ are domains in Rn with connected

boundaries and that f : D → D
′

is a homeomorphism such that

1. f(D) = D′ ,

2. f |∂D is L -bilipschitz,

3. f |D is M -bilipschitz in the quasihyperbolic metrics of D and D′ . Then f
is L1 -bilipschitz with L1 = L1(L, M, n) .

We close this section with an extension result that is essential for the proof
of Theorem 1.1.
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2.8. Lemma. Suppose that C is a bounded Jordan curve in R2 and that

f0: S1 → C is η -quasisymmetric. Then f0 has an extension to a quasiconformal

self map f of R2 so that

1. f |S1 = f0 ,

2. f is bilipschitz with respect to quasihyperbolic metrics in both components

of R2 \ S1 ,

3. f(z) = z for |z| ≥ r , r = r(η, diamC) .

Proof. Performing similarity transformations, we may assume that C is con-
tained in an annulus A = {1 < |z| < r1} where r1 is a positive constant depending
only on η . Let D and D∗ be the interior and exterior of C1 respectively. We
first consider extension to interiors.

Let ϕ: D → B
2

be a homeomorphism which ϕ is conformal in D and ϕ(0) =
0. Since C is a quasicircle, ϕ is η′ -quasisymmetric, where η′ depends only on
the constant of C and dist(0, ∂D) both of which depend only on η and so does
η′ . Now h = f0 ◦ ϕ−1 is a quasisymmetric map of S1 and can be extended to a

self-homeomorphism h1 of B
2

so that h1 is quasisymmetric in B2 , h1(0) = 0 and
h1 is bilipschitz with respect to quasihyperbolic metrics of B2 and D , by [GNV;
Lemma 2.10]. Furthermore f0 is bilipschitz in {|z| < 1/2} and we may assume
that f1(z) = z for |z| < r2 by a version of annulus theorem [M; Theorem 2.6],
where r2 = r2(η) .

We now turn to extension of f0 to exteriors. Let T (z) = 1/z . Then g = Tf0T
is a quasisymmetric map that carries S1 onto TC , because T is bilipschitz and
hence quasisymmetric in A . The map g has an extension to a quasisymmetric
map g1: B2 → TD∗ so that g1(z) = z in B2(r3) and g1 is bilipschitz with respect
to quasihyperbolic metric, as is shown for f1 above.

Next f2 = Tg1T maps {|z| > 1} onto D∗ and f2(z) = z for |z| ≥ 1/r3 .
Because T is bilipschitz in {r3 < |z| < 1/r3} and g1 is bilipschitz with respect to
quasihyperbolic metric, f2 is bilipschitz with respect to quasihyperbolic metrics of
{|z| > 1} and D∗ whenever z and f2(z) are both in {r3 < |z| < 1/r3} . But this
implies that f2 is bilipschitz with respect to quasihyperbolic metrics of {|z| > 1}
and D∗ , because f2(z) = z for |z| ≥ 1/r3 . Finally

f(z) =

{

f1(z) for |z| ≤ 1,
f2(z) for |z| > 1

is the desired map.

3. Proof of Theorem 1.1

We now turn to the proof of Theorem 1.1. For this we begin with the familiar
bounded snowflake curve S and construct a K -quasiconformal group G acting
on a round cylinder so that (1) G(a) = S × R for each a ∈ S × R . (2) If Γ is
any Möbius group conjugate to G with ∞ ∈ Fix(Γ), then Γ(b) is contained in a



Quasiconformal groups acting on B3 249

round cylinder. Appealing to a well established result of Tukia and Väisälä, that
S × R cannot be imbedded in R2 or S1 × R by a locally quasisymmetric map,
we see that G is not quasiconformally conjugate to a Möbius group.

3.1. The Jordan curve S . Let Sn as shown below. Then {Sn} converges
to a Jordan curve S , where dimH(S) = α > 1. We may assume that Hα(S) = 2π
and 1 ∈ S , where Hα(S) is the Hausdorff measure of S .
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S1 S2 S3

Choose an orientation on S and define θ(x) = Hα

(

S(1, x)
)

where x ∈ S and

S(1, x) is the oriented arc in S from 1 to x . Now f−1
0 (x) = eiθ(x) is a bihölder

map from S onto S1 , see [FM; Theorem]. Hence f−1
0 and f0 are quasisymmetric.

By Lemma 2.8 there exists a quasiconformal self map f of R2 so that f |S = f0 ,
f is bilipschitz with respect to quasihyperbolic metrics in both components of
R2 \ S1 and f(z) = z for |z| > r .

3.2. The group G . Let R be the group of all rotations Rθ: z → zeiθ in R2 .
Then RS = fRf−1 is a group of self maps of R2 acting transitively on S . Since
RS leaves B2(r) invariant, we regard RS as a group of transformations of B2(r) .
Next fRθf

−1 is bilipschitz with respect to hyperbolic metrics in both components
of R2 \ S , being a composition of such maps. Moreover, fRθf

−1 |S = f0Rθf
−1
0

is bilipschitz by [FM; Corollary] and hence fRθf
−1 is bilipschitz throughout by

Lemma 2.7. Let G1 = RS × id and let G2 be the group of translations along the
x3 -axis. Then G = 〈G1, G2〉 is a bilipschitz group of B2(r)×R and we have the
following result.

3.3. Theorem. The group G above is a quasiconformal group of B2(r)×R

that is not quasiconformally conjugate to any Möbius group.

Proof. Suppose that there exists a quasiconformal map h so that Γ = hGh−1

is a Möbius group. Let Γj = hGjh
−1 where G1 and G2 are as in 3.2. By

Lemmas 2.3 and 2.4, after conjugation, Γ1 is a group of rotations about the x3 -
axis and Γ2 is a group of translations along that axis and Γ = 〈Γ1, Γ2〉 . Let
h−1(b) = a ∈ S × R . Then G(a) = h

(

Γ(b)
)

= S ×R , or

h−1(S ×R) = Γ(b) ⊂ S1(r) ×R,

which cannot be, by [T2; Theorem 5]. Hence G is not quasiconformally conjugate
to any Möbius group.

3.4. Completion of the proof of Theorem 1.1. Let g0 map B2(r) × R

onto B3 quasiconformally. Then

G′ = g0Gg−1
0

is a quasiconformal group of B3 that is not quasiconformally conjugate to any
Möbius group.



252 Manouchehr Ghamsari

4. Remarks

Let C be a quasicircle through ∞ that contains a nonrectifiable bounded
subarc and let σ be a bilipschitz reflection in σ . Then 〈σx × id〉 is a (sense-
reversing) QC group leaving the upper half space in R3 invariant. This observation
is due to Väisälä, and Martio [Remark 4.29, MV].

I would like to thank the referee for his comments that simplified and reduced
Section 4 to a very short example.
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groups. - Ann. Acad. Sci. Fenn. Ser. A I Math. 11, 1986, 174–202.
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